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Abstract— Multistage model predictive control is a robust
MPC formulation that takes into account parametric uncer-
tainty by constructing a finite set of coupled scenarios. As
the amount of scenarios increase so does computational cost
and real-time implementation might not be possible. Scenario
decomposition has been proposed to distribute computations
and make real-time implementation possible, however, typically
the subproblems are coordinated using the steepest descent
method with slow convergence properties. In this paper a primal
decomposition algorithm is improved by the use of a nonsmooth
Newtons method for continuous nonsmooth equations. The
proposed algorithm is applied to a gas-lift optimization system
and compared to the standard primal decomposition method
using steepest descent.

I. INTRODUCTION

In model predictive control (MPC) an optimal control
problem is formulated and solved minimizing some cost
while obeying the model equations of the system. An optimal
control trajectory is calculated and the current control action
is acted upon the system. Uncertainties in the model are
handled through feedback, but if the uncertainties are too
large a robust MPC scheme is necessary. One of these
schemes which accounts for uncertainties is the multistage
MPC (msMPC) also called the scenario MPC [14].

The drawback of the msMPC is that the problem becomes
very large as it handles more uncertainty and computational
cost increase exponentially. Several methodologies have been
proposed to address this challenge. In [22] and [19] paramet-
ric sensitivity based approaches were proposed while in [6]
and [8] parallelizable linear algebra approaches exploiting
the structure of the problem were proposed.

Another approach much studied in literature is to em-
ploy decomposition algorithms to the msMPC. In these
methods the msMPC problem is decomposed into smaller
subproblems with a coordination algorithm on top ensuring
that the subproblems converge to the optimal solution of
the centralized problem. Each subproblem can be solved
fast but must be resolved a repeated number of times to
coordinate. While these approaches do not necessarily reduce
the overall computational time to compute a control action,
the computations can be performed in parallel such that
the overall computational delay is reduced. The msMPC
is usually decomposed per scenario. A dual decomposition
approach was proposed by [15] where a progressive hedging
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approach was used. This method was further improved in
[16]. The drawback of dual decomposition approaches is that
they do not provide a single feasible control action until the
algorithm converges.

This was addressed in [10] where a primal decomposition
scheme was used instead, which could supply a feasible
but suboptimal control action even if terminated early. As
early termination is not desirable, speeding up the algo-
rithm is desirable. Solving the distributed subproblems is
the computational bottleneck of the algorithm. Two ways
to speed up the algorithm are to reduce the computational
time of solving the subproblems and reduce the number of
necessary resolves in the coordination algorithm. In [12]
a sensitivity-based path-following algorithm was employed
to speed up the computations of the subproblems. In this
paper, we propose to speed up the coordination step of the
primal decomposition algorithm by employing a nonsmooth
Extended Newton Method.

Using a Newton method for speeding up dual decompo-
sition of a linear msMPC was done in [5] and for nonlinear
msMPC using dual decomposition was done [16]. A real-
time iterations approach to msMPC combined with dual
decomposition employed a nonsmooth Newtons Method in
[13]. This work differs by employing a nonsmooth Newton
method to a primal decomposition algorithm and showing
local quadratic convergence for the proposed algorithm.

II. PRELIMINARIES

A. Multistage MPC

Here we present the concept and our notation for msMPC,
see [14] for details. Consider a discretized nonlinear system

xk+1 = f(xk, uk, pk) (1)

where xk ∈ Rnx are the states, uk ∈ Rnu are the control
inputs and pk ∈ Rnp are uncertain model parameters at time
iteration k. The function f : Rnx × Rnu × Rnp 7→ Rnx

represents the nonlinear model of the system. A sequence of
inputs uk for k = 0, ..., N − 1, that minimizes an expected
cost over a time horizon of length N is calculated.

The parameters pk are sampled from a distribution. A set
of M points from this distribution is selected to represent
the possible realizations for the uncertain parameters. At each
time step the each possible realizations are considered, which
leads the msMPC to branch into M new branches. To reduce
the size of the msMPC problem a robust horizon Nr is used,
which are the number of steps where branching is considered.
This lead to a structure of Ns = MNr scenarios.
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The scenarios are tied together at certain points in their
prediction horizon. The nodes where the scenarios are tied
together can be thought of as knots with the tree having
NKn =

∑Nr−1
k=0 Mk knots. In the nodes where the scenarios

are tied together they have to make the same control action
uk. This is known as the nonanticipativity constraints.

The msMPC problem is formulated as

min
x,u,l

Ns∑
s=1

ws
N−1∑
k=0

jsk(x
s
k, u

s
k, p

s
k) (2a)

s.t. xs
k+1 = f(xs

k, u
s
k, p

s
k) (2b)

c(xs
k, u

s
k) ≤ 0 , k = 0, . . . , N − 1 (2c)

Puu
s − P s

l l = 0 , s = 1, . . . , Ns (2d)

where jsk : Rnx × Rnu × Rnp 7→ R are the stage costs,
ws the weight per scenario and c : Rnx × Rnu 7→ R
represents inequality constraints. Constraint (2d) represents
the nonanticipativity constraints, where Pu ∈ RNrnu×Nnu

such that Puu
s = [us

0, . . . , u
s
Nr

]T , the decision variables
l ∈ RNl , Nl = NKnnu are connecting variables represent-
ing the knots and P s

l ∈ RNrnu×Nl are selection matrices
enforcing the tree structure. For the scenario tree shown

in fig 1 we have P 1
l = P 2

l = P 3
l =

[
Inu

0 0 0
0 Inu 0 0

]
,

P 4
l = P 5

l = P 6
l =

[
Inu

0 0 0
0 0 Inu

0

]
, P 7

l = P 8
l = P 9

l =[
Inu 0 0 0
0 0 0 Inu

]
.

This optimization problem can be reformulated in a more
compact form which will be used in the rest of this paper,

min
ω,l

Ns∑
s=1

Js(ωs) (3a)

s.t. hs(ωs) = 0 (3b)
gs(ωs) ≤ 0 (3c)
Pωω

s − P s
l l = 0 s = 1, . . . , Ns, (3d)

where ωs = [xsT , usT ]T ∈ Rnωs , Js : Rnωs 7→ R represents
the cost, hs : Rnωs 7→ Rnh the equality constraints, gs :
Rnωs 7→ Rng the inequality constraints and equation (3d)
represents the nonanticipativity constraints for scenario s
with Pω∈ RNrnu×nωs .

B. Primal decomposition of msMPC
In decomposition methods the large optimization problem

is split into smaller subproblems dependent on some parame-
ter variables, where a coordinator problem finds the optimal
parameter variables to make the subproblems converge to
a common solution. Many different decomposition methods
have been proposed, and in this paper, we focus on primal
decomposition as was used in [10]. Here these parameter
variables are primal variables from the original problem [1].

Using primal decomposition the large msMPC problem
(3) can be decomposed into smaller subproblems in the
following way,
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Fig. 1. Schematic diagram of msMPC with a robust horison of Nr =
2,M = 3, where each set of connected nodes represent a scenario. The
colored dotted circles represents the NKn = 4 knots where the nodes from
the different scenarios are tied together.

Θs(l) = min
ωs

Js(ωs) (4a)

s.t. hs(ωs) = 0 (λs) (4b)
gs(ωs) ≤ 0 (µs) (4c)
Pωω

s − P s
l l = 0 (γs), (4d)

where the decision variables l in the centralized problem
become the parameters for the subproblems (4). The vari-
ables λs, µs and γs denote the dual variables related to
the equality constraints (4b), inequality constraints (4c),
and nonanticipativity constraints (4d) respectively. The Ns

subproblems (4) can be solved independently of each other
in parallel for a given value of l. The centralized problem (3)
is recovered by the following problem, where the coordinator
variables from (4) become the decision variables

min
l

Ns∑
s=1

Θs(l). (5)

C. Standard Approach (Steepest Descent)

From [1] we have that a subgradient of the subproblem
(4) with respect to the parameter l can be found as

∇lΘ
s(l) = −P sT

l γs∗(l) (6)

where γs∗ is the optimal dual variable related to (4d) given l.
In the standard approach to solving the coordinator problem
(5) as outlined in [10] the subgradient of (5) is calculated as

G(l) = −
Ns∑
s=1

P sT
l γs∗(l) (7)

and a Steepest Descent (SD) method is applied to find the
vector l such that the subgradient G(l) is equal to zero. If
lk is the point given at iteration k the step to the next point
is calculated as

∆lk = −αG(lk) (8)

where ∆lk is the step in the variable l and α > 0 is the step
length.

The Steepest Descent method only has linear convergence
and is therefore slow to converge. This leads to resolving the
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subproblems (4) a large number of times, which is the com-
putational bottleneck of the distributed msMPC algorithm.
We propose to speed up the algorithm by using a nonsmooth
Newton method with quadratic convergence.

D. Nonlinear Sensitivity Concepts

Before we procede we will introduce some concepts that
will be used later. Let zs = [ωsT , λsT , µsT , γsT ]T be a
primal-dual pair for subproblem (4) and let

Ls(zs, l) =Js(ωs) + hs(ωs)Tλs + gs(ωs)Tµs (9)

+ (Pωω
s − P s

l l)
T γs

denote the subproblem Lagrangian. The point zs∗(l) is called
a KKT point for (4) if it is the root of the following system
of nonsmooth equations, also known as the KKT conditions

∇ωsLs(zs∗; l) = 0 (10)
hs(ωs∗) = 0

min(−gs(ωs∗), µs∗) = 0

Pωω
s − P s

l l = 0.

The set of active constraints is defined as As(l) =
{i|gsi (ωs∗(l)) = 0, i = 1, . . . , ngs}, and inactive constraints
as As

0(l) = {1, . . . , ngs}\As(l). The active constraints can
be further subdivided into two sets. The set of strongly active
constraints As

+(l) = {i ∈ As(l)|µs∗
i > 0} and the weakly

active constraints As
−(l) = As(l)\As

+(l). Let |D| denote the
size of an integer set D.

A KKT point zs∗(l) is an optimal solution of (4) if a
constraint qualification holds as well as a second-order con-
dition of optimality. This paper will consider the Linear In-
dependence Constraint Qualification (LICQ) and the Strong
Second Order Sufficient Condition (SSOSC). In addition the
Strong Complementarity (SC) will be used below.

Definition: LICQ holds for a primal solution ωs∗(l) if the
gradients of the equality constraints ∇ωshs(ωs∗), the active
inequality constraints ∇ωsgsi (ω

s∗), i ∈ A(l) and the rows in
Pω are linearly independent.

Definition: SSOSC holds for a primal-dual solution zs∗(l)
if dT∇2

ωs∗Ls(zs∗; l)d > 0 for d ̸= 0 ∈ {d|∇ωshs(ωs∗)T d =
0, Pωd = 0,∇ωsgsi (ω

s∗)T d = 0 ∀i ∈ A+(l)}.
Definition: SC holds for a primal-dual solution zs∗(l) if

its weakly active set A−(l) is empty, |A−(l)| = 0.
The following theorem introduced and proved in [3]

establishes the sensitivity of a primal-dual solution zs∗(l)
of problem (4).

Theorem 1 [3]: (NLP sensitivity for a local primal-dual
solution zs∗(l0) of problem (4)): If the functions Js, hs

and gs are twice continuously differentiable in ωs in a
neighborhood of ωs∗(l0), LICQ, SSOSC and SC holds then:

• ωs∗(l0) is local unique optimum, and the dual variables
λs∗(l0), µs∗(l0) and γs∗(l0) are unique.

• For an l in a neighborhood of l0 there ex-
ist a continuously differentiable function zs(l) =
[ωs∗(l)T , λs∗(l)T , µs∗(l)T , γs∗(l)T ]T which is an opti-
mal primal-dual solution of (4) for l.

• SC holds for a l in the neighborhood of l0.

The following theorem from [4] expands on Theorem 1
when SC fails.

Theorem 2 [4]: (NLP sensitivity for a local primal-dual
solution zs∗(l0) of problem (4)): If the the functions Js, hs

and gs are twice continuously differentiable in ωs in a
neighborhood of ωs∗(l0), LICQ and SSOSC holds then:

• ωs∗(l0) is local unique optimum, and the dual variables
λs∗(l0), µs∗(l0) and γs∗(l0) are unique.

• For an l in a neighborhood of l0 there exist a continuous
function zs(l) = [ωs∗(l)T , λs∗(l)T , µs∗(l)T , γs∗(l)T ]T

which is an optimal primal-dual solution of (4) for l.
• The value function of subproblem (4) Θs(l) is differen-

tiable with respect to l at l0 with the derivative being
∇lΘ

s(l0) = −P sT
l γs∗(l0).

III. PRIMAL DECOMPOSITION OF MSMPC USING AN
EXTENDED NEWTON METHOD

Let l∗ be an optimal solution of (5).
Assumption 1: The functions Js, hs and gs are all twice

continuously differentiable for all Ns subproblems.
Assumption 2: LICQ and SSOSC holds for the primal-

dual solutions zs∗(l∗) for all Ns subproblems (4).
From Theorem 1 and 2 if Assumption 1 and 2 hold there

is a neighborhood L ⊂ RNl of l∗ where the optimal primal-
dual solution zs∗(l) is given by a PC1 function for all
subproblems s ∈ {1, . . . , Ns}.

Note that even with smooth functions, the primal-dual so-
lution of (4) can be nonsmooth because the active inequality
constraints change with the parameter l.

Definition: A function σ : V ⊆ Rn 7→ Rm is PC1 if it
is continuous and if for all y0 ∈ V there is a neighborhood
W ⊂ V of y0 and finite number of C1 functions σ1, . . . , σN

such that σ(y) ∈ {σ1(y), . . . , σN (y)} ∀y ∈W .
From Theorem 2 we have that the gradient of the sub-

problems (4) was given by (6).The gradient G(l) of the
coordinator problem (5) is then given by (7) meaning it is a
PC1 function for l ∈ L. The optimal solution of (5) is given
as the root of the gradient G(l), so we propose to use the
Extended Newton (EN) method from [7].

A. Algorithm

The main contribution of this work is algorithm 1. The
algorithm uses the Extended Newton method from [7] to
solve the coordinator problem (5). The Extended Newton
method extends the Newton method to PC1 functions and
it retains quadratic convergence for a starting point near the
solution.
G(l) will be used as the PC1 function to explain the

Extended Newton method. Let L̄s ⊆ L be the set where SC
holds for the optimal solution of (4) for subproblem s. From
Theorem 1 we have that γ∗s is continuously differentiable
for l ∈ L̄s. Then L̄ =

⋂Ns

s=1 L̄s is the set where G(l) is
continuously differentiable.

Let lk ∈ L be a point given at iteration k of the Extended
Newton Method. In an ordinary Newtons method the step
∆lk would be calculated by solving the following equation

H(lk)∆lk = −αG(lk) (11)
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Algorithm 1 Primal Decomposition of msMPC using an
Extended Newtons method
Require: tolerance ϵ > 0, step length α ∈ (0, 1], initial

guess lk ← l0, ||∆l|| > ϵ
while ||∆l|| > ϵ do
D = {}
for s in 1:Ns do

ωs∗, λs∗, µs∗, γs∗,As
+,As

− ← Solve (4) for l = lk
if |As

−| = 0 then
∇lγ

s∗(lk)← solve (14)
else
D = D ∪ {s}

end if
end for
if
∑Ns

s=1 |As
−| > 0 then

for s in D do
∇lγ

s∗(lk) ← JLγ
s∗(lk, P ) from Algorithm 1

from [18] with P = I
end for

end if
G(lk)← −

∑Ns

s=1 P
sT
l γs∗(lk) (7)

H(lk)← −
∑Ns

s=1∇lγ
s∗(lk)P s

l

∆l = −αH(lk)
−1G(lk)

lk ← lk +∆l
end while

where α ∈ (0, 1] is a step length and H(lk) = ∇lG(lk) is
the Jacobian of the gradient. Since the Jacobian only exist
for lk ∈ L̄ the Extended Newton Method for PC1 functions
instead uses H(lk) ∈ ∂BG(lk), where ∂BG(lk) is the B-
subdifferential (”Bouligand”) of the gradient G(lk) [20].

∂BG(lk) = {M ∈ RNl×Nl : ∃(l̄k) ∈ L̄ : (12)
l̄k → lk,∇lG(l̄k)→M}

Note that the B-subdifferential becomes a singleton when
the function is differentiable, i.e. ∂BG(lk) = ∇lG(lk) for
lk ∈ L̄.

The following theorem proved in [7] establishes quadratic
convergence of the Extended Newton method.

Theorem 3 [7]: Let l∗ be a solution for PC1 system
of equations G(l) = 0. Given that all elements of the B-
subdifferential ∂BG(l) are nonsingular and Lipschitz con-
tinuous for l ∈ L, then there exists a positive number r such
that if ||l0− l∗|| ≤ r then the sequence of steps generated by
the Extended Newton method converge to l∗ quadratically,
where l0 is the starting point.

The main result of this paper is given by the following
theorem.

Theorem 4 (Main Result): Let l∗ be the optimal solution
of the coordinator problem (5). If assumption 1 and 2
hold and all members of the B-subdifferential ∂BG(l) are
nonsingular and Lipschitz continuous, then there is a positive
number r such that if ||l0 − l∗|| ≤ r Algorithm 1 converge
quadratically to l∗.

Proof: Invoking Theorem 1 and 2, l∗ is found by solving
a PC1 system of equations G(l) = 0. Algorithm 1 ensures

a member of the B-subdifferential ∂BG(l) is used in the
Extended Newton method, the rest follows from Theorem 3.

B. Computing the Derivatives (Smooth Case)

For l ∈ L̄ the Jacobian can be calculated as

H(lk) = −
Ns∑
s=1

∇lγ
s∗(lk)P

s
l . (13)

When SC holds the sensitivity ∇lγ
s∗(l) can be found by

applying the implicit function theorem to the KKT conditions
(10) to obtain and solve the following linear system of
equations,
∇2

ωsL(zs∗(lk)) ∇ωshs(ωs∗) ∇ωsgs+(ω
s∗) PT

ω

∇ωshsT (ωs∗, lk) 0 0 0
∇ωsgsT+ (ω∗s, lk) 0 0 0

Pω 0 0 0



×


∇lω

s∗T

∇lλ
s∗T

∇lµ
s∗T
+

∇lγ
s∗T

 = −


0
0
0
−P s

l

 , (14)

where g+ and µ+ are the vectors of strongly active inequality
constraints and their related dual variables.
C. Computing the Derivatives (Nonsmooth Case)

When lk ∈ L\L̄ a member of the B-subdifferential of
G(lk) must be computed. This is not a trivial task as B-
subdifferentials do not obey strict calculus rules, e.g. if a
member of the B-subdifferential sets ∇lγ

s∗(lk) ∈ ∂Bγ
s∗(lk)

were found for each scenario s ∈ {1, . . . , Ns} then
−
∑Ns

s=1∇lγ
s∗(lk)P s

l would not necessarily be in ∂BG(lk).
To find a member of the B-subdifferential lexicographical

derivatives will be used. A Lexicographical derivative is
found for some full rank direction matrix P ∈ RNl×Nl ,
and for PC1 functions is an element of the B-subdifferential
JLG(lk, P ) ∈ ∂BG(lk) [18]. In addition, strict calculus rules
holds for lexicographical derivative meaning that

JLG(lk, P ) = −
Ns∑
s=1

JLγ
s∗(lk, P )P s

l . (15)

The lexicographical derivatives of the optimal dual variables
JLγ

s∗(lk, P ) can be found by algorithm 1 from [18]. This
means that H(lk) = JLG(lk, P ) from (15) is used in
the extended Newton method when lk ∈ L\L̄. Note that
JLγ

s∗(lk, P ) = ∇lγ
s∗(lk) for l ∈ L̄s for s ∈ {1, . . . , Ns}

meaning equation (14) can be used for subproblems with no
weakly active inequality constraints.

IV. CASE STUDY
The proposed algorithm is demonstrated in an example

and compared to the algorithm used in [10] which used
the Steepest Descent method. The algorithm is applied to
a uncertain gas-lift well network. The system consists of
two wells, both with their own uncertain gas-oil-ratio GOR
connected to a common manifold. The manifold is connected
to a riser. The schematic figure of the system is seen in
fig 2. The goal is to produce as much oil wpo as possible
while keeping the gas production rate wpg below the max
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capacity of the topside facility. This is done by injecting
gas ,wgl,1, wgl,2, into the two wells. More details about the
system as well as the dynamic model of the system can be
found in [9].

Fig. 2. A schematic figure of the gas-lift system [10].

TABLE I
UNCERTAIN PARAMETERS BOUNDS

low nominal high
GOR1 0.06 0.10 0.14
GOR2 0.11 0.12 0.13

The uncertain parameters being the GOR in the two wells
are assumed to take on values in the bounds between a low
and high value given in Table I, as well as the nominal value
for the GOR.

A. MPC setup

In the model predictive controller the following cost
function is used per scenario,

N−1∑
k=0

− $owpo,k + γpg(wpg,k − ŵpg,max)
2 (16)

+ γr(wgl,1,k+1 − wgl,1,k)
2 + γr(wgl,2,k+1 − wgl,2,k)

2

where $o is the price of oil, γpg and ŵpg,max are a parameters
to track the maximum gas production rate to prevent it from
exceeding the max capacity, and γr is a parameter penalizing
large changes in the inputs.

To design the scenarios for the msMPC we considered the
cases where parameters take maximum and minimum values,
as well as the midpoint (nominal value) for 2 parameters, this
leads to M = 5 realizations. A robust horizon of Nr = 1 is
used leading to Ns = MNr = 5 scenarios in the msMPC.

A prediction horizon N = 24 is used in the msMPC
with a sampling time of 300 seconds. The dynamic model
is discretized using a 3rd order Gauss-Radau collocation
scheme. The nonlinear programs are embedded using JuMP
[2] and solved using Ipopt [21].

In the primal decomposition algorithm the coordinator
variables l are warm started using the solution of the previous
iteration. For the steepest decent algorithm α = 3×10−5 was
used as the step length. For the Extended Newton method
α = 1 was used as the step length. Both the Steepest Decent
and Newton algorithms were terminated when the change in
the coordinator variables were ||∆l||∞ < 10−4.

B. Simulation setup

The gas-lift well network system was simulated for 5
hours. In the first 50 minutes, the GOR for both wells
remains constant. In the next 200 minutes, the GOR for the
two wells changes, while they remain constant the last 50
minutes. Both decentralized schemes are compared to the
centralized approach.

V. SIMULATION RESULTS AND DISCUSSION

The simulation results are shown in Figure 3, where the
total produced oil rate is shown at the top. The gas-lift
injection rates for the two wells are plotted beneath. From
the figure, both the Steepest Descent and Extended Newton
methods give almost identical results. A comparison with
the centralized msMPC is plotted in Figure 4. The absolute
error between the centralized and decentralized schemes
is shown for both the total produced oil rate and gas-lift
injection rates. As can be seen both the Steepest Decent and
Extended Newton schemes converges to the same solution
as the centralized scheme, but the Steepest Decent method
introduces a small error.
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Fig. 3. Simulation results of the decomposed msMPC schemes.

0 1 2 3 4 5

10−10

10−7

10−4

O
il

R
at

e
A

bs
.

er
ro

r
[k

g/
s]

SD

EN

0 1 2 3 4 5

Time [h]

10−10

10−7

10−4

G
as

In
je

ct
io

n
A

bs
.

er
ro

r
[k

g/
s]

wgl1 SD

wgl1 EN

wgl2 SD

wgl2 EN

Fig. 4. Comparison of decomposed msMPC schemes with centralized
approach.

In Figure 5 the required amount of iterations to converge
is plotted for both the decentralized schemes. As can be seen
the proposed algorithm converges in much fewer iterations
than the SD algorithm. This holds especially true in the
transient region at the start where the amount of necessary
iterations is approximately reduced by a factor of 10. We
chose to present the computational performance results in
terms of iterations and not in terms of time, because the
actual running time is dependent on many other factors than
the algorithm itself.
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Fig. 5. Comparison of number iterations to converge for the decentralized
msMPC schemes.

Both in terms of computational time and accuracy the
Extended Newton method outperforms the Steepest Descent
method which is expected as the Extended Newton method
has local quadratic convergence while Steepest Decent only
has linear convergence. Since the coordinator algorithm is
warm started with the solution of the previous iteration the
algorithm might already start in the neighborhood of the
solution leading to fast convergence. Another benefit of the
Extended Newton method is the step is scaled meaning it is
easy to find a stable step size α = 1. This is not the case
for the Steepest Descent method where a step size that both
makes fast progress as well as being stable is difficult to find.
In fact a better step size could probably have been found for
this simulation study.

VI. DISCUSSION AND CONCLUSION
The main computational load of the proposed algorithm

is to solve the distributed subproblems, however, an extra
computational load is introduced by the proposed algorithm.
That is computing the Jacobian matrix used in the Extended
Newton step. For nondegenerate, subproblems this involves
solving equation (14) which can potentially be a large linear
system of equations, which can be expensive. If the problems
are solved using Ipopt the matrix factorization of the KKT
matrix in equation (14) can be reused to calculate the
Jacobian fast with sIpopt [17]. This extra computational cost
should be negligible compared to solving the subproblems.
For degenerate subproblems on the other hand a series of
QPs has to be solved as outlined in [18], which might be
computationally expensive.

For nonconvex problems the proposed decomposition al-
gorithm can converge to any stationary point of the coordina-
tor problem and not necessarily a minimum. This is known
property of primal decomposition. However it will converge
there faster (quadratically) than steepest descent (linearly)
and in the simulations conducted in this paper it was found
to convere to same optimum as the centralized solution.

A related issue when applying primal decomposition to
solve the msMPC problem is that the continuity properties
of the subproblems only hold with respect to a local solution.
The subproblems are nonlinear programs meaning they are
likely non-convex. This means each subproblem might have
several local solutions. To avoid this problem we suggest
adding regularization to the cost function to force one local
solution to be preferential to the others. We also suggest
warm-starting each subproblem with the previous iterations
solution so they start in a neighborhood of the same local
solution.

Another potential challenge with using primal decom-
position is that coordinator variables l might lead to the

subproblems (4) being infeasible. This was addressed in
[11], where it was proposed to use the worst case predicted
control action from the previous iteration to initialize the
coordinator variables l and to use feasibility ensuring back-
tracking algorithm to make sure the updates are feasible.
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