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Abstract— Mirror descent, introduced by Nemirovski and
Yudin in the 1970s, is a primal-dual convex optimization method
that can be tailored to the geometry of the optimization problem
at hand through the choice of a strongly convex potential
function. It arises as a basic primitive in a variety of appli-
cations, including large-scale optimization, machine learning,
and control. This paper proposes a variational formulation of
mirror descent and of its stochastic variant, mirror Langevin
dynamics. The main idea, inspired by the classic work of Brezis
and Ekeland on variational principles for gradient flows, is to
show that mirror descent emerges as a closed-loop solution
for a certain optimal control problem, and the Bellman value
function is given by the Bregman divergence between the initial
condition and the global minimizer of the objective function.

I. INTRODUCTION

The continuous-time gradient flow

ẋ(t) = −∇f(x(t)), x(0) = x0 (1)

for a C1 objective function f : Rn → R is a basic
primitive in continuous-time optimization and control. Under
appropriate assumptions, the trajectory of (1) converges to
a minimizer of f , which justifies thinking of the gradient
flow as a method for asymptotically solving the optimization
problem

minimize f(x), x ∈ Rn. (2)

However, apart from the local characterization of −∇f(x) as
the “direction of steepest descent,” there appears to be little
discussion of the sense, if any, in which (1) is “optimal”
among all dynamical systems that asymptotically solve (2).

One of the few exceptions is the variational principle of
Brezis and Ekeland [1], [2]: Fix a time horizon T > 0. Then,
among all absolutely continuous curves x : [0, T ] → Rn
with x(0) = x0, the trajectory of (1) on [0, T ] minimizes the
action functional

S(x(·)) :=

∫ T

0

{f(x(t)) + f∗(−ẋ(t))}dt+
1

2
|x(T )|2, (3)
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where

f∗(v) := sup
x∈Rn

{〈v, x〉 − f(x)}

is the Legendre–Fenchel conjugate of f and | · | denotes the
Euclidean norm on Rn. The minimum value of S over all
such x(·) is equal to 1

2 |x0|
2. The underlying idea is simple

and boils down to a careful analysis of the equality cases of
the Fenchel–Young inequality

f(x) + f∗(v) ≥ 〈v, x〉.

However, the Brezis–Ekeland variational principle does not
say anything about the asymptotic behavior of the extremal
trajectories or about the curious fact that a finite-horizon
problem of minimizing the action (3) has a solution given
by the flow of a time-invariant dynamical system.

In this paper, we revisit this problem from a control-
theoretic point of view and provide a new variational inter-
pretation of the gradient flow as an infinite-horizon stabiliz-
ing optimal control [3, §8.5]. Moreover, we consider a more
general method of mirror descent. This method, introduced
in the 1970s by Nemirovski and Yudin [4, Ch. 3], can be
tailored to the geometry of the optimization problem at hand
through the choice of a strongly convex potential function.
In continuous time, mirror descent is implemented by a
time-invariant dynamical system whose state x(t) ∈ Rn and
output y(t) ∈ Rn evolve according to

ẋ(t) = −∇f(∇ϕ∗(x(t))), x(0) = x0

y(t) = ∇ϕ∗(x(t))
(4)

where ϕ : Rn → R the potential function and ϕ∗ is
its Legendre–Fenchel conjugate. In the literature, x(t) and
y(t) are referred to as the dual-space and the primal-space
trajectories, respectively, and y(t) is the candidate minimizer
at time t. (The Euclidean gradient flow (1) is a special case
of (4) with ϕ(x) = 1

2 |x|
2 and y(t) = x(t) for all t.)

A. Brief summary of contributions

We show the following: Suppose that the objective
f is strictly convex. For the controlled system ẋ(t) =
u(t), y(t) = ∇ϕ∗(x(t)), we consider the class of all stabiliz-
ing controls [3, §8.5], i.e., appropriately well-behaved func-
tions u : [0,∞) → Rn such that the output y(t) converges,
as t→∞, to the unique minimizer of f . This class contains,
among others, sufficiently smooth state feedback controls of
the form u(t) = k(x(t)). We then identify an instantaneous
cost function q(x, u), closely related to the Lagrangian in
(3), such that the state feedback law k(x) = −∇f(∇ϕ∗(x))
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[or, equivalently, the output feedback law k̃(y) = −∇f(y)]
gives a control that minimizes the infinite-horizon cost∫ ∞

0

q(x(t), u(t)) dt (5)

over all stabilizing controls. The value function V (x0), i.e.,
the minimum value of this cost as a function of the initial
state x0, is given by a certain “distance,” induced by the
potential ϕ, between the initial output y0 = ∇ϕ∗(x0) and
the unique minimizer of f . At the same time, V (x) is
the Lyapunov function for the closed-loop system ẋ(t) =
−∇f(∇ϕ∗(x(t))).

We also consider a stochastic variant of mirror descent,
the so-called mirror Langevin dynamics [5]–[7], which is
implemented by an Itô stochastic differential equation

dXt = −∇f(∇ϕ∗(Xt)) dt+
√

2ε(∇2ϕ∗(Xt))−1 dWt

Yt = ∇ϕ∗(Xt)
(6)

driven by a standard n-dimensional Brownian motion
(Wt)t≥0, where ε > 0 is a small “temperature” parameter.
In this setting, we consider a finite-horizon optimal control
problem of minimizing the expected cost

E

[∫ T

0

q(Xt, ut) dt+ r(XT )

∣∣∣∣∣X0 = x0

]
,

over all admissible control processes (ut)0≤t≤T entering into
the controlled SDE

dXt = ut dt+
√

2ε(∇2ϕ∗(Xt))−1 dWt.

Here, q is the same cost as in (5) and r is an appropriately
chosen terminal cost. As in the deterministic case, the mirror
Langevin dynamics (6) emerges as the closed-loop system
corresponding to the optimal control, although the value
function is now time-dependent.

II. THE DETERMINISTIC PROBLEM

A. Some preliminaries

We assume that the objective function f : Rn → R is C1

and strictly convex and that the potential function ϕ : Rn →
R is C2 and strictly convex. We let ȳ denote the unique
global minimizer of f . Both f and ϕ are assumed to be of
Legendre type, i.e., |∇f(x)|, |∇ϕ(x)| → +∞ as |x| → +∞.
As a consequence (see, e.g., [8, Thm. 26.5]), the gradient
map ∇ϕ : Rn → Rn is bijective, with (∇ϕ)−1 = ∇ϕ∗.
The potential ϕ and its conjugate ϕ∗ induce the Bregman
divergences

Dϕ(y, y′) := ϕ(y)− ϕ(y′)− 〈∇ϕ(y′), y − y′〉
Dϕ∗(x, x′) := ϕ∗(x)− ϕ∗(x′)− 〈∇ϕ∗(x′), x− x′〉

(7)

and the following relation holds for any pair of points y, y′ ∈
Rn and their “mirror images” x = ∇ϕ(y), x′ = ∇ϕ(y′):

Dϕ(y, y′) = Dϕ∗(x′, x)

(cf. [9, §11.2] for details). We also require that, for each fixed
x′ ∈ Rn, the map x 7→ Dϕ∗(x, x′) is radially unbounded,
i.e., Dϕ∗(x, x′) → +∞ as |x| → +∞. This will hold, e.g.,

if ϕ is strongly convex, i.e., there exists some α > 0, such
that

ϕ(y′) ≥ ϕ(y) + 〈∇ϕ(y), y′ − y〉+
α

2
|y′ − y|2 (8)

for all y, y′ ∈ Rn. Radial unboundedness is needed for the
invocation of the Lyapunov criterion for global asymptotic
stability [3, Sec. 5.7].

Remark 1. We assume that ϕ is finite on all of Rn mainly
to keep the exposition simple. It is not hard to adapt the
analysis to the case when the potential function ϕ is defined
on a closed convex set X ⊆ Rn with nonempty interior, and
|∇ϕ(x)| → +∞ as x approaches any point on the boundary
of X. This corresponds to the problem of minimizing f(x)
subject to the constraint x ∈ X.

B. Infinite-horizon optimal stabilizing controls

Consider the time-invariant controlled dynamical system

ẋ(t) = u(t). (9)

For x0 ∈ Rn, let Ux0
be the class of all stabilizing controls

at x0, i.e., all locally essentially bounded maps u : [0,∞)→
Rn, such that the trajectory x(t) of (9) with x(0) = x0 is
defined for all t ≥ 0 and x(t) → x̄ as t → ∞, where
x̄ := ∇ϕ(ȳ). We would like to minimize the cost

J∞(x0, u(·)) :=

∫ ∞
0

q(x(t), u(t)) dt,

over all u(·) ∈ Ux0 , where

q(x, u) := f(∇ϕ∗(x)) + f∗(−u) + 〈u, ȳ〉. (10)

The class Ux0
is nonempty since u(t) = (x̄ − x0)1{0≤t≤1}

is a stabilizing control at x0. We denote by V (x0) the value
function, i.e., infimum of J∞(x0, u(·)) over u(·) ∈ Ux0 .

C. The main result

Let V (x) := Dϕ∗(x, x̄). Theorem 1, stated and proved be-
low, states that V is the value function for the above infinite-
horizon optimal control problem, and that the mirror descent
dynamics (4) is the closed-loop system corresponding to an
optimal stabilizing control. Moreover, the value function V
is also a global Lyapunov function for (4), and the point
x̄ is its global asymptotically stable equilibrium. The proof
makes essential use of the following lemma:

Lemma 1. The function V has the following properties:
1) It is C2 and strictly convex.
2) V (x̄) = 0, and V (x) > 0 for x 6= x̄.
3) V (x)→ +∞ as |x| → +∞.

Moreover, the following inequality holds for V̇ (x, u) :=
〈∇V (x), u〉:

V̇ (x, u) + q(x, u) ≥ 0, x, u ∈ Rn (11)

and equality is attained iff u = −∇f(∇ϕ∗(x)).

Proof. Items 1)–3) are immediate consequences of our as-
sumptions on ϕ. Moreover, a simple computation shows that

V̇ (x, u) + q(x, u) = f(∇ϕ∗(x)) + f∗(−u) + 〈u,∇ϕ∗(x)〉,
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which is nonnegative by the Fenchel–Young inequality. The
equality condition in (11) follows by [8, Thm. 23.5].

Theorem 1. We have the following:
1) For any stabilizing control u(·) ∈ Ux0

and for all t ≥ 0,∫ t

0

q(x(t), u(t)) dt ≥ V (x0)− V (x(t)). (12)

In particular, J∞(x0, u(·)) ≥ V (x0).
2) For each x0, the closed-loop system ẋ(t) =
−∇f(∇ϕ∗(x(t))) gives rise to an optimal stabilizing
control u(t) = −∇f(∇ϕ∗(x(t))), such that

J∞(x0, u(·)) = V (x0) = Dϕ(x0, x̄).

Moreover, V (x) is a global Lyapunov function for the
closed-loop system.

Proof. Let x0 ∈ Rn be given and consider an arbitrary
stabilizing control u(·) ∈ Ux0

. Then, for ẋ(t) = u(t) with
x(0) = x0 we have

V (x(t))− V (x0) =

∫ t

0

d

ds
V (x(s)) ds

=

∫ t

0

V̇ (x(s), u(s)) ds

≥ −
∫ t

0

q(x(s), u(s)) ds,

where the last step follows from (11). Rearranging gives (12).
Moreover, taking the limit as t→∞ and using the fact that
V (x(t))→ 0 as t→∞ since u(·) is stabilizing, we get the
inequality J∞(x0, u(·)) ≥ V (x).

Next, consider the closed-loop system ẋ(t) =
−∇f(∇ϕ∗(x(t))), x(0) = x0, that generates the mirror
descent flow. Then x̄ is clearly an equilibrium point since
∇f(∇ϕ∗(x̄)) = ∇f(ȳ) = 0. Letting y(t) := ∇ϕ∗(x(t))
and using (11), we have

d

dt
V (x(t)) = V̇ (x(t),−∇f(y(t)))

= −q(x(t),−∇f(y(t)))

= 〈∇f(y(t)), ȳ〉 − f∗(∇f(y(t)))− f(y(t))

≤ f(ȳ)− f(y(t)),

which is strictly negative whenever y(t) 6= ȳ by the strict
convexity of f , or, equivalently, whenever x(t) 6= x̄ since
∇ϕ∗ is a bijection. Together with Lemma 1, this shows
that V is a global Lyapunov function [3, Def. 5.7.1] for the
above closed-loop system, so x̄ is a globally asymptotically
stable equilibrium [3, Thm. 17]. Thus, the control u(t) =
−∇f(∇ϕ∗(x(t))) is stabilizing at x0, and J∞(x0, u(·)) =
V (x0) from the equality condition in (11).

D. Quantitative estimates

Theorem 1 allows us to obtain quantitative estimates on
the approach of the trajectory of (4) to equilibrium. While
similar estimates have been given in some earlier works [10],
[11], the appeal of our optimal control perspective is that
it allows to obtain such guarantees in a unified manner. It

will be useful to introduce the following definition [12]: The
function f is µ-strongly convex (µ ≥ 0) w.r.t. the potential
function ϕ if

f(y′) ≥ f(y) + 〈∇f(y), y′ − y〉+ µDϕ(y′, y), y, y′ ∈ Rn.

If µ = 0, this is simply convexity; when µ > 0, f has some
nonzero “curvature” in some neighborhood of each point x,
where the “geometry” is determined by the potential ϕ.

Theorem 2. Let (x(t), y(t)), t ≥ 0, be the state and
the output trajectories of the mirror descent dynamics (4)
starting from x(0) = x0 and y(0) = y0 = ∇ϕ∗(x0). Then
the following holds for every t > 0:

1) If f is convex, then

f(y(t))− f(ȳ) ≤ 1

t
Dϕ(ȳ, y0). (13)

2) If f is µ-strongly convex w.r.t. ϕ then

Dϕ(ȳ, y(t)) ≤ Dϕ(ȳ, y0)e−µt, (14)

and in that case the system (4) is exponentially stable.

Proof. Let u(t) = −∇f(∇ϕ∗(x(t))) be the state feedback
law that achieves V (x0). Then

q(x(t), u(t)) = −V̇ (x(t), u(t))

= 〈∇f(y(t)), y(t)− ȳ〉
= f(y(t))− f(ȳ) +Df (ȳ, y(t)).

where the first equality is by Lemma 1 and the last equality
follows by rearranging and using the definition

Df (y, y′) = f(y)− f(y′)− 〈f(y′), y − y′〉.

Therefore, using Theorem 1 and the fact that Df (·, ·) ≥ 0,
we have

V (x0) ≥
∫ t

0

q(x(s), u(s)) ds

=

∫ t

0

{f(y(s))− f(ȳ)} ds

≥ t
(
f(y(t))− f(ȳ)

)
,

where the last inequality follows from the fact that the value
of the objective f decreases along the output trajectory y(t):

d

dt
f(y(t)) = 〈∇f(y(t)), ẏ(t)〉

= 〈∇f(y(t)),∇2ϕ∗(x(t))ẋ(t)〉
= −〈∇f(y(t)),∇2ϕ∗(x(t))∇f(y(t))〉 ≤ 0

— since ϕ∗ is C2 and strictly convex, its Hessian ∇2ϕ∗(x)
is positive definite for all x ∈ Rn. Dividing by t and using
the fact that V (x0) = Dϕ∗(x0, x̄) = Dϕ(ȳ, y0), we get (13).

When f is µ-strongly convex, we have
d

dt
V (x(t)) = V̇ (x(t), u(t))

= 〈∇f(y(t)), ȳ − y(t)〉
≤ f(ȳ)− f(y(t))− µDϕ(ȳ, y(t))

= f(ȳ)− f(y(t))− µDϕ∗(x(t), x̄)

= f(ȳ)− f(y(t))− µV (x(t)).
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Integrating gives the estimate

V (x(t)) ≤ e−µtV (x0) +

∫ t

0

e−µ(t−s){f(ȳ)− f(y(s))} ds

which yields (14) since f(ȳ) ≤ f(y) for all y.

E. A simple example

As a simple illustration, consider the quadratic objective
f(x) = 1

2 |Ax − b|2 with A ∈ Rp×n and b ∈ Rp and
the quadratic potential ϕ(x) = 1

2 |x|
2. Assume that ATA is

nonsingular. Then the cost q(x, u) in (10) takes the form

q(x, u) =
1

2
|Ax− b|2 +

1

2
〈u, (ATA)−1u〉 − 1

2
|Aȳ − b|2,

where ȳ = (ATA)−1ATb is the unique minimizer of f .
Thus, the control-theoretic interpretation of the gradient flow
for this problem naturally leads to infinite-horizon optimal
stabilization of a linear system with a quadratic cost.

In the general case, the cost q(x, u) can be expressed as

q(x, u) =
(
f(∇ϕ∗(x))− f(ȳ)

)
+
(
f(ȳ) + f∗(−u) + 〈u, ȳ〉

)
,

where the first term is the optimality gap at y = ∇ϕ∗(x),
while the second term is nonnegative by the Fenchel–Young
inequality and equals zero iff u = −∇f(ȳ) ≡ 0.

III. THE STOCHASTIC PROBLEM

We now consider a stochastic version of continuous-time
mirror descent, dubbed mirror Langevin dynamics, or MLD
[5]–[7]. The MLD generates a pair of random trajectories
(Xt, Yt)t≥0 according to (6). The words “Langevin dynam-
ics” allude to the fact that, with the quadratic potential
ϕ(x) = 1

2 |x|
2, (6) reduces to the usual Langevin dynamics

dXt = −∇f(Xt) dt+
√

2εdWt.

The use of MLD is mainly in sampling, where one makes
use of the fact that the steady-state probability density of
Yt is proportional to e−f/ε. Since this limiting density
concentrates on the set of global minimizers of f as ε ↓ 0,
the sampling problem is intimately related to the problem of
minimizing f .

A. Some preliminaries

In addition to the conditions imposed on f and ϕ in
Sec. II-A, we also assume the following:
• the gradient ∇f is Lipschitz-continuous;
• the potential function ϕ is C2, strongly convex, cf. (8),

and has the modified self-concordance property [7], i.e.,
there exists some constant c > 0, such that

‖
√
∇2ϕ(x)−

√
∇2ϕ(x′)‖2 ≤ c|x− x′|

for all x, x′ ∈ Rn, where ‖ · ‖2 is the 2-Schatten (or
Hilbert–Schmidt) norm.

In particular, the above assumption on ϕ implies that ϕ∗ has
a Lipschitz-continuous gradient [13, Thm. 4.2.1] and that the
map x 7→

√
(∇2ϕ∗(x))−1 is Lipschitz-continuous [7].

B. A finite-horizon optimal control problem

We work in the usual setting of controlled diffusion pro-
cesses [14, §VI.3-4]. Let (Ω,F, (Ft)t≥0,P) be a probability
space with a complete and right-continuous filtration, and let
(Wt)t≥0 be a standard n-dimensional (Ft)-Brownian motion.
Let a finite horizon 0 < T < ∞ be given. An admissible
control (of state feedback type) is any measurable function
u : Rn × [0, T ]→ Rn, such that the Itô SDE

dXt = u(Xt, t) dt+
√

2ε(∇2ϕ∗(Xt))−1 dWt (15)

has a unique strong solution for all t ∈ [0, T ] and for any
deterministic initial condition X0 = x0 (cf. [15, §5.2] for
details). For each t ∈ [0, T ] define the expected cost-to-go

J(x, t;u(·))

:= E

[∫ T

t

q(Xs, us) ds+Dϕ∗(XT , x̄)

∣∣∣∣∣Xt = x

]
, (16)

with the instantaneous cost q the same as in (10), where ut
is shorthand for u(Xt, t), and let

V (x, t) := inf
u(·) admissible

J(x, t;u(·)) (17)

be the value function. We say that an admissible control u(·)
is optimal if J(x, t;u(·)) = V (x, t) for all x ∈ Rn and all
t ∈ [0, T ]. Observe that, in contrast with the deterministic
infinite-horizon problem posed in Sec. II-B, here we are
dealing with a finite-horizon stochastic problem, and there is,
in addition to the instantaneous cost q, also a terminal cost
Dϕ∗(·, x̄). The form of the performance criterion in (16) is
reminiscent of the Brezis–Ekeland action functional (3).

C. The main result

Theorem 3. The value function in (17) is equal to

V (x, t) = Dϕ∗(x, x̄) + εn(T − t), (18)

and the feedback control u(x, t) = −∇f(∇ϕ(x)) is optimal.

Proof. We use the verification theorem from the theory of
controlled diffusions [14, §VI.4]. We associate to the process
(15) a family of infinitesimal generators (Lu : u ∈ Rn),
where Lu is the second-order linear differential operator

Lu :=

n∑
i=1

ui
∂

∂xi
+ ε

n∑
i,j=1

(
∇2ϕ∗(x)

)−1
ij

∂2

∂xi∂xj
.

Then it is readily verified that the function V defined in (18)
is a solution of the Hamilton–Jacobi–Bellman equation

∂

∂t
V (x, t) + min

u∈Rd

{
LuV (x, t) + q(x, u)

}
= 0 (19)

on Rn × [0, T ] with the terminal condition V (x, T ) =
Dϕ∗(x, x̄). Indeed, since

∂

∂t
V (x, t) = −εn,

∇V (x, t) = ∇ϕ∗(x)−∇ϕ∗(x̄),

∇2V (x, t) = ∇2ϕ∗(x)
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we can follow the same argument as in the proof of Lemma 1
to show that, for any u ∈ Rn, we have

∂

∂t
V (x, t) + LuV (x, t) + q(x, u)

= −εn+ 〈u,∇V (x, t)〉+ ε tr
{

(∇2ϕ∗(x))−1∇2V (x, t)
}

+ f(∇ϕ∗(x)) + f∗(−u) + 〈u,∇ϕ∗(x̄)〉
= f(∇ϕ∗(x)) + f∗(−u) + 〈u,∇ϕ∗(x)〉 ≥ 0,

with equality iff u = −∇f(∇ϕ∗(x)). Thus, V (x, t) is a
solution of the HJB equation (19), and clearly V (x, T ) =
Dϕ∗(x, x̄). Then, by Theorem 4.1 in [14, §VI.4], V (x, t) is
the value function in (17), and the control given by

u(x, t) = arg min
u∈Rn

{
LuV (x, t) + q(x, u)

}
= arg min

u∈Rn

{
f(∇ϕ∗(x)) + f∗(−u) + 〈u,∇ϕ∗(x)

}
= −∇f(∇ϕ∗(x))

is optimal (note that it is also time-invariant). This control
is admissible since, by our assumptions on f and ϕ, the
maps x 7→ −∇f(∇ϕ∗(x)) and x 7→

√
2ε(∇2ϕ∗(x))−1

are Lipschitz-continuous and have at most linear growth.
Consequently, with the choice of u(x, t) = b(x), the SDE
(15) has a unique strong solution [15, §5.2, Thm. 2.5], so
u(·) is indeed admissible.

D. Quantitative estimates

Theorem 4. Let (Xt, Yt), t ≥ 0, be the random state and
output trajectories of the mirror Langevin dynamics (6) with
deterministic initial condition X0 = x0 and Y0 = y0 =
∇ϕ∗(x0). Then the following holds for every T > 0:

1) If f is convex, then

1

T
E

[∫ T

0

{f(Yt)− f(ȳ)} dt

∣∣∣∣∣Y0 = y0

]
≤ 1

T
Dϕ(ȳ, y0) + εn. (20)

2) If f is µ-strongly convex w.r.t. ϕ, for µ > 0, then

E[Dϕ(ȳ, Yt)|Y0 = y0]

≤ Dϕ(ȳ, y0)e−µt +
εn

µ
(1− e−µT ). (21)

Proof. Let ut := −∇f(∇ϕ∗(Xt)). Then, proceeding just
like in the proof of Theorem 2, we can write

q(Xt, ut) = f(Yt) + f∗(−ut) + 〈ut, ȳ〉
= f(Yt)− f(ȳ) +Df (ȳ, Yt)

≥ f(Yt)− f(ȳ).

Using this together with Theorem 3 gives

Dϕ(ȳ, y0) + εnT = Dϕ(x0, x̄) + εnT

= E

[∫ T

0

q(Xt, ut) dt+Dϕ(XT , x̄)

∣∣∣∣∣X0 = x0

]

≥ E

[∫ T

0

{f(Yt)− f(ȳ)} dt

∣∣∣∣∣X0 = x0

]
.

Dividing both sides by T > 0 and using the fact the σ-
algebras σ(Xt : t ∈ [0, T ]) and σ(Yt : t ∈ [0, T ]) coincide
since ∇ϕ∗ is a bijection, we obtain (20).

When f is µ-strongly convex, we have

f(ȳ)− f(Yt) ≥ 〈∇f(Yt), ȳ − Yt〉+ µDϕ(ȳ, Yt). (22)

On the other hand, by Itô’s lemma and by (19),

V (Xt, t) = V (X0, 0) +

∫ t

0

〈∇f(Ys), ȳ − Ys〉ds+Mt, (23)

where Mt is a zero-mean (Ft)-martingale. Since

V (Xs, s) = Dϕ∗(Xs, x̄) + εn(T − s)
= Dϕ(ȳ, Ys) + εn(T − s),

combining (22) and (23) and then taking expectations given
Y0 = y0 yields

E[Dϕ(ȳ, Yt)|Y0 = y0]

≤ Dϕ(ȳ, y0) + εnt− µ
∫ t

0

E[Dϕ(ȳ, Ys)|Y0 = y0] ds

for all t ∈ [0, T ]. Grönwall’s inequality gives (21).

Note that, in contrast with the deterministic setting (cf. Theo-
rem 2), when the objective function f is not strongly convex,
we only have guarantees on the expected average objective
E[ 1T

∫ T
0
f(Yt) dt|Y0 = y0], which, owing to the convexity of

f , translates into an optimization error estimate for the time
average of the trajectory, ỸT := 1

T

∫ T
0
Yt dt:

E[f(ỸT )− f(ȳ)|Y0 = y0]

≤ 1

T
E

[∫ T

0

{f(Yt)− f(ȳ)}dy

∣∣∣∣∣Y0 = y0

]
≤ 1

T
Dϕ(ȳ, y0) + εn.

However, as the following result shows, in the low-noise
regime (i.e., for all sufficiently small ε), with high probabil-
ity, the MLD output trajectory (Yt)0≤t≤T closely tracks the
deterministic mirror-descent output trajectory (y(t))0≤t≤T
with the same initial condition Y0 = y(0) = y0:

Theorem 5. There exist positive time-independent constants
Ci, i = 1, 2, 3, such that, for every 0 < ε ≤ 1

C1T 3 e
−C2T ,

the following estimate holds with probability at least 1− δ:

sup
0≤t≤T

|f(Yt)− f(y(t))| ≤ C3

T

√
n log

n

δ
. (24)

Proof. Let ∆t := |Yt − y(t)|. The following estimate holds
by the Lipschitz continuity of ∇f :

f(Yt)− f(y(t)) ≤ 〈∇f(y(t)), Yt − y(t)〉+
Lf
2
|Yt − y(t)|2,

6305



where Lf is the Lipschitz constant of ∇f . Moreover, the
gradient norms |∇f(y(t))| are uniformly bounded since

|∇f(y(t))| ≤ |∇f(y(t))−∇f(y(0))|+ |∇f(y(0))|
≤ Lf |y(t)− y(0)|+ |∇f(y(0))|
≤ Lf |y(t)− ȳ|+ Lf |y(0)− ȳ|+ |∇f(y(0))|

≤ 2Lf

√
2

α
Dϕ(ȳ, y(0)) + |∇f(y(0))| =: K0,

which in turn implies that

sup
0≤t≤T

|f(y(t))− f(y(0))| ≤ K0 sup
0≤t≤T

∆t +
Lf
2

sup
0≤t≤T

∆2
t .

(25)

Define the matrix-valued process (ξt)0≤t≤T by ξt :=√
∇2ϕ∗(Xt))−1. For each t ∈ [0, T ], we have

|Xt − x(t)|

≤ Lf
∫ t

0

|Ys − y(s)|ds+
√

2ε sup
0≤t≤T

∣∣∣∣∣
∫ t

0

ξs dWs

∣∣∣∣∣.
By our assumptions on ϕ, there exist positive constants κ2 ≥
κ1 > 0, such that the eigenvalues of ∇2ϕ∗(x) lie in the
interval [κ1, κ2]. Hence, the process ξt is uniformly bounded,
so the quadratic variations of the matrix entries [ξij ]t, 1 ≤
i, j ≤ n, are uniformly bounded by a positive multiple of
t. Hence, by the time-change theorem for martingales [15,
§3.4, Thm. 4.6], there exist a constant κ > 0 and a standard
n-dimensional Brownian motion (Bt)t≥0, such that

sup
0≤t≤T

∣∣∣∣∣
∫ t

0

ξs dWs

∣∣∣∣∣ ≤ sup
0≤t≤κT

|Bt|.

Since ∇ϕ∗ is Lipschitz-continuous, we have

∆t ≤ Lϕ∗ |Xt − x(t)|

≤ Lϕ∗Lf

∫ t

0

∆s ds+
√

2εLϕ∗ sup
0≤t≤κT

|Bt|.

Grönwall’s inequality therefore gives

sup
0≤t≤T

∆t ≤
√

2εLϕ∗ sup
0≤t≤κT

|Bt|eLϕ∗LfT . (26)

If ε ≤ 1
L2

ϕ∗T 3 e
−2Lϕ∗LfT , then, using (26) in (25), we obtain

sup
0≤t≤T

|f(Yt)− f(y(t))|

≤
√

2K0

T 3/2
sup

0≤t≤κT
|Bt|+

Lf
T 3

sup
0≤t≤κT

|Bt|2.

By the reflection principle for the Brownian motion [15,
p. 96],

P

{
sup

0≤t≤κT
|Bt| ≥ r

}
≤ 2P

{
|BκT | ≥ r

}
≤ 4ne−r

2/2nκT ,

for every r > 0, and therefore

sup
0≤t≤T

|f(Yt)− f(y(t))| ≤ C̃

T

√
n log

n

δ

with probability at least 1 − δ, where C̃ is a constant that
depends on K0, Lf , κ.

IV. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have phrased continuous-time mirror
descent methods in the framework of “inverse optimal con-
trol” [16]—that is, given an autonomous (i.e., control-free)
dynamical system, identify a controlled dynamical system
and a cost criterion, such that the autonomous dynamics
can be viewed as the closed-loop system corresponding
to an optimal control. An intriguing direction for future
research is to interpret other optimization methods, such
as the heavy-ball method [17], through the inverse optimal
control lens. It would also be of interest to provide an optimal
control perspective on the discrete-time variant of the Brezis–
Ekeland principle [18].
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