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Abstract— We address the learning of unknown rigid body
motions in the Special Euclidian Group SE(3) based on Gaus-
sian Processes. A new covariance kernel for SE(3) is presented
and proven to be a valid kernel for Gaussian Process Re-
gression. The learning error of the proposed Gaussian Process
model is extended to a high-probability statement on SE(3). We
employ it in a visual pursuit scenario of a moving target with
unknown velocity in 3D space. Our approach is validated in a
simulated 3D environment in Unity, and shows significant better
prediction accuracy than the most commonly used Gaussian
kernel. When compared to other covariance kernels proposed
on SE(3), its advantages are a natural extension of covering
numbers on SE(3), that it is computationally more efficient,
and that stability of target pursuit can be guaranteed without
limiting the target rotational space to SO(2).

I. INTRODUCTION

Data-driven modelling approaches gain popularity as for
a rising number of problems for autonomous systems exact
mathematical models become intractable. This especially
holds for control tasks in robotics that have to rely on visual
information of their environment [1], [2], for which data is
readily available [3]. Scenarios include aerial swarm robotics
[4], and visual tracking in traffic and animal ecology [5], [6].

Many of these scenarios require the tracking of objects
(targets) on the Special Euclidian group SE(3), that means
the object position, rotation, and their respective velocities
are crucial to the task. To that regard, a wide range of motion
estimators [7]–[11] have been presented. While the Visual
Motion Observer in [7] comes without the requirement of a
target motion model, it suffers from an estimation error that
eventually leads to target loss. One credible remedy for this
risk is to adopt a data-driven mechanism [8]–[11].

A vast variety of data-driven modelling techniques is
available such as Support Vector Machines and Gaussian
Mixture Models [3], [12]. For modelling complex dynamics
on SE(3), Neural Networks [13] and Gaussian Process
(GP) Regression [11], [14], [15] are a popular choice. GPs
have the advantage that they provide a mean estimate and
variance to measure model fidelity, but many works require
prior knowledge of a bounded RKHS norm of the modelled
function which is not realistic depending on the application
[16]. As pointed out in [14], usual GP models are only
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Fig. 1. Our kernel achieves computational efficiency and high prediction
accuracy in a pursuit setting. https://youtu.be/yf2JhwhPAoA

defined in Euclidean space, and satisfactory models can
be obtained only in limited situations on SE(3). This is
challenging since it imposes hard limitations on the kernel
choice, but high fidelity models are required to minimize the
risk of target loss. Under these requirements, generalizations
of GPs to manifolds have also been attempted [17], [18].

A common choice to represent rotations is by Euler angles
g = [x y z α β γ]⊺ ∈ R6, or as an axis-angle vector g =
[x y z ξ⊺θ]⊺∈R6. While these have vector space structures
and standard kernel choices (e.g. squared exponential) can
be applied, they often lead to innacurate predictions at high
angular speeds for sparse training data [14]. A new axis-angle
kernel was proposed in [14], but it does not translate well
in our pursuit scenario as performance guarantees depend on
a worst-case rotational error [11]. Since it also holds issues
with the uncertainty prediction, [19] proposed a new kernel
based on a dual-quaternion representation of g. However,
it comes at the expense of an increased computational
complexity and GP training failures as the topology of
quaternions is sensitive to hyperparameter changes [14]. So
far, there is no kernel available for the homogeneous form
of g despite its wide usage in robotics [1], [2], [7].

The main contributions of this letter are as follows:
(i) Developing a kernel for the homogeneous form of g

for GP Regression and proving its validity.
(ii) Extending the notion of covering numbers to SE(3) to

derive a new high-probability statement for the learning
error based on Lipschitz continuity on SE(3).

(iii) Deriving an online-computable performance bound,
stability, and validation in a 3D simulation (Fig. 1).

Notation: Vectors/matrices are denoted as bold lower/upper
case characters (except V b, g to keep to literature [1], [2],
[7]). ∧ computes the cross product âb=a×b,a,b∈R3, with
∨ the inverse-operation. diag(·) is a diagonal matrix, ∥·∥ the
Euclidean norm. a{i:j} are elements i to j from a series.
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II. PROBLEM SETTING

Translational and rotational motion of rigid bodies form
together the special Euclidian group SE(3) := R3×SO(3).
Motion dynamics on this space can take several forms [2,
Ch. 2], however, in this letter we adopt the target object track-
ing technique from [7], which uses the homogeneuous (ma-
trix) representation of g ∈ SE(3) and body velocity V̂ b ∈
se(3) :=

{[
ω̂b vb

0 0

]∣∣ ω̂b∈R3×3, (ω̂b)⊺=−ω̂b,vb∈R3
}

as

ġ = gV̂ b , g =

[
R p
0 1

]
, (1)

with position p∈R3 and rotation R∈SO(3) :={R∈R3×3 |
RR⊺=I3,det(R)=1}. For elements on se(3), operator ∨
extracts the translational vb and angular velocity ωb, with
∧ the inverse operation. Thus, left-transitioning g in (1),

V b = (g−1ġ)∨ =
[
vb⊺ ωb⊺

]
∈ R6, vb,ωb ∈ R3 , (2)

we have found a Euclidian vector space structure to represent
velocity on SE(3). We are interested in modelling (2) by
Gaussian Proccesses in terms of a velocity field of the form

f : SE(3) → R6 , (3)

that means, the velocity (2) takes a mapping g 7→ V b(g).
Targets following a velocity field is a frequent problem [8],
[14], [19]. However, since the space SE(3) is non-Euclidian,
the challenge is to find in Sec. III a valid kernel function

k : SE(3)× SE(3) → R (4)

in order to have a well-defined Gaussian distribution. There-
after, we derive a high-probability statement for the learning
error on a compact space G ⊂ SE(3) which only requires
Lipschitz continuity of (2). Lastly, we apply the new findings
to a visual pursuit scenario in Sec. IV, prove stability, and
validate it in a virtual environment (Sec. V).

III. RIGID MOTION GAUSSIAN PROCESS

A. Gaussian Process Regression

Let us consider (3) as a regression problem of this form:

Assumption 1 ([16]). The unknown dynamics f(·) are sam-
ples from a Gaussian Process f(g) ∼ GP(0, k(g, g′)) and
the observations y = f(g) + ϵ are perturbed by zero mean
i.i.d. Gaussian noise ϵ ∼ N

(
0, σ2

nI6

)
with variance σ2

n > 0.

We stack the observations in a training dataset of N data
points D = {(g{i},y{i})}Ni=1. GP models are defined by
a covariance (“kernel”) function (4) and a prior mean. The
latter is set to zero in this work, which is common to simplify
calculation without loss of generality [15], [16]. Under these
conditions, the posterior distribution f(g∗) at a test point
g∗ ∈ SE(3) is jointly Gaussian distributed with the mean
and covariance function being

µ = [µ1, . . . , µ6]
⊺ ∈ R6 , (5a)

µi(g
∗) = k⊺

φi
(g∗)Aφiy

{1:N}
i , (5b)

Σ = diag
(
σ2
1 , . . . , σ

2
6

)
∈ R6×6 , (5c)

σ2
i (g

∗) = k(g∗, g∗)− k⊺(g∗)Aφi
k(g∗) . (5d)

The remaining terms are defined as follows: the Gram matrix
[Kφi ]j,j′ = kφi

(
g{j}, g{j′}) for j, j′ ∈ {1, . . . , N} with

Aφi
:=

(
Kφi

+ σ2
nIN

)−1
encodes the similarity between

data points in D, whereas the extended covariance func-
tion [kφi

(g∗)]j = kφi

(
g{j}, g∗) calculates the similarity

between a test point and the dataset. The index φi denotes
the hyperparameters for output i = 1, . . . , 6 which are used
to tune the kernel (4) for a better model performance. To
define a valid Gaussian Process distribution, (4) must be a
valid kernel function. We will define what consitutes to the
validity of a kernel function on SE(3) next, and later in
Sec. III-C we introduce our final kernel.

B. Distance Metric on SE(3)

To measure the similarity between two poses g and g′ we
need to define a distance measure on SE(3). We know from
[20] that this metric can be a trade-off between translations
and orientations by choosing appropriate length scales. For
two weights ρp, ρR ≥ 0 satisfying ρp + ρR = 1, we define
the distance as the root over the sum of squares

dSE(3)(g, g
′) =

√
ρp∥p− p′∥2 + ρRd2SO(3)(R,R

′) (6)

with the rotational distance dSO(3) :SO(3)×SO(3) → R+

yet to be designed. Further, let us introduce the following:

Definition 1 ([12]). Let X be a non-empty set. A real-
valued symmetric function k : X × X → R is called a
positive definite (pd) kernel if and only if the Gram matrix
K ∈ RN×N satisfies c⊺Kc ≥ 0 for any vector c ∈ RN . If
c⊺Kc ≥ 0 only holds for c ∈ RN with

∑N
i=1 ci = 0, then

k is called a conditionally positive definite (cpd) kernel.

Literature [18], [20] provides a vast variety of distance
metrics on SO(3), though, not all in the form of rotation
matrices R. We are in favor of the Frobenius-Norm, that,
for a given matrix A ∈ RN×N , is defined as ∥A∥F =√

tr(A⊺A). Thus, for the remainder of this work, let

dSO(3)(R,R
′) = 1

2∥R−R′∥F (7)

be the distance between two rotations R,R′ ∈SO(3). [18]
also provides other valid kernels, though, advantages of (7)
are simultaneously satisfying a high regression performance
and fast computability, interpretability of covering numbers
on SO(3) (Sec. III-E), and being able to calculate a pursuit
performance bound (Sec. IV). Make (7) a cpd kernel:

Lemma 1. The negative squared distance function (7), i.e.
−d2SO(3)(R,R

′) = − 1
4∥R−R′∥2F , is a cpd kernel.

Proof: Direct consequence of [18, Lem. 5.5], since ∥·∥F
defines a matrix inner product space ⟨·, ·⟩F . ■

C. Kernel on SE(3)

The class of cpd kernels generalize the feature space
representation of pd kernels as it does not need to be a dot
product [12, Ch. 2.4]. Still, for Gaussian Process Regression
the kernel (4) must be pd to be a valid covariance function.
Though, the distance (7) can still be used as follows:
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Theorem 1. Consider the SE(3)-distance metric (6) with
the Frobenius-Distance (7) on SO(3). Then, for all hyper-
parameters φi=[σfi , li] satisfying σfi>0, li>0, the kernel
kφi

: SE(3)× SE(3) → R+,

kφi
(g, g′) = σ2

fi exp
(
−d2

SE(3)(g,g
′)

2l2i

)
, (8)

is a valid kernel for Gaussian Process Regression.

Proof: From (6) and exp(a+b)=exp(a)exp(b), a,b∈R, we
get k(g,g′)=σ2

fexp(−
ρp

2l2 ∥p−p′∥2)exp(− ρR

2l2 d
2
SO(3)(R,R

′)).
The first exponential is the well-known squared-exponential
kernel, which has been already proven to be a valid kernel
and therefore pd. From [12, Prop. 2.28] and Lemma 1 we
also conclude that the second exponential is pd because the
SO(3) distance (7) is cpd. Since the finite product of pd
kernels is also pd [3, p. 296], the Theorem is proven. ■

The hyperparameters in (8) adjust the probability of the
mean of function samples in the Gaussian distribution, and
optimal values are typically obtained by evidence maximiza-
tion. Note that whereas the weights in (6) are typically set
application-dependent, it is viable to include them in φi.

Remark 1. It may be possible to extend (8) to the Matérn
class, which requires the use of Bochner’s Theorem [12].

D. Lipschitz Bounds

Let
(
SE(3), dSE(3)

)
be a metric space. To compute a

uniform error bound between the real target and estimated
motion later in Sec. IV, we require Lipschitz continuity of
the unknown function (3), which is a weak assumption for
many control systems. With the special vectorized form ofg

vec(g) :=

[
p

sk(R)
∨

]
, sk(R) =

1

2
(R−R⊺), (9)

we are ready to note the following:

Lemma 2. Suppose Assumption 1 holds and that f(·) is Lip-
schitz continuous |fi(g)−fi(g′)|≤Lfi·dSE(3)(g,g

′), ∀g,g′∈
SE(3), ∀i∈{1, . . . , 6} with Lipschitz constants Lfi . Further,
let R, R′ be close, that means, R⊺R′ ≻ 0. Then, there exists
a Lipschitz constant Lf such that

∥f(g)− f(g′)∥ ≤ Lf

∥∥vec(g−1g′)∥∥.
Proof: Assuming R⊺R′ ≻ 0, then from [7, Prop. 5.3 (ii)]

we know that 1
4∥R−R′∥2F ≤ ∥ sk(R⊺R′)∨∥2. The state-

ment follows then straightforward by inserting all terms. ■
Note that Lemma 2 only assumes the existance of a Lipschitz
constant, but its value does not need to be known. In fact,
[16, Thm. 3.2] provides a high-probability Lipschitz estimate
based on the observation data in D satisfying Assumption 1.

E. Learning Error

To make qualitative statements in machine learning it is
crucial to quantify a learning error. For Gaussian Processes
this comes in the form of a probabilistic uniform error bound
[16], [21]. The classical approach in [21] requires prior
knowledge of a bounded RKHS norm of f . However, in our
visual pursuit scenario (Sec. IV) of targets with unknown

motion f this is paradoxal, even if we restrict ourselves to
universal kernels to at least assume the existance of such a
bound [10], [11], [15]. Instead, we will derive a probabilistic
uniform error bound based on our previous assumption of
Lipschitz continuity on the metric space

(
SE(3), dSE(3)

)
,

which our kernel (8) already fulfills by design:

Lemma 3. Consider the GP model (5) based on the covari-
ance kernel (8) on a compact set G ⊂ SE(3). Furthermore,
consider a continuous unknown dynamics f : G → R6

with Lipschitz constants Lfi on
(
G, dSE(3)

)
, and N ∈ N

observations satisfying Assumption 1. Then, the posterior
mean and variance of the Gaussian Process conditioned on
the training data D are continuous with Lipschitz constants
Lµi

and Lσ2
i
∀i ∈ {1, . . . , 6} on G, respectively, where

Lµi
≤
σ2
fi

l2i
ρ̄
√
N
∥∥∥Aφi

y
{1:N}
i

∥∥∥, Lσ2
i
≤2τρ̄

σ2
fi
+σ4

fi
N∥Aφi

∥
l2i

and ρ̄ := max{ρp, ρR}. Also, pick δ ∈ (0, 1), τ ∈ R+ with

β(τ) =

√
2 log

(
M(τ,G)

δ

)
, γ(τ) = [γ1, . . . , γ6]

⊺

γi(τ) = (Lµi
+Lfi)τ + β(τ)

√
Lσ2

i
τ

(10)

where M(τ,G) denotes the minimum number (τ -covering
number of G) such that there exists a set Gτ satisfying
|Gτ | = M(τ,G) and ∀g ∈ G there exists g′ ∈ Gτ with
dSE(3)(g, g

′) ≤ τ . Then, the following probabilistic uniform
error bound holds for ∆(g) = ∥f(g)− µ(g)∥:

Pr{∀g∈G, ∆(g)≤β(τ)∥Σ1/2(g)∥F + ∥γ(τ)∥} ≥ (1− δ)6

Proof: The one dimensional case in [16, Thm. 3.1] con-
sidered a Euclidian metric space, but the proof can be easily
modified with our metric space by straightforward replacing
all Euclidian distances by our distance dSE(3), and kernel (8)
Lipschitz constant ρ̄σ2

fi/l
2
i . Since ϵ is uncorrelated, by inter-

section and triangle inequality for the multi dimensional case

Pr{∀g∈G, |f1(g)− µ1(g)| ≤ β(τ)σ1(g) + γ1(τ) ∩ · · · ∩
|f6(g)− µ6(g)| ≤ β(τ)σ6(g) + γ6(τ)} ≥ (1− δ)6

⇔ Pr{∀g ∈ G, ∥f(g)− µ(g)∥ ≤
∥Σ1/2(g)[β(τ) . . . β(τ)]

⊺
+ γ(τ)∥} ≥ (1− δ)6

the uniform error bound from Lemma 3 is obtained. ■
The right-hand side of the probability-inequality stems

from the regression problem due to measurement noise.
Also, the covering number M(τ,G) represents the minimum
number of points in a grid over G with grid constant τ to
fully cover the space. However, its calculation on G is a non-
trivial problem since dSE(3)(g, g

′)≤τ forms hyperellipsoids√
ρp

(
∥p−p′∥

τ

)2

+ ρR

(
dSO(3)(R,R′)

τ

)2

≤ 1. (11)

Lemma 4. Let the same conditions as in Lemma 3 hold. With
the maximum extension ri:=max|pi−p′

i| in each dimension
x, y, z, the covering number on G is upper-bounded by

M(τ,G) ≤
(
1+

√
ρR

2
√
2

τ

)2 ∏
i={x,y,z}

(
1+

√
ρp
ri
τ

)
. (12)
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Projection

Fig. 2. Computing covering number M(τ,G) on compact G ⊂SE(3).

Proof: From [7, p. 93], we can conclude 1
2∥R−R′∥F =

1
2∥I3−R⊺R′∥F =

√
1−cos θe. It measures the distance

between R,R′ ∈ SO(3) where θe is the rotation angle
between both rotations. Since 0 ≤

√
1−cos θe ≤

√
2 and

because every rotation on the sphere can be viewed in terms
of spherical coordinates (ϕ, ψ), we can construct a rectangle
space

[
−
√
2,
√
2
]
×
[
−
√
2,
√
2
]

that includes every rotation
(see Fig. 2). From (11), the grid points become circles
with radius τ/√ρR and τ/√ρp. Hence, the number of grid
points in one dimension of the rotational rectangle space
is 1+

√
ρR

2
√
2

τ , whereas for the position in one dimension
it is 1+

√
ρp

ri
τ . In this form, G can be over-approximated

[16] by a hyperrectangle set G̃ whose covering number
M(τ, G̃) is in multiplicative relation to the number of grid
points in each dimension. The statement then follows from
M(τ,G) ≤M(τ, G̃). ■

Remark 2. Despite that Lemma 4 only calculates an upper-
bound on M(τ,G), the logarithm and square root in (10)
keep any effect of conservatism small. That means, this
bound can be readily applied to real applications (see Sec. V).

IV. APPLICATION TO VISUAL TARGET TRACKING

A. Relative Motion Estimation

In this section we explain how to perform target tracking.
Let us denote three coordinate frames: a world frame Σw,
camera frame Σc, and target frame Σo. The indices i, j on
gij and V b

ij define the pose and velocity of a frame Σj as
measured from another frame Σi. By this definition, the pose
of the target as seen from the camera can be calculated as
gco = g−1

wc gwo. From the time derivative and (1), we obtain

ġco = −V̂ b
wcgco + gcoV̂

b
wo (13)

the so-called relative rigid body motion model. Note that by
our pursuit scenario neither V b

wo, gwo, gco are measurable,
but the camera can infer its own velocity V b

wc and pose gwc.
Our goal is to estimate the target velocity V̂ b

wo and pose
gco (and gwo, consequently) since they are not directly
measurable. Thus, based on (13) let us introduce the Visual
Motion Observer (VMO) [7, Ch. 6]

˙̄gco = −V̂ b
wcḡco − ḡcoûe (14)

with observer input ue and motion estimate ḡco. Further,
let gee := ḡ−1

co gco be the estimation error and its vectorized
form ee := vec(gee). However, it cannot be measured since it
is dependent on the target pose gco as seen from the camera.

To solve this issue, we want to infer ee from the 2D images
of the camera. More specifically, we assume knowledge of

at least nf ≥ 4 target feature points (FPs) p
{i}
o ∈ R3, i =

1, . . . , nf in frame Σo that are collected in a dataset Fnf
=

{p{i}
o }nf

i=1. A subset F̃ ⊆ Fnf
of these FPs are projected onto

the image plane with λ > 0 the camera focal length at

fi =
λ

p
{i}
c,2

[
p
{i}
c,1

p
{i}
c,3

]
∈ R2,

[
p
{i}
c

1

]
= gco

[
p
{i}
o

1

]
. (15)

These FPs are collected in a visual measurement vector f =
[f⊺1 . . . f⊺|F̃|]

⊺ ∈ R2|F̃| and can be detected by real time Com-
puter Vision techniques such as classical methods described
in [2, Ch. 4 & 11] or Neural Networks [22]. Based on the
projection model (15), if we replace gco with the estimate
ḡco, we can also obtain the estimated FP locations f̄i ∈ R2|F̃|

on the image plane. Suppose that at all times at least 4 FPs
are detected (i.e. |F̃|≥4) and the following holds:

Assumption 2. For the estimated rotation error Ree ≻ 0
holds. That means, |θee(t)| ≤ π/2,∀t ≥ 0 of Ree = eξ̂θee .

Then, the estimation error is in multiplicative relation to the
displacement of the detected and estimated FP locations [1],
ee = J†(f− f̄), where J† denotes the pseudo-inverse of the
image jacobian J which can be calculated from [7, p. 108].

B. Data-driven Visual Pursuit

Our goal is to bring the drone closer to the target.
Mathematically speaking, we want the estimation error ee
and control error ec := vec(gce) with gce := g−1

d ḡco to be
small, where gd is a desired constant relative pose. Note that
the control error is based on the estimation ḡco since the real
relative pose gco is not measureable. In summary, for a given
nonnegative constant b, we seek a control law that achieves
limt→∞∥e(t)∥ < b with e = [e⊺c e⊺e ]

⊺.
Identically to the target motion model (1), let the drone

motion model be given by ġwc = gwcV̂
b
wc, and uc be the in-

put to the drone velocity V b
wc := −Ad(gd)uc. We are mod-

elling the target motion in terms of f(gwo) = V b
wo(gwo),

that means, our data takes the form D = {(g{i}
wo ,y{i})}Ni=1,

y=V b
wo(gwo)+ ϵ, as given by Assumption 1. However, we

design our controller with the GP mean prediction µ(ḡwo)
based on the estimated target pose ḡwo := gwcḡco as

u =

[
uc

ue

]
= −KNee −

[
Ad(Rce)Ad(Ree)

Ad(Ree)

]
µ(ḡwo) (16)

with controller gains K = diag(kcI6, keI6), kc>0, ke>0.
The other terms are given as follows (Ad(R) :=Ad(p=0,R)):

Ad(g) :=

[
R p̂R
0 R

]
, N :=

[
I6 0

−Ad(R⊺
ce) I6

]
.

Before we prove that the controller (16) indeed results in
stable target tracking, we require one more assumption:

Assumption 3. For the control rotation error Rce ≻ 0 holds.
That means, |θce(t)| ≤ π/2,∀t ≥ 0 of Rce = eξ̂θce .

This assumption is in general satisfied for the given target
pursuit scenario since the drone must be able to move faster
than the target. Finally, let us state the following theorem:

8435



Theorem 2. Assume V b
wo(·) admits a Lipschitz constant

L on
(
G, dSE(3)

)
with compact field G ⊂ SE(3) and let

N ∈ N observations be given that satisfy Assumption 1.
Suppose that Assumptions 2 and 3 hold, and that κ :=
min{kc, ke}−Lf > 0. Then, the controller (16) guarantees
with τ > 0 and current estimate ḡwo that the error e =
[e⊺c e⊺e ]

⊺ converges with a probability higher than (1 − δ)6

to Pr{∥e∥ ≤ bvar(ḡwo, δ, τ)} ≥ (1− δ)6 where

bvar(ḡwo, δ, τ) :=
β(τ)∥Σ1/2(ḡwo)∥F + ∥γ(τ)∥

κ
. (17)

Proof: We reuse from [7], [11] the storage function S :=
1
2

∑
j={c,e}

(
∥pje∥2 + tr(I3 −Rje)

)
whose time derivative

is known as Ṡ = e⊺N⊺u + e⊺[0 Ad⊺
(Ree)

]⊺V b
wo(gwo).

Inserting the controller (16), and since −e⊺N⊺KNe ≤
−λK∥e∥2 for λK := min{kc, ke}, we obtain:

Ṡ=−λK∥e∥2+e⊺[0 Ad⊺
(Ree)

]⊺
(
V b

wo(gwo)−µ(ḡwo)
)

≤ −λK∥e∥2 + ∥e∥
(
∥V b

wo(gwo)− V b
wo(ḡwo)∥+

∥V b
wo(ḡwo)− µ(ḡwo)∥

)
≤ −∥e∥

(
(λK − Lf )∥e∥−∥V b

wo(ḡwo)− µ(ḡwo)∥
) (18)

where we used Lemma 2 (since Assumption 2 holds). From
Lemma 3 we see that for a probability higher than (1− δ)6

that Ṡ < 0, ∀∥e∥ ≤ bvar(ḡwo, δ, τ). ■
The computability of (17) is crucial for online learning
scenarios to decide if data shall be added to the GP model
and/or forgotten. It can be made arbitrarily small by either
increasing kc and ke, or by increasing the number of data
points in D to decrease ∥Σ1/2(·)∥F . We can also prove that it
is upper-bounded in terms of an ultimate bound, i.e. bvar ≤ b:

Corollary 1. Let the same conditions as in Theorem 2 hold.
Then, there exists ζ(δ, τ) > 0, T (δ) > 0 and τ > 0 such that
Pr{∥e∥ ≤ b(δ, τ), ∀t ≥ T (δ)} ≥ (1 − δ)6 with the ultimate
bound being for any η ∈ (0, 1)

b :=
√
2∆f

κη , ∆f (τ) :=β(τ)max
g∈G

∥Σ1/2(g)∥F+∥γ(τ)∥ (19)

Proof: From (18), Lemma 3, and constant η we obtain
Ṡ ≤ −κ(1 − η)∥e∥2− κη∥e∥2 + ∆f∥e∥ which holds for
a probability higher than (1−δ)6. Therefore, if we define a
set E :=

{
e∈R12 |∥e∥ ≥ ζ,Ree≻0,Rce≻0

}
for ζ(δ, τ) :=

∆f/ηκ, it holds that Pr{Ṡ < 0, ∀e ∈ E} ≥ (1 − δ)6. We
conclude from [23] that the error is uniformly ultimately
bounded in probability with the ultimate bound following
from α−1

1 (α2(ζ(δ, τ))) =
√
2ζ(δ, τ), where α1(∥e∥) :=

1
2∥e∥

2 and α2(∥e∥) := ∥e∥2 are class K functions such that
α1 ≤ S ≤ α2. This completes the proof. ■
When V b

wo is perfectly predictable, (19) approaches zero,
significantly different from the results obtained in [7]. This
is due to the construction of a GP model on SE(3).

V. SIMULATION RESULTS

In this section, we investigate the computational de-
mand and prediction accuracy of these kernels: The pop-
ular Squared Exponential kernel which takes the poses in

SE(3)-RBF [3] SE(3)-Axang [14] SE(3)-Hom (8)

Fig. 3. Computation times of Gram matrix Kφi for N = 1000 random
data points (bottom) and prediction of 100 random data points (top).
Averaged over 100 runs, with standard deviation given as black handle.

translation and axis-angle form (“SE(3)-RBF”), SE(3)-
Kernel from [14] (“SE(3)-Axang”), and our SE(3)-Kernel
(8) (“SE(3)-Hom”). The tests run all on a MacBook Pro,
2.3GHz 8-Core Intel Core i9 with 32GB RAM.

A. Kernel Runtime Comparison

We generate N=1000 random poses g that are presented
once in the translation and axis-angle form, and the homoge-
neous form (1). The former will be used for the SE(3)-RBF
and SE(3)-Axang kernels, whereas the latter will be parsed
to our homogeneous form SE(3)-Hom kernel. We compute
the Gram matrix Kφi for all three kernels, and then do a
prediction of 100 randomly selected points. It is repeated
for 100 times to get reliable results. Figure 3 depicts the
average computation time and standard deviation between all
runs. We observe that SE(3)-Hom is 60% faster than SE(3)-
Axang. This result however does not take into account the
prediction quality, which we will now investigate next.

B. Digital Twin Simulation

We will now evaluate our theoretical result in a simulated
3D forest environment1 using Unity, whilst the control logic
resides in MATLAB. Both sides communicate over a ROS
layer with a message frequency of 50Hz. The target is rep-
resented by a bird whose dynamics are given by a modified
quartic oscillator (see Fig. 4) with v = 1.5, ϵ = 0.25 as

V b
wo=

[
R⊺

wov
b
wo

ωb
wo

]
, ωb

wo=

 0
0

d
dtatan2(v

b
woy,v

b
wox)


vb
wo = v

 pwoy

ϵ(−p3
wox + pwox)

cos
(
atan2(pwoy,pwox)− π

4

)
.

(20)

The angular velocity ωb
wo results in the bird always heading

towards the direction of movement. Also, let ρp = ρR = 0.5.
1) Setup: We select N = 6 data points on the bird

trajectory Fig. 4 and obtain optimal GP hyperparameters by
evidence maximization [3]. Then, with ke = kc = 12, and
approximated Lf ≤ 4, Corollary 1 guarantees from κ > 0
stability of our pursuit control scheme. We run the simulation
for T = 15 s with the initial positions pwo = [−2, 0, 0]

⊺,
pwc = [−2,−3,−3]

⊺, pco = [0, 2, 0]
⊺, pd = [0, 3, 0]

⊺, and
initial rotations ξθwo = [0, 0, 1]

⊺ ·0, ξθwc = [1, 0, 0]
⊺ · (−π

4 ),
ξθco = [1, 0, 0]

⊺ · π
4 , ξθd = [1, 0, 0]

⊺ · π
4 , with R(ξθ) = eξ̂θ.
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Fig. 4. Left: forest simulation environment with “bird” target and “drone”
pursuer. Right: Trajectory with N = 6 datapoints “+”.

no GP SE(3)-Axang [14]
SE(3)-RBF [3] SE(3)-Hom (8) bvar (17)

Fig. 5. Target tracking performance for different kernels. The dotted line
indicates the bound (17) for δ=0.001, τ=0.001 when using SE(3)-Hom.

2) Results: The results are shown in Fig. 5. Clearly, using
a GP model outperforms the conventional target tracking
technique from [7], and both SE(3)-Axang and SE(3)-
Hom perform better than SE(3)-RBF. The latter is due
to wrong predictions at high angular speeds due to our
sparse data (Fig. 4), resulting from the erroneous rotational
distance [11], [14], [19]. In contrast, SE(3)-Hom does not
show any significant increase in pursuit performance when
compared to SE(3)-Axang. The advantage of SE(3)-Hom
is the availability of the online-computable performance
bound (17), stability guarantee without limiting the rotational
space to SO(2) [11], the natural extension for covering
numbers on SE(3) to obtain the in our setting less restrictive
Bayesian-based high-probability statement Lemma 3, and its
fast computability. The bound (17) clearly demonstrates the
advantage of our method in a worst-case sense, since once
entered, the error for SE(3)-Hom stays under it at all times,
and shrinks with a higher GP model quality. This makes our
method well suited for an online evasion learning and pursuit
scheme that depends on the availability of such measures.
Our simulation indicated that SE(3)-Hom is not prone to GP
training failures (low sensitivity on hyperparameter changes
in contrast to [19]), but they greatly influence the bound (17).

VI. CONCLUSION

In this letter, a Gaussian Process model for modelling rigid
motions on SE(3) is developed. A new SE(3)-kernel is pro-
posed and proven valid that generalizes the GP input space to
the homogeneous form g=

[
R p
0 1

]
. Further, we derive a high-

probability statement on the GP learning error by extending
the notion of covering numbers onto SE(3). Our proposed

1The code is made available here:
https://github.com/marciska/vpc-rmgp-se3hom

data-driven controller is employed in a visual pursuit scenario
of a moving target in 3D and outperforms alternative kernels
on SE(3) as it maintains both computational efficiency, pre-
diction accuracy, and a computable worst-case performance.
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