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Abstract— Motivated by the problem of designing robust
composite pulses for Bloch equations in the presence of natural
perturbations, we study an abstract optimal ensemble control
problem in a probabilistic setting with a general nonlinear
performance criterion. The model under study addresses mean-
field dynamics described by a linear continuity equation in the
space of probability measures. For the resulting optimization
problem, we derive an exact representation of the increment of
the cost functional in terms of the flow of the driving vector
field. Using this representation, a descent method is designed
that is free of any internal line search. The method is applied to
solve new optimal control problems for distributed ensembles
of Bloch equations.

I. MOTIVATION
Consider a population of homotypic individuals labeled by

the points ω of some set Ω. The state of the ωth object at
the time moment t, x(t, ω) ∈ Rn, evaluates on a given time
interval I .

= [0, T ] under the action of the parameterized
vector field V : Rn × Rs × U → Rn, starting from a given
position x0(ω) ∈ Rn:{

∂tx(t, ω) = Vu (x(t, ω), η(ω))

x(0, ω) = x0(ω)

∣∣∣∣∣ ω ∈ Ω. (1)

The dynamics (1) involves two types of structural “param-
eters”: the function η : Ω → Rs manifests disturbances
or structural variations of the underlying model, while an
exogenous signal u with values in a given set U ⊆ Rm

models the control action.
In the simplest case, the parameterization space Ω is just a

finite set of indexes, and (1) reduces to a multi-agent system
of non-interacting units. In a more general setup, we deal
with the continuum of individuals moving in a discoordinated
way.

Commonly, in such models, Ω is a simply organized
compact subset of Rs, l = s and η is the identity mapping
Ω → Ω.

Problems of ensemble control arise when one has to design
a control signal in a “broadcast” way, i.e., such that it acts
simultaneously on all individual trajectories x(·, ω), ω ∈ Ω,
to force them towards a desired behavior; this means that
u should be a function t 7→ u(t) of time variable only
(independent of ω).

A canonical example is the problem of designing external
excitations of quantum ensembles. Pioneering works in this
area [1], [2] were focused on the famous Bloch equation,
which models the macroscopic evolution of bulk magne-
tization in a population of non-interacting nuclear spins
immersed in an intense static magnetic field, which is modu-
lated by the radio frequency (rf-) field (for some extensions,

see, e.g., [3] and citations therein). In nuclear magnetic
resonance (NMR) experiments, the strength of the applied
magnetic field is subject to unavoidable perturbations (static-
and/or rf-field inhomogeneity), while the spin ensembles
demonstrate perceptible variations in their dissipation rates
and/or natural frequencies (Larmor dispersion). The related
problem of control engineering is to design robust signals
(so-called composite pulses) compensating for the mentioned
disturbances; mathematically, this task can be formalized
as a problem of optimal ensemble control, see, e.g. [4].
In NMR spectroscopy, the designed pulse sequences are
typically desired to be selective, i.e., some sub-populations
(with prescribed Larmor frequencies) have to be excited,
while the other ones should remain intact or saturated [5];
such are, e.g., contrast problems in NMR imaging [6], [7]. In
the language of ensemble control, this means to drive several
uncoupled populations of spins by a common magnetic field.

A. Probabilistic Setup. Distributed Ensembles

In contrast to [6]–[8], our approach stems from the prob-
abilistic interpretation of the ensemble dynamics, assuming
that Ω is endowed with the structure of probability space
(Ω,A,P) with a specified σ-algebra A ⊂ 2Ω and a canonical
probability measure P on (Ω,F) (we shall write P ∈ P(Ω)).

This interpretation is motivated by practical applications,
in which the individual states x(·, ω) can not be measured
directly, and all the available information is based on some
“observables” – measurement outputs accompanying the
dynamics (1) and involving certain statistical characteristics,
see, e.g., [9].

In the probabilistic setup, the map (t, ω) 7→ (x(t, ω), η(ω))
is naturally viewed as a random process, and the behavior
of the random variable ω 7→ (x(t, ω), η(ω)) can be analyzed
by investigating the time-evolution of its law

ϱt = (x(t, ·), η(·))♯ P ∈ P(Rn+s). (2)

Hereinafter, the operator F♯ : P(X ) → P(Y) denotes the
pushforward of a measure µ ∈ P(X ) through a (Borel) map
F : X → Y between two measurable spaces that acts on
functions φ : Y → R with the property φ ◦ F ∈ L1(X ;µ)
by the rule (for the other properties, see, e.g., [10])∫

Y
φd(F♯µ) =

∫
X
φ ◦ F dµ. (3)

Under the standard regularity of the map (x, η) 7→ Vυ(x, η),
the measure-valued curve t 7→ ϱt is a unique distributional
solution of the continuity equation [11]

∂tϱt +∇x ·
(
Vu(t) ϱt

)
= 0, ϱ0 = (x0(·), η(·))♯P; (4)
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∇x denotes the gradient w.r.t. x ∈ Rn, and “·” means the
scalar product.

The discussed interpretation of (1) postulates a passage
from the microscopic model (a random process satisfying the
ODE with uncertainty) to a macroscopic one (a deterministic
distributed process described by the PDE) called the mean
field; systems (1) and (4) are the so-called Lagrangian and
Eulerian forms of the mean-field dynamics, respectively [12].

Remark that, as a result of this passage, a nonlinear finite-
dimensional object is replaced by an infinite-dimensional but
state-linear (ϱ-linear) one. The linearity of the reduced model
plays a vital role in our study as it gives rise to an exact
representation of the increment (∞-order variation) of the
cost functional in the corresponding optimal control problem
to be presented in Sec. IV.

Finally, observe that PDE (4) can be viewed as a family
η 7→ µη

t of P(Rn)-valued curves solving, Ξ-a.e., the “sliced”
continuity equation with the vector field V η .

= V (·, η) and
initial condition µη

0 = ϑη ∈ P(Rn), where the map η 7→ ϑη

is obtained by disintegrating [13] the distribution ϱ0 w.r.t.
the projection Ξ

.
= ((x, η) 7→ η)♯ϱ0 ∈ P(Rs). We call such

a family the distributed ensemble; this concept separates two
types of uncertainty: dispersion in the initial data ω 7→ x0(ω)
is converted to the mean field, while fluctuations of the
dynamics, η 7→ V η , are treated independently.

B. Contribution and Novelty

This work has two lines of contribution: the theoretical
part (Secs. II-IV) presents a general approach to the nu-
merical solution of optimal ensemble control problems on
the space of probability measures, based on the exact (∞-
order) variation of the cost functional. We elaborate on a new
technique relying on the concept of intrinsic derivative of a
function of probability measure, and the language of flows of
vector fields. This technique enables us to compute explicitly
(to our knowledge, for the first time in the existing literature)
the ∞-order variation of an abstract nonlinear functional
along the measure-valued solution of the continuity equation,
which essentially generalizes our recent results [14], [15]
obtained for problems of the linear-quadratic structure (using
the duality argument that is inapplicable in the general
nonlinear case). Another line of contribution is the applica-
tion to the optimal control of quantum ensembles (Sec. V).
Our interpretation captures the natural probabilistic flavor of
ensemble control problems, and enables us to improve the
quality of designed control signals since it takes into account
the available statistical information, and in this way allows
us to concentrate the “resource” of feasible control options
around relevant values of ω.

A key result is a descent algorithm for optimal ensemble
control originating from an exact variation. In contrast to
the familiar indirect methods [16], [17] based on the first
variation (i.e. on Pontryagin’s maximum principle, PMP),
our approach is free of additional parameters, like step
length in the line search. Typically, this property brings a
significant gain in computational performance: such algo-
rithms converge [15] to a PMP extremal faster than PMP-

based methods. In our computational practice, we observe
that solving similar problems by the gradient descent with
backtracking [17] requires hundreds of iterations, while the
method presented here converges in several ones (Sec. V).

II. OPTIMAL CONTROL PROBLEM

First, we introduce some necessary notations: Let X be a
metric space, and I

.
= [0, T ]. We denote by C(I;X ) the

spaces of continuous maps I 7→ X with the usual sup-
norm. If X ⊆ Rn, C1(X ) denotes the space of continuously
differentiable functions X → R, and C∞

c (X ) the space of
smooth functions with a compact support in X ; Lp(I;Rm),
p = 1,∞, the Lebesgue spaces of summable and bounded
measurable functions I 7→ Rm, respectively. P(X ) the set of
probability measures on X , and Pc(X ) ⊆ P(X ) the set of
measures having compact support in X ; Pc(Rn) is a dense
subset of a complete separable metric space as it is endowed
with any p-Kantorovich (Wasserstein) distance Wp, p ≥ 1.
Among all measures on Rn, we mark out two specific ones –
the usual Lebesgue measure, Ln, and a Dirac point-mass
measure concentrated at x ∈ Rn, δx.

A. General Problem Statement

Our prototypic mathematical object is the following opti-
mization problem on Pc(Rn):

(P ) min I[u] = ℓ(µT [u])

subject to ∂tµt +∇x · (Vu µt) = 0, (5)
t ∈ I

.
= [0, T ]; µ0 = ϑ; (6)

u(·) ∈ U .
= L∞(I;U), U ⊂ Rm, (7)

where ℓ : Pc(Rn) → R is a given performance criterion,
and V : Rn × U → Rn a control vector field. Despite
its probabilistic appearance, (P ) is a deterministic optimal
control problem, in which the trajectories are measure-valued
functions µ ∈ C(I,Pc(Rn)), and the control signals are usual
functions u ∈ L∞(I, U). This problem can be specified to
the case of distributed ensembles as follows:

(P̃ ) min

∫
Rs

ℓ(µη
T [u]) dΞ(η), (8)

where t 7→ µη
t [u] solves the linear PDE (5), (6) with Vu =

V η
u for Ξ-a.a. η ∈ Rs. Note that problems (P ) and (P̃ ) are

essentially equivalent, up to taking the expectation w.r.t. Ξ.
This fact is due to the specific structure of the ensemble
dynamics (1) which does not contain the evolution w.r.t. η.

We make the following standard regularity hypotheses:
(A1) the map (x, υ) 7→ Vυ(x) is continuous, continu-

ously differentiable in x and satisfies the sublinear
growth condition: there exists a constant M > 0
such that Vυ(x) ≤ M(1 + |x|) for all x ∈ Rn and
υ ∈ U .

(A2) The set U is convex and compact.
(A3) ϑ ∈ Pc(Rn), and ℓ : Pc(Rn) → R is continuous.
(A4) ℓ ∈ C1 in the sense of intrinsic derivative.
(A1) is the standard set of assumptions to guarantee the

well-posedness of the PDE (5) [11]. (A1)–(A3) imply the
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existence of a minimizer for problem (P ) [18, Theorem 3.2];
under these assumptions, the solution µt of (5), (6) is sup-
ported in a ball whose radius depends only on the problem
data [18, Lemma A2]. Hence, µt ∈ Pc(Rn) for all t ∈ I .

B. Problem Specification

Below, we provide some examples of the performance
criterion ℓ that cover typical optimization tasks in the area
of ensemble control.

Targeting: In several NMR applications, the guide is
supposed to transfer the ensemble (as close as possible) to
a target profile x(T, ·) = x̂(·), which means to minimize the
quantity ∫

Ω

|x[u](T, ω)− x̂(ω)|2 dP(ω).

Such are problems of selective spin excitation, see [8], [19]
and the bibliography therein.

This problem is formulated in our setting by using (2), the
definition of µη , and the change of variable formula (3):

min

∫
Rs

ℓ(µη
T ;xT [u](η)) dΞ(η), (9)

where ℓ(µ;x) .
=

∫
Rn

|y − x|2 dµ(y). Typically, the map xT
is chosen to be constant, which means that the ensemble is
assumed to be aggregated around some given position.

Statistical Tracking: In some cases [15], [20], the previous
performance criterion could be too rigid. Instead of matching
the desired profile in average, one may require that the
target distribution has prescribed statistical characteristics,
for instance, its expectation and variance approach some
desired values. The cost functional can be reset in the
language of distributed ensembles as follows:∫

Rs

[
ψ1

(
E(µη

T [u])− Ê
)
+ ψ2

(
V(µη

T [u])− V̂
)]

dΞ(η),

(10)
where E(µ) and V(µ) denote the expectation and variance
of µ ∈ P(Rn), respectively, Ê ∈ Rn and V̂ ∈ R are target
values of the statistical characteristics, and ψ1 : Rn → R
and ψ2 : R → R are given penalty functions.

Minimum-Energy Control: In many applications, the dis-
cussed cost functionals are accompanied by the energy term

α

2

∫ T

0

|u(t)|2 dt (11)

with some weight α > 0. In particular, this produces a sort
of regularization of the underlying problem.

III. PRELIMINARIES

In this section, we provide the necessary theoretical back-
ground and collect some auxiliary results.

A. Flows of Vector Fields. Transport Equation

Let V : I × Rn → Rn be a time-dependent vector field
generating a flow, i.e. a map X : I × I × Rn → Rn such
that, for all s ∈ R and x ∈ Rn, the function t 7→ Xs,t(x) is
a solution of the ODE

∂tXs,t = Vt ◦Xs,t, Xs,s = id, (12)

where id stands for the identical map Rn → Rn. In view of
the semigroup property Xt0,t2 = Xt1,t2 ◦Xt0,t1 ∀ t0, t1, t2,
the inverse of Xs,t is the map Xt,s.

Fixed s, abbreviate Pt = Xs,t and Qt = Xt,s. Then,
by the chain rule, 0 = ∂t(id) = ∂t(Qt ◦ Pt) = (∂tQt +
DxQt Vt)◦Pt. Since the expression in the brackets vanishes
for all values Pt(x), and therefore, for any x ∈ Rn, we
conclude that the inverse flow should satisfy the linear
operator equation

∂tQt +DxQt Vt = 0, Qs = id . (13)

Returning to the X-notation, and recalling that the Jacobian
Jt,s

.
= DxXt,s satisfies [21, Ths. 2.2.3 and 2.3.2] the linear

problem

∂tJt,s = −Jt,s (DxVt ◦Xt,s), Js,s = E, (14)

where E denotes the identity matrix, we express the deriva-
tive of the inverse flow w.r.t. t as follows:

∂tXt,s = −Jt,s Vt. (15)

Note that operators P and Q refer to the concepts of
the left and right chronological exponents in the tradition
of geometric control theory [22].

B. Continuity Equation

Recall that the continuity equation (5) on the space
Pc(Rn) is understood in the weak (distributional) sense. A
function µ : t → µt is said to be a weak solution of (5) iff
the following equality holds for all φ ∈ C∞

c ((0, T )× Rn):

0 =

∫ T

0

dt

∫ (
∂tφt +∇xφt · Vu(t)

)
dµt. (16)

Hereinafter, we abbreviate
∫

=
∫
Rn . (A1) guarantees the

existence of a unique weak solution to the Cauchy problem
(5), (6) [11, Propositions 2.10, 2.11]; this solution admits the
following representation [11, Proposition 2.12] in terms of
the characteristic flow (12): µt = (Xt)♯ϑ, where Xt

.
= X0,t.

Clearly, the notion of weak solution applies “pointwise”
to the distributed ensemble η 7→ µη , for Ξ-a.a. η ∈ Rs.

C. Differentiation w.r.t. the Probability Measure

Since Pc is merely a metric space and does not have a
linear structure, standard concepts of the directional deriva-
tive are not applicable here (there are simply no “directions”
in common sense). At the same time, there is an option
to differentiate a function F : Pc(Rn) → R at some
µ ∈ Pc(Rn) in the “direction” of a (Borel measurable and
locally bounded) vector field f : Rn → Rn pushing the
measure µ: d

dλ

∣∣∣
λ=0

F ((id+λf)♯µ). Under some reasonable
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regularity [23] of the map F , this derivative does exist and

takes the form:
∫
DµF (µ) · f dµ, where the linear map

DµF : Pc(Rn) × Rn → Rn, called the intrinsic derivative,
can be calculated as follows

DµF (µ)(x) = Dx lim
h↓0

1

h

(
F (µ+h(δx−µ))−F (µ)

)
. (17)

The expression under the sign of Dx is called the flat deriva-
tive of F (typically denoted by δF

δµ ). Note that the notions
of intrinsic and flat derivatives are naturally connected to
another useful concept of derivative on Pc(Rn), the so-called
localized Wasserstein derivative [24].

In contrast to the other concepts of derivative in the space
of measures, the quantity (17) can be computed explicitly
(and rather easily) for many functionals arising in practice,
in particular, for those specified in § II-B. Below, we shall
utilize this advantage.

IV. INCREMENT FORMULA

Given two controls ū, u ∈ U , where ū is an initial
(reference) one, and u ̸= ū is the target one, we abbreviate
by X̄ and X the flows of the vector fields V̄t

.
= Vū(t) and

Vt
.
= Vu(t), respectively, and by µ : t 7→ µt[u] = (Xt)♯ϑ

and µ̄ : t 7→ µt[ū] = (X̄t)♯ϑ the corresponding solutions
to the Cauchy problem (5), (6). Consider the increment
∆uI[ū]

.
= I[u]−I[ū] .= ℓ(µT )−ℓ(µ̄T ) of the cost functional.

The base of our approach is the following result proved in
Appendix A.

Theorem 1 (Increment formula): Assume that (A1)–(A4)
hold. Then, the following representation is valid:

∆uI[ū] = (18)∫ T

0

dt

∫
Dµℓ

∗∣∣
(X̄t,T )

♯
µt

◦ X̄t,T J̄t
(
Vt − V̄t

)
dµt.

Here, J̄ is a solution to the linear problem (14) corresponding
to u = ū and s = T ; ∗ stands for the matrix transposition.
Observe that (18) is an exact variation of I at the point ū
w.r.t. any other admissible signal u ∈ U .

Remark 1: The representation (18) (and the consequent
numeric method) can be literally adopted to the case of
distributed ensembles by replacing (V̄ , X̄, J̄ ,X, V ) with
(V̄ η, X̄η, J̄η, Xη, V η) and taking the expectation w.r.t. Ξ.

A. Control Improvement

The main consequence of the increment formula is the
structure of controls of potential decrease from the reference
point ū provided by minimizers wt[µ] in the problem

min
υ∈U

∫
Dµℓ

∗
∣∣∣
(X̄t,T )

♯
µ
◦ X̄t,T J̄t Vυ dµ (19)

viewed as µ-feedback controls of the PDE (4). Indeed, if
t 7→ µ̌t is a well-defined solution to an initial value problem
(4), (6) with a backfed nonlocal vector field V̌t

.
= Vwt[µ̌t],

and u(t)
.
= wt[µ̌t], then, obviously, ∆uI[ū] ≤ 0. Thus, the

cost of open-loop controls u generated by the feedbacks (19)
does not exceed (potentially, smaller than) the one of ū.

B. Numeric Algorithm

A pitfall in the discussed control-update rule is due to the
(generic) discontinuity of the map x 7→ V̌t(x) that makes
the Cauchy problem (12) ill-posed. To resolve this issue, one
can employ the classical semi-discrete Krasovskii-Subboting
sampling scheme [25] with a time discretization (partition)
πN
I = {0 = t0 < t1 < . . . < tN = T} ⊂ I.

Let uk, k ∈ 0, 1, . . ., be given/computed. On the con-
ceptual level, an iteration of the announced iterative method
consists of just three steps:

i) integration of the ODE (12) together with the linearized
system (14), for ū = uk and various initial conditions over
some mesh πM

sptϑ = {yk}Mk=0 ⊆ sptϑ, to obtain (Xk, Jk),
ii) numeric solution of the PDE (4), (6) backfed by (19)

with (X̄, J̄) = (Xk, Jk), to obtain µk+1, and
iii) control update uk+1 := wt[µ

k+1
t ].

Arguments similar to [15, Appendix B] show that this
iterative method converges in the residual of Pontryagin’s
maximum principle [16] for the convexified problem (P ) as
max

i
|ti − ti−1|+max

k
∥yk − yk−1∥ → 0 over πN

I × πM
sptϑ.

V. APPLICATION: BLOCH EQUATIONS

We now apply the algorithm from § IV-B to a non-
standard problem of designing composite pulses in a multi-
population of nuclear spins, mentioned in the Introduction.
Consider a family of Bloch equations, parameterized by the
(dimensionless) resonance offset η.

For simplicity, we focus on the non-dissipative case and
rewrite the Bloch equations in spherical polar coordinates in
the rotating frame [26]:(

θ̇
φ̇

)
= V η

u (θ, φ)
.
= u

(
cotφ cos θ

sin θ

)
−η

(
1
0

)
. (20)

Here, θ ∈ [0, 2π] and φ ∈ [0, π] are the azimuthal and
polar angles identifying the position on the Bloch sphere,
(x1, x2, x3)

.
= (cos θ sinφ, sin θ sinφ, cosφ); control input

t 7→ u(t) is the envelope of the actuating rf-field.
Remark 2: It may be apt to stress that the Bloch equations

are not really of the quantum feature. These phenomeno-
logical ODEs describe the dynamics of an averaged nuclear
magnetization in a macroscopic sample, and are inapplicable
to an individual nuclear magnetic moment. In other words,
each ODE (20) already represents the dynamic ensemble.
One can say that, in this example, we actually deal with an
“ensemble of ensembles”.

A canonical task in NMR experiments is to transfer
the bulk magnetization vector from an equilibrium position
(aligned with the static magnetic field) to the excited state
(θT , φT ) = (0, π/2) (so-called π/2-transfer). In practice, the
static field is inhomogeneous, which gives rise to probability
distributions µη

0 ∈ P([0, 2π] × [0, π]) in the initial values
(θ0, φ0), and leads to an optimal control problem of type (9).
We assume that µη

0 are absolutely continuous with a common
density function ρ0(θ, φ), and consider a more delicate
performance criterion similar to (10) by incorporating a
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variance-like term and the energy cost (11). This problem
is adapted to the framework of distributed ensembles as

min I[u] =
∫ 1

−1

ℓ(µη
T ) dΞ(η) +

α

2

∫ T

0

u2(t) dt. (21)

Here, ℓ(µ) .
=

∫
g(·, ·, θT , φT ) dµ +

β

2

∫∫
g d(µ ⊗ µ),

g(θ, φ, θ′, φ′) = 1/2[(sin θ − sin θ′)2 + (sinφ − sinφ′)2 +
(cos θ − cos θ′)2 + (cosφ − cosφ′)2]

.
= 2 − cos(θ − θ′) −

cos(φ − φ′), the integral
∫

is computed over [0, 2π] ×
[0, π], ⊗ denotes the tensor product of measures, and
α, β > 0 are given parameters. To specify the feedback
control (19), we compute: Dµℓ(µ)(θ, φ) = D(θ,φ)f(θ, φ) +

β

∫
D(θ,φ)g(θ, φ, ·) dµ.

We performed a numerical case study for the initial density
ρ0 (Fig. 1, top panel) on a uniform grid with a spacing of
0.01 for both angles, and for the distribution Ξ chosen to
be uniform on [−0.55,−0.45] (due to the lack of space, the
results are presented for the mean value η = −0.5). The
standard Lax-Friedrichs numerical integration scheme was
implemented (for integration in time from 0 to T = 2 with
the constant time step 10−4). To exclude the singularity at the
poles, the problem was solved for φ ∈ [0.05, 0.095π], assum-
ing the boundaries for θ to be periodic, and vanishing normal
derivative for φ. The following values of the parameters in
the cost function (21) were taken: α = 0.25 and β = 0.5.
It turned out that the simulations are time-consuming, thus,
the code was parallelized for multiprocessor computers with
shared memory. The simulations are also memory demand-
ing – storage in memory of a large four-dimensional array
(a function of (t, θ, φ, η)) is required (about 150 GB for the
parameter values described above).

The initial control is constant, u0 ≡ 0.1, with the cost
I[u0] ≈ 0.88. Computing the iterations of the proposed al-
gorithms, the cost I was observed to decrease monotonically
(as it is expected): ≈ 0.59, 0.49, 0.46, 0.44, 0.43 and then
stagnating at a value ≈ 0.43. Terminal density ρT and the
corresponding control u computed after five iterations are
shown in Fig. 1 (middle and bottom panels, respectively).

Our numerical experience can be summarized as follows:
the suggested nonlocal algorithm generates a I-monotone
control sequence and typically takes a few (2-5) iterations to
reach an acceptable solution. Free of any intrinsic parametric
optimization, the method can be a “lifeline” for computation-
ally demanding problems (like the presented one).

For future simulations, in order to increase the compu-
tational efficiency of our codes and fix the pole problem,
we plan to implement the pseudospectral methods using
spherical harmonics.

VI. CONCLUSION

Although the proposed approach has a fairly wide scope
of application, there are significant restrictions. For instance,
the concept of flat derivative (and, as a consequence, intrinsic
derivative) does not apply if the functional is undefined (=
+∞) for measures, singular w.r.t. a reference one (e.g. Ln);

0 0.5 1.0 1.5 2.0

t

-2.0

-1.5

-1.0

-0.5

0.0
u

(t
)

Fig. 1. Initial, for t = 0, (top), final, for t = T , (top) density ρT and the
corresponding control u (bottom panel) after five iterations of the algorithm.

this makes it impossible to treat the performance criteria such
as entropy functionals of the Kullback-Leibler type [11].

APPENDIX

A. Proof of Theorem 1

Let t 7→ µt and t 7→ µ̄t denote the weak solutions of
the PDE (5) with initial condition µ0 = ϑ, corresponding
to control inputs u and ū, respectively. Recall that µt =
(X0,t)♯ϑ, µ̄t = (X̄0,t)♯ϑ, and Xs,s = X̄s,s = id ∀s ∈ R,
where X and X̄ are the corresponding characteristic flows.

Denote Ft
.
= X̄t,T ◦ X0,t. Since the map x 7→ Ft(x)

is a composition of two bijections, it is invertible. Standard
arguments from the ODE theory imply that under assump-
tions (A1)–(A3), the maps t 7→ X̄t,T (x) and t 7→ X0,t(x)
are Lipschitz on I , for any x ∈ Rn. Hence, for any
x ∈ Rn, the function t 7→ Ft(x) is absolutely continuous
on I as a composition of Lipschitz maps; in particular it
is L1-a.e. differentiable: Ft+λ = Ft + λ∂tFt + o(λ) ≈
(id+λ∂tFt ◦ F−1

t ) ◦ Ft. Assumption (A4) guarantees that,
for any Borel measurable, locally bounded map f : Rn →
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Rn, the function λ 7→ ℓ ((id+λf)♯µ) is differentiable at

zero, and
d

dλ

∣∣∣
λ=0

ℓ ((id+λf)♯µ) =

∫
Dµℓ(µ) ·f dµ, where

Dµℓ stands for the intrinsic derivative. Thus,

∂t ℓ
(
(Ft)♯ ϑ

)
=

d

dλ

∣∣∣
λ=0

ℓ
(
(Ft+λ)♯ ϑ

)
=

d

dλ

∣∣∣
λ=0

ℓ
((

id+λ∂tFt ◦ F−1
t

)
♯

(
(Ft)♯ ϑ

))
=

∫
Dµℓ

(
(Ft)♯ ϑ

)
· ∂tFt ◦ F−1

t d
(
(Ft)♯ ϑ

)
=

∫
Dµℓ

∣∣
(X̄t,T ◦Xt)

♯
ϑ
◦
(
X̄t,T ◦X0,t

)
·

∂t(X̄t,T ◦X0,t) dϑ. (22)

In the last expression, the partial derivative in t is repre-
sented by the chain rule as

∂t(X̄t,T ◦X0,t) =
[
∂τ X̄t,T ◦X0,τ + ∂τ X̄τ,T ◦X0,t

] ∣∣
τ=t

,

where ∂τ
∣∣
τ=t

X̄t,T ◦X0,τ =
(
DxX̄t,T Vt

)
◦X0,t

.
=

(
J̄t,T Vt

)
◦

X0,t by direct computation, and ∂τ
∣∣
τ=t

X̄τ,T = −J̄t,T V̄t by
(15). Plugging these expressions to (22), we obtain

∂tℓ
(
(Ft)♯ ϑ

)
.
=

∫ [
Dµℓ

∗∣∣
(X̄t,T ◦Xt)

♯
ϑ
◦ X̄t,T

J̄t,T (Vt − V̄t)
]
◦X0,t dϑ. (23)

Now, the cost increment is represented as follows:

∆uI[ū]
.
= ℓ(µT )− ℓ(µ̄T )

= ℓ
(
(X̄T,T ◦X0,T )♯ϑ

)
− ℓ

(
(X̄T,T ◦ X̄0,T )♯ϑ

)
−
[
ℓ
(
(X̄0,T ◦X0,0)♯ϑ

)
− ℓ

(
(X̄0,T ◦ X̄0,0)♯ϑ

)]︸ ︷︷ ︸
≡ 0

=

∫ T

0

∂t
[
ℓ
(
(X̄t,T ◦X0,t)♯ϑ

)
− ℓ

(
(X̄t,T ◦ X̄0,t)♯ϑ

) ]
dt.

By the semigroup property, X̄t,T ◦ X̄0,t = X̄0,T , which
implies that the second term under the sign of the time
derivative in the latter expression is, in fact, independent of
t, and therefore, ∆uI[ū] equals∫ T

0

∂tℓ
((
X̄t,T ◦X0,t

)
♯
ϑ
)
dt =

∫ T

0

∂tℓ
(
(Ft)♯ ϑ

)
dt.

To complete the proof, it remains to combine the latter
expression with (23) and use the representation formula
µt = (X0,t)♯ϑ.
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[11] L. Ambrosio and G. Savaré, “Gradient flows of probability measures,”
in Handbook of differential equations: evolutionary equations. Vol. III,
ser. Handb. Differ. Equ. Elsevier/North-Holland, Amsterdam, 2007,
pp. 1–136.

[12] G. Cavagnari, A. Marigonda, K. T. Nguyen, and F. S. Priuli, “General-
ized control systems in the space of probability measures,” Set-Valued
and Variational Analysis, vol. 26, no. 3, pp. 663–691, 2018.

[13] J. T. Chang and D. Pollard, “Conditioning as disintegration,” Statistica
Neerlandica, vol. 51, no. 3, pp. 287–317, 1997.

[14] M. Staritsyn, N. Pogodaev, R. Chertovskih, and F. L. Pereira, “Feed-
back maximum principle for ensemble control of local continuity
equations: An application to supervised machine learning,” IEEE
Control Systems Letters, vol. 6, pp. 1046–1051, 2022.

[15] M. Staritsyn, N. Pogodaev, and F. L. Pereira, “Linear-quadratic prob-
lems of optimal control in the space of probabilities,” IEEE Control
Systems Letters, vol. 6, pp. 3271–3276, 2022.

[16] B. Bonnet, C. Cipriani, M. Fornasier, and H. Huang, “A measure
theoretical approach to the mean-field maximum principle for training
neurodes,” Nonlinear Analysis, vol. 227, pp. 113–161, 2023.

[17] N. Pogodaev, M. Staritsyn, and R. Chertovskih, “Optimal control
of nonlocal continuity equations: numerical solution (submitted to
Applied Mathematics & Optimization),” 2022. [Online]. Available:
https://arxiv.org/abs/2212.06608

[18] N. Pogodaev and M. Staritsyn, “Impulsive control of nonlocal transport
equations,” Journal of Differential Equations, vol. 269, no. 4, pp.
3585–3623, 2020.

[19] J.-S. Li, I. Dasanayake, and J. Ruths, “Control and synchronization of
neuron ensembles,” IEEE Transactions on Automatic Control, vol. 58,
no. 8, pp. 1919–1930, 2013.

[20] E. Zuazua, “Averaged control,” Automatica, vol. 50, no. 12, pp. 3077–
3087, 2014.

[21] A. Bressan and B. Piccoli, Introduction to the mathematical theory
of control, ser. AIMS Series on Applied Mathematics. American
Institute of Mathematical Sciences (AIMS), Springfield, MO, 2007,
vol. 2.

[22] A. Agrachev and Y. Sachkov, Control Theory from the Geometric
Viewpoint, ser. Control theory and optimization. Springer, 2004.

[23] P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions, The Master
Equation and the Convergence Problem in Mean Field Games, ser.
Ann. Math. Stud. Princeton, NJ: Princeton University Press, 2019,
vol. 201.

[24] B. Bonnet and H. Frankowska, “Necessary optimality conditions for
optimal control problems in Wasserstein spaces,” Applied Mathematics
& Optimization, vol. 84, no. 2, pp. 1281–1330, Dec 2021.

[25] A. Krasovskii and N. Krasovskii, Control Under Lack of Information,
ser. Systems & Control: Foundations & Applications. Birkhäuser
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