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A note on impulsive solutions to nonlinear control systems*

Giovanni Fusco! and Monica Motta?2

Abstract—In the last decades, many authors provided dif-
ferent notions of impulsive process, seen as a suitably defined
limit of a sequence of ordinary processes for a nonlinear
control-affine system with unbounded, vector-valued controls.
In particular, we refer to the impulsive processes introduced
by Karamzin et al. —in which the control is given by a vector
measure, a non-negative scalar measure, and a family of so-
called attached controls that univocally determine the jumps
of the corresponding trajectory— and to the graph completion
processes developed by Bressan and Rampazzo et al. —in which
an impulsive trajectory is seen as a spatial projection of a
Lipschitzian trajectory in space-time. The equivalence between
these notions is the crucial assumption of most results on
optimal impulsive control problems, such as existence of an
optimal process and necessary/sufficient optimality conditions.
In this note we exhibit a counterexample which shows that, in
presence of state constraints and endpoint constraints involving
the total variation of the impulsive control, this equivalence
may fail. Thus, we propose to replace the set of impulsive
processes with a smaller class of impulsive processes, that we
call admissible, which turns out to be actually in one-to-one
correspondence with the set of graph completion processes.

I. INTRODUCTION

In this paper we compare well-known concepts of gener-
alized controls and corresponding generalized solutions for
the following control system

G ) = fta(t) + T
G0 = lu®],

u(t) e K ae. te€l0,T],
(z,v)(0) = (%0,0),

when the L' control v = (uy,...,u,) —i.e. the measure
u(t) dt which is absolutely continuous with respect to the
Lebesgue measure— is replaced with a finite and regular
vector-valued measure p, with range contained in /C, and
the corresponding solution (z,v) : [0,7] — R"*! is a
function of bounded variation. Notice that, for any u € 1,
v is nothing but the total variation function of w(t) dt, as
we set [lw]| = 7, |wy| for any w € R™. The data
comprise a fixed final time 7" > 0, an initial state o € R", a
closed convex cone K C R™, and C, bounded functions ! f,
g; :RxR" = R" j=1,...,m. Under these hypotheses,
for any control function u € L([0,7],K) there exists one

=1 95(t 2 (t)) u; (1),

(S)

*This work was supported by INDJAM-GNAMPA Project 2023, CUP
E53C22001930001, and by PRIN 2022, MUR 2022238YYS5.

1Louisiana State University, Baton Rouge, 70803, Louisiana, USA
gfusco@lsu.edu

2Department of Mathematics “Tullio Levi-Civita”, University of Padova,
35121, Italy motta@math.unipd.it

IThese hypotheses, assumed for simplicity’s sake, could be weakened.

Copyright ©2024 IEEE

and only one corresponding solution (x,v) to (S). We will
refer to the triple (u,x,v) as a strict sense process for (8S).

In several applications, e.g. to aerospace [6] or mechanics
[7], [11], implementing an ‘impulsive control’ associated
with (S) involves idealizing a highly intense control action
within a short time interval. The appropriate definition of
impulsive process is then that it should be the limit (in a
suitable sense) of some sequence of strict sense processes.
However, as it is well-known, the impulsive control cannot
be simply identified with a limit measure p, as different
absolutely continuous approximations of y can give rise to
different state trajectories in the limit, unless we impose strict
‘commutativity’ conditions on the g;’s (see [9], [10], [12]).

In [19], [20] it has been proposed, for the impulsive system

dt+ZgJ t,x(t

[07T]7

da(t) = f(t,x )) 1 (dt),

dv(t) = v(dt)
range(u) C K,
( )( ) (Cﬂo, )a

a notion of impulsive control which includes, in addition to
the vector-valued measure p, a scalar, non negative measure
v, limit total variation of a specific approximating sequence
to u, and ‘attached’ controls describing instantaneous state
evolution at each atom of v. In this way, to each impulsive
control it corresponds a unique solution (z,v) of (IS) (see
Section III for the precise definitions).

Adopting instead the so-called graph completion approach
in [8], [9], [21], (S) is embedded into the space-time system

%(5) = wo(s),

(s) = f((y0,y)(5)) wo(s
() = lws),
(wo,w)(s) € W(K) ae. s €[0,5],

(Yo, y,8)(0) = (0,20,0), yo(S) =T,
where the new state variable is (yo,y,3) :=

W(K) := {(wp,w) €

as)

)+ 2201 95((Yo, y)(8) wi(s),

(STS)
(t,z,v) and

[0, +00[x K : wgo + ||lw]| = 1}.

If t = yo(s) is strictly increasing, i.e. wy > 0 a.e., a space-
time process (S,wo,w,Yo,y, ) is simply a graph reparam-
eterization of a strict sense process. However, (STS) allows
to define discontinuous solutions, so-called graph completion
solutions, to (S), as soon as wy = 0 on nondegenerate inter-
vals. In this case, instead of attaching to a given measure p
a family of additional controls, one ‘completes’ the graph of



f 0.4] ) at the discontinuity points, and considers
an arclength type 1 -Lipschitz continuous parameterization
(po, ) of this graph completion on some interval [0, S].

Then, the space-time control (.S, wo,w) := (S, dfs" , ’é—f and
the corresponding solution (yo,y, ) to (STS) identify the
graph completion solution (z,v) := (y,/) o ¢ to (S), in

which o is the right inverse of ¢ = yo(s) (see Section III).

Our main goal is to compare the impulsive extension, say
(Pimp), and the graph completion extension, say (Pg.), of the
following optimization problem

minimize ¥(x(T),v(T)),

over strict sense processes (u,x,v) such that

h(t,z(t)) <0, t €[0,T)],

(z(T),v(T)) € S,
in which strict sense solutions are replaced by impulsive and
graph completion solutions, respectively. (Indeed, according
e.g. to [4], [20], [22], [25], feasible solutions satisfy the
state constraint also in their ‘instantaneous evolution’, during
jumps —see Section ITL) Let ¥ : R**! — R, h: R'*" — RF
be continuous,? and S € R™*! closed.

In impulsive optimal control, it is a common procedure
to prove a one-to-one correspondence between impulsive
processes and space-time processes, and then use it to
derive existence of optimal controls and necessary/sufficient
optimality conditions for the impulsive problem from the
following space-time optimal control problem

minimize ¥(y(S), 8(5)),
over space-time processes (S, wo, W, Yo, Y, 6) such that
h(yo(s),y(s)) <0, s €0, 5],
(v, 6)(5) €S
(Pst)

equivalent to (Py.) by definition. Note that (P;) is a con-
ventional optimization problem with bounded, measurable
controls (wg,w), to which classical results apply.

In this paper we show, by means of a counterexample,
that the set of impulsive processes is not in one-to-one
correspondence with the set of space-time processes and the
minimum of (P;,,;,) may be smaller than the minimum of
(Pst) (see Section V). We then introduce, in Section VI, the
subset of admissible impulsive processes, for which we prove
that the above mentioned correspondence is instead valid.

(state constraint)

(terminal constraint)

II. NOTATIONS AND SOME PRELIMINARIES

Given T > 0 and a set X C R*, we write L([0, 7], X)
and BV ([0, T], X) for the set of Lebesgue integrable and of
bounded variation functions defined on [0, T'] and with values
in X, respectively. We denote by C*([0,T], R¥) the set of
signed, finite and regular vector-valued measures from the
Borel subsets of [0, 7] to R¥. Moreover, we set C®([0,7T7])
for the elements of C*([0,7],R) taking nonnegative values
and we define

Cx([0,T)) == {p e C*([0,T],R*) : range(n) C X}.

2As customary, h < 0 means hj <Oforany j=1,...,k.

Given p € C*([0,T],R¥), |u| € C®([0,T]) denotes
the total variation measure, ie. |p| = Z?Zl |e5], while
©¢ denotes the continuous component of 1 with respect
to the Lebesgue measure (. Given a sequence (u;) C
C*([0,T], R¥) and € C*([0, T] R ), we write f1; —* p
if limy; [i 7y ¥, (dt) = [ 1y ¥ (¢)p;(dt), for all contin-
uous maps ¢ : [0,7] - R and j = 1 k.

For any function ¢ : [0,7] — X, for any t €]0,T[ we
write ¢(t7) and (tT) to denote the left and the right limit
of ¢ at ¢ (if it exists). In particular, we set ©(0~) = ¢(0)
and o(T") = ¢(T). Given a, b €]0,+00[ and a (possibly
not strictly) increasing function I : [0, a] — [0,b] such that
I'(0) = 0, I'(a) = b, and T is right continuous on |0, af,
we define its right inverse as the function A : [0,b] — [0, a]
such that A(0) = 0, A(b) := a, and A(r) := inf{s € [0,q] :
I'(s) > r} for r €]0, b[.

III. IMPULSIVE PROCESSES AND GRAPH COMPLETIONS
A. Impulsive controls and trajectories

In this subsection we recall the concepts of impulsive
control and corresponding impulsive solution to (IS) as
introduced in [19] (and adopted, for instance, in [4], [20]).

Let T'> 0 and K C R™ be the final time and the closed
convex cone considered in the Introduction, respectively.
Given a measure p € Ci([0,T]), define the set

V(p) == {v € C([0,T]) = 3(ps) C Cx((0,T])
such that (s, i) = (1,)}.
2)
In general, if v € V(u), then one has v > |u| and || always
belongs to V(). Actually, if the range of u is contained in
a closed convex cone which belongs to one of the orthants
of R™, then V(i) = {|p|}.

Definition 3.1: An impulsive control for control system
(IS) is an element (u, v, {a" },¢[0,r)) comprising two Borel
measures 1 € Cg([0,T]), v € V(u), and a family of
essentially bounded, measurable functions a” : [0,1] — K
parameterized by r € [0, T, with the following properties:

i) [la"(s)|| = v({r}) for ae. s € [0,1],

(i) /

A family of functions {a"},¢c[o,r) that satisfies conditions
(i)—(ii) above is said to be attached to (u1,v).> We refer to v
as the total variation of the impulsive control.

Definition 3.2: Let (u,v,{a"},c[o,r]) be an impulsive
control. Then, (z,v) € BV([0,T],R"™1) is an impul-
sive solution to (IS) corresponding to (u,v,{a" }repo0,17)
and (p,v,{a" }rcjo,1),@,v) is an impulsive process if
(z,v)(0) = (Zo,0) and, for t €]0, T,

2(t) = Fo + [ F(&,x(t)))dt' +
fon Tim s 2O + 3 (1) = at)),
olt) = v([0.4)), ’

3By Def. 3.1, the set of atoms of y is always a subset of the (countable)
set the atoms of v. Accordingly, we might have that v has atoms, while p
does not. Moreover, (i) implies that a” 7 0 for a countable set of 7’s only.

s)ds = p;({r}) forall j =1,.



where, for r € [0, 7], the function ¢" : [0,1] — R™ satisfies

{ G (s) = X1 gi(r (7 (s)aj(s), ae. s €[0,1],
¢"(0) = a(r™).
3)

An impulsive process (i, v, {a" }r¢o, 17, %, v) is feasible for
(Pimp) if A(t,z(t)) < 0 for any ¢t € [0,T], h(r,("(s)) <0
for any s € [0,1], r € [0, 7], and (z(T),v(T)) € S.

We call strict sense control an impulsive control
(1, v, {@" }refo, 1)) such that v is absolutely continuous with
respect to the Lebesgue measure and v = |u|. In this case,
with a slight abuse of notation, we also call strict sense
control the function u € L'([0,T],K) such that u(dt) =
u(t) dt and v(dt) = |u(t)| dt.* This is justified, because the
impulsive trajectory (x, v) corresponding to u is nothing but
the classical, strict sense solution to (S) associated with .

Hence, system (IS) can be interpreted as an extension of
system (S), so we will sometimes call an impulsive process
for (IS) also an impulsive process for (S).

B. Graph completion controls and trajectories

We now summarize the so-called graph completion ap-
proach, as introduced in [9] (see also [1], [8], [21], [24]).
For W(K) as in (1), define the ser of space-time controls:

W= [ J{S} x L'([0, S| W(K)).
S>0

Definition 3.3: For any (S,wg,w) € W, we say that the
absolutely continuous path (yo,y, 3) : [0,5] — R+ g
the corresponding space-time trajectory if it satisfies (STS).
We call (S,wo,w,yo,y,5) a space-time process for (STS).
It is feasible for (Pg;) if it satisfies the constraints in (Pg;).

Note that the set of strict sense processes (u, z:,v) for (S)
is in one-to-one correspondence with the subset of space-
time processes (.S, wo,w,Yo,y, ) for (STS) with wy > 0
a.e.. Indeed, with each (u,z,v), by means of the inverse yq
of the following arc length-type reparameterization

o(t) ::t+v(t)=t+/t lu(t)|dt', te[0,T),
0

we can associate the space-time process (S, wo,w, Yo, Y, 3)s
where S := o (T), (wo,w) := %0 -(L,uoyo), (yo,y,B) :==
(id, z,v) o yo (id is the identity function). Clearly, wo > 0
a.e.. Conversely, if (S, wo,w, Yo, y, B) is a space-time process
with wg > 0 a.e., the absolutely continuous inverse o :
[0,T] — [0,S] of yo, allows us to define the strict sense
process (u, z,v), given by u = 2 o0, (,v) == (y,8) o0

The extension is to consider space-time processes with wg
possibly zero on some non-degenerate intervals.

Definition 3.4: Let (S,wo,w,y°,y,3) be a space-time
process for (STS). We call graph completion, in short
g.c., solution of (S) associated with the space-time control
(S, wo,w), the pair (x,v) € BV ([0,T],R"*!) defined as

(@, v)(t) == (y, B) (o (1))

4Since v has no atoms, by Def. 3.1 (i), af =0 ae. for any r € [0,T].

forall t € [0,T], (4)

in which o : [0,7] — [0,5] is the right inverse of yj.
Then, (S,wq,w,z,v) is a graph completion process, which
is feasible for (Py.) if (S, wo,w,y°,y, B) is feasible for (Py;).

Remark 3.1: As mentioned in the Introduction, the name
‘graph completion’ comes from the fact that assigning a
measure ¢ € CE([0,T]) is equivalent to assigning a BV
function U, such that U(0) = 0 and U(t) = [, , u(dt') for
any t €]0,T]. For this U, a graph completion is any pair
of Lipschitz continuous functions (g, ) : [0,5] — RIF™
for some S > 0, satisfying the following conditions: (i)
(0, 9)(0) = (0,0), (o, 9)(S) = (T, U(T)); (ii) for all ¢ €
[0, T, there exists s € [0,.5] such that (¢, u(t)) = (v0, ¥)(s);
(iii) (wo,w) = (%, ‘ffg € LY([0,8];W(K)). Clearly,
(S,wo,w) € W. Hence, a graph completion associates with a
measure 4 a space-time control. Conversely, any (S, wp, w) €
W identifies a graph completion of the BV function U such
that U(0) := 0 and U(t) := Oo(t) w(s) ds for any t €]0,T],
where o : [0,T] — [0, S] is the right inverse of yq.

In conclusion, any g.c. solution (z,v) of (S) corresponds
to a graph completion of a measure p € Ci([0, 7).

IV. SOME PRELIMINARY LEMMAS
Lemma 4.1: Let F : [0, 4+00[— [0, +o00[ be given by

F(z) =1 /0 " sin(t)|dt.
2

Then lim F(z) = —.
T—r+o0

T
Proof: For any k € N we have

2k
o

In particular, from the above calculations it follows that

2k
/ | sin(t)|dt = 4k.
0

Using the above equality, for x € [2k7, 2(k + 1)7], we get

I 2
|sin(t)[dt = - / sin(t)dt = .
T Jo

™

F(2km) =

1 2(k+1)m 9 9
| sin(t)|dt = = + —

F(z) < —
(x)_2k’7r 0 m 0

and, similarly,

e AL —
—_— in == —.
“ok+nr )y, 7 (k+D)r

As a consequence, for all x € [2km, 2(k 4+ 1)7], we obtain

2 2 2 2
_ 2l < e
‘F(@ w‘_max{kﬂ7 (k+1)7r} err’

2

where the sequence ;= is decreasing to 0, so that

2, 2
’F(x) _ f’ <= forallz > 2km
i i

This concludes the proof. [ ]
For each n € N, consider in C;([0, 1]) the measure

n (dt) == gsin(nt)dt, )



so that its bounded variation measure |p,| € C®([0,1]) is 3

|tn | (dt) : f| sin(nt)|dt. (6)

Lemma 4.2: Let |u,| € C®(|0,
n € N. Then lim,, |u,|([0,t]) =
consequence, it holds

1]) be as in (6) for any
t for all t € [0,1]. As

lpn| = ¢, (7)

where /¢ is the Lebesgue measure.
Proof: By Lemma 4.1, for any ¢ €]0,T], we get

[en (] / | sin(nt)|dt’ = 77/ | sin(s)|ds

as n — +oo.

The conclusion then follows by [17, Lemma 2.9, (i)]. |
The proof of the next lemma is very similar to the previous
one, hence we omit it.®
Lemma 4.3: Let pu,, € C;([0,1]) be as in (5) for any n €
N. Then p,,([0,¢]) — 0 for all ¢ € [0, 1], so that

Hn —* u=0. ¥
As a consequence of Lemmas 4.2 and 4.3, the sequence (i)
as in (5) satisfies (n, |pn|) —=* (1, v) := (0,£), so that,
following Def. 2, v € V(u) and

(07 L {Oér = 0}re[0,1])

is an impulsive control (for IC = R).

(:U" v, {O‘T}TE[OJ]) =

V. A COUNTEREXAMPLE
Consider the following impulsive optimization problem
minimize ¥(z(1)),
over impulsive processes (u, v, {a" }r¢jo,1], %, v) S.t.
da(t) = F(@(t)) dt -+ gy (@(0)) s (AE) + ga (D)) ia(dt),
dv(t) = v(dt), te0,1],
range(u) = range(u1, uo) C K := R x [0, +o0],
x(0) = (z1,22,23)(0) = (0,0,0), v(0) =0,
xo(t) <0, t €]0,1],

1) <2, (1) 1+ (1) > 1/2
(Pimp)
in which ¥(z) = ¥(zy, 29, 73) := 27 + 23 and ’
0 1 0
f(x) = x% ) gl(x) = T ) gg(fE) = 0
0 T3 1

From the results in the previous section it follows that

(:uv v, {a }re 0 1]) ((070)’67 {@r = O}re[O,l])»

SRecall that the absolute value of the Radon-Nicodym derivative of a
measure 1 with respect to the Lebesgue measure ¢ coincides with the Radon-
Nicodym derivative of the total variation measure | u| with respect to £.

%Note that hm 7f0 sin(t)dt = 0, as [ sin(t)dt € [0, 2] V& > 0.

7In(:1dentally thlb control system is not commutative, as [g1, g2](z) =
—(0,0,1)* # 0 (the suffix * means transposition).

is an impulsive control with corresponding trajectory
(jvﬁ)(t) = ((i'la 127i3)7@)(t) - ((07 0, 0)7t)7 te [07 1]

The impulsive process (fi, 7, {@" },¢[o,1],7,?) is actually a
minimizer for (P;,,;), as it is feasible and ¥(z(1)) = 0.
The corresponding space-time optimization problem is

minimize ¥(y(95)),

over space-time processes (S, wo,w, Yo, ¥, 5) s.t. S >0,

90 (5) = wn(s),

ds

W) = Flyls)) n(s) + 195D (5) + ga()on(s).
o) =les)l, s €D0,5),

(wo,w)(s) € W(K) ae.se][0,5],

yO(O) =0, y(()) = (ylay27y3)(0) = (05070)7 U(O) =0,

y2(s) <0, s€10,9],
B(S) <2, yi(S)+B(S) >1/2

(Pst)
(W (K) as in (1)). Following the usual construction (see e.g.
the proof of [20, Thm. 5.1]), we set &(t) := t + 0(t) = 2t,
t € [0,1], and associate with (fi,7, {@" },¢[0,1]) the space-
time control (S,&g,@), given by S :=&(1) = 2 and

(@o,@)(s) := (m1,m2)(0(s)), for any s € [0, 5],
where 6(s) = 5 is the inverse of & and mi, my are
the Radon-Nicodym derivatives of ¢, i = g = (0,0)
wrt. v + ¢ = 2¢. Hence, m; = % mo = (0,0), so

that (S,w0,0) = (2,1/2,0,0) and wo(s) + [|@(s)| = =
for s € [0,2]. Thus, the control obtained does not take
values in W (K). However, if we consider the space-time
control (5‘,&10,&1) := (1,1,0,0),® the corresponding space-
time trajectory (4o, 9, 8)(s) = (s, (0,0,0),0) for s € [0,1],
is simply a reparameterization of the solution to the control
system in (Pg;) corresponding to (S,@g, @) by means of
the time-change s’ = 6(s). Hence, both controls (S, @, ),
(S,&0,@) identify the same g.c. solution (&,4) = (0,0),
which does not coincide with (Z,7) and actually is not
feasible for (Pg;).

Furthermore, any space-time process (S,wo,w, Yo0,Y, )
satisfying the state constraint y2(s) < 0 for any s € [0, S] has
y1 = 0,° which in turn implies that the control component
w1 is constantly equal to 0. Therefore, the terminal constraint
y1(S) + B(S) > 1/2 implies that a minimizer for (Ps;)
corresponds, for instance, to the space-time control (S’ =
3/2,&0,&), in which

(1/2,0,1/2) se€[0,1],

(@o,@1,w2)(s) = {(170’0) s €]1,3/2],

with associated cost equal to 1/4.
Thus, problems (P;,;), (Pst) are not equivalent, since:

8.e. the canonical parametertzanan of (S, @0, ®), according e.g. to [9].
%Indeed, yz(S) = fo [(y1(s)2wo(s") + yr(s") L (s")]ds’ =
Jo (y1(s"))wo(s")ds" + yl(g) > 0 for any s € [0, S].



(i) the space-time process associated with the optimal
impulsive process (fi,V,{Q" },¢[0,1], T, V) according to
the usual construction, is not feasible for (Pst);

(ii) the minimum of the two problems is not the same.

Note that the optimal control problem over strict sense
processes, say (P), of which (P;,,) and (Py;) are extensions,
has the same minimum as (Ps;), with minimizing strict sense
control (corresponding to (5’, @o,w)), given by

- (0,1) te0,1/2],

Uy, U2)(t) =

(i, %2)(?) {(0,0) t€]1/2,1).

VI. ADMISSIBLE IMPULSIVE PROCESSES

(©))

The example in the previous section suggests that the set of
impulsive processes for (IS) as in Definition 3.2 is too large,
at least when associated with the extension of optimization
problems with constraints, such as (P) in the Introduction.

Given a measure p € Cy([0,7]), we introduce the
following subset V.(u) C V(u), defined as

Ve(u) :={veV(u): v°=|p}, (10)
where we recall that for any measure i, i€ is the continuous
component of i w.r.t. £. We propose to modify the notion of
impulsive control and impulsive process, limiting ourselves
to considering those for which v € V,.(u). Precisely:

Definition 6.1: We call admissible impulsive control any

impulsive control (i, v, {a"},cpo,r7) such that v € Ve(u).
We refer to the corresponding impulsive solution (z,v)
to (IS) and the impulsive process (u,v,{a" }rco,1),7,v)
as admissible impulsive solution and admissible impulsive
process for (IS), respectively.
Hence, if (u,v,{a"}repo,r)) is an admissible impulsive
control, the measure v may differ from the total variation
measure |u| over a countable set of jump instants only. In
particular, the corresponding admissible impulsive process is
strict sense as soon as v is absolutely continuous with respect
to the Lebesgue measure.

Notice that, given the scalar measure i = 0 € C;([0,1])
as in Section V, the measure 7 = ¢ (€ V(f)) does not
belong to V.(f), so that the minimizing impulsive control
in the example is not admissible. It is easy to see that a
minimizing control for (P;;,) over admissible impulsive
controls is actually the strict sense control in (9) with cost
1/4, as for the space-time problem (P,:). This equivalence
is indeed a general result.

Theorem 6.1: (i) Let (u, v, {@" } (0,17, %, v) be an admis-
sible impulsive process. Set ¢(0) = 0, o(t) := t+v([0, ¢]) for
any ¢ €]0, 7] and let J be the countable set of discontinuity
points of ¢. Set S := o(T") and define y, as the right inverse
of 0.1 Let mg, m, m” be the Radon-Nicodym derivatives
w.r.t. do of ¢, u¢, and v°, respectively, and, for every r € J
and any s € X7 := [o(r™),o(r")], set

r L s — U(T_)
I R

10From the very definition of o it follows that o is 1-Lipschitz con-
tinuous and increasing. Moreover, it is constant exactly on the intervals
[o(r7),o(rt)], r € J. Then, the Lebesgue measure £ and the continuous
components 1€, v are absolutely continuous w.r.t. the measure do.

d
Consider the control pair (wg,w), in which wq := % and
s

if s € [O,S]\UTGJZT
ifseX”, reJ.

m(yo(s)
a”(y"(s))

o(rt) —o(r)

w(s) =

Finally, let ¢" be as in Def. 3.2, 0" (s') := v(r~) + [v(r™) —
v(r7)]s’ for s’ € [0,1], and set

(z,0)(y0(s)), s €]0,S\Ureg ¥,

(y75)<8) = { (CT’QT)(/YT(s)) S 6]07S[QZT, (S ‘-7

Then (S,wo,w,T,y,H) is a space-time process and (z,v)
coincides with the g.c. solution associated with (S, wp,w).

(ii) Conversely, let (S,wo,w,yo0,y,3) be a space-time
process. Let o be the right inverse of yo and define the
measures € C([0,T]) and v € C®([0,T]) via their
distribution functions, as follows:

o(th) o(th)
u([0.4]) = / w(s)ds, w(0,1]) = / lw(s)]|ds.

For any r € [0,7] and s € [0, 1], set

0" () = (o) = o () (o () = o)) s+ 0 ().

Finally, let (x,v) be the g.c. solution associated with
(S,wo,w). Then, (u,v,{a"},cjo,r);2,v) is an admissi-
ble impulsive process. Moreover, its corresponding space-
time process according to statement (i), is precisely
(S, wo, w, 7,1y, B).

Proof: The proof follows exactly the same lines as, e.g.,
the proof of [20, Thm. 5.1], where however there is a small
error, due to the fact that non-admissible impulsive processes
are not excluded (and this generates the problem of non-
equivalence highlighted in the counterexample of Section V).
Therefore, we limit ourselves to pointing out where the need
to consider admissible impulsive controls comes into play.

In the proof of statement (i), we use the assumption that
v° = |u°| to be able to deduce from well-known properties
of Radon-Nicodym derivatives that m” = |m/||. Hence, 0 <
mo(r) <1,0 < |jm(r)]| <1 do-ae., and

mo(r) + lm(r)]| =1, do-ae.rel0,T\J, (11)
Since o(r™) — o(r~) = v(r™) — v(r~) by definition, this
allows to obtain that wy(s) + ||w(s)|| =1 for a.e. s € [0, 5],
so that (S, wp,w) turns out to be a space-time control.!!

On the other hand, starting from a space-time pro-
cess (S,wp,w,7,y,B) as in (ii), the impulsive process
(1, v, {a" }reo, 17, @, v) identified in statement (ii) is always
admissible. Indeed, set J' := {r € [0,T] : p({r}) # 0},
J :={rel0,T]:v({r}) # 0}, and define

D, :=U,csX", DM = Upeg 2"

Tn particular, we use Def. 3.1(i) and the fact that % =0onX".



By construction, D,, C D, and [, \D w(s)ds = 0.
ADy
Accordingly, one has

v(o.6) = [ (o) ds,
(0,07 (ON\D,

([0, ¢]) =

w(s)ds.

w(s)ds :/
[0,0T()\Dp (0,07 (t)\Dw

From these relations it immediately follows that v¢ = |u°|.
|
Remark 6.1: Under the following additional hypotheses,
fulfilled in many applications, that penalize the use of
controls with large total variation: (i) v — U(z, v) increasing
for all z, and (ii) S = C x [0, K], where C C R™ is a closed
set and K is a positive constant, the infima of the impulsive
extension and the space-time extension of (P) do coincide.
Indeed, in this case we can associate with each impulsive
process (u, v, {@" }re[o,1], ¥, v) an admissible impulsive pro-
cess (fi, 7, {&" }re[0,1, T, D) such that ji = pu, &" = " for
any r, and £ = z, but 7 < v (and v < v). However, even for
these problems, the results in the literature on the existence
of optimal controls, or the necessary conditions of optimality,
are valid for admissible impulsive processes only.

VII. CONCLUSIONS

The purpose of this note is to address a problem related to
the notion of impulsive process developed in [19]. This prob-
lem emerges in particular when we consider an associated
optimization problem with constraints and costs involving
the total variation of the process, as frequently happens in
applications. In particular, we highlight by means of a coun-
terexample that this notion is not equivalent to the impulsive
process defined through graph completions. To resolve this,
we introduce the subset of admissible impulsive processes
which ensures equivalence and validates the results that have
already been obtained. This new definition also serves as a
starting point for a new line of research in collaboration with
R. Vinter. This involves defining a well-posed solution for
an impulsive system with time delays in the state, obtaining
results related to the existence of an optimal process and
necessary optimality conditions for an associated optimal
control problem. So far, we have results for systems with
vector-valued impulsive controls with delays in the drift term
only [17], or for systems with non-negative scalar valued
impulsive controls and delays both in the drift f and in
the control coefficients (g;);j=1,...m [18], case in which any
impulsive process is actually admissible. However, there is
still much to be explored in this context, such as considering
more general delayed impulsive optimization problems with
vector-valued controls, analyzing the case with state con-
straints (to extend, for instance, the results in [3]-[5], [25] to
the case with delays), and determining sufficient conditions
to prevent a gap between the minimum of the impulsive
problem with time delays and the infimum of the problem
with unbounded controls of which the impulsive problem is
an extension, as done e.g. in [2], [13]-[16], [23] for the case
without delays.
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