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Abstract— This paper considers the problem of close-
proximity relative-orbit control of spacecraft with control
quantization constraints, models the problem as a mixed-integer
program, and reformulates the problem as a linear program.
The reformulation uses linearized relative orbital element dy-
namics with a sum-of-absolute-values objective, and it is proved
that optimal controls for the reformulated problem satisfy the
quantization constraint, that is, the quantization constraints
are convexified for the reformulated continuous-time optimal
control problem. This problem is then discretized, converted to
a finite-dimensional linear program, and solved using commer-
cially available convex optimization solvers with polynomial-
time convergence guarantees. Since the mathematical proofs
of convexification are available only for continuous-time case,
their validity for discrete-time is demonstrated with extensive
simulations. To this end, Monte Carlo simulations indicate that
quantization is achieved with high probability while keeping
spacecraft slew rates low relative to other proposed approaches.

I. INTRODUCTION
This paper considers the problem of close-proximity

relative-orbit control with control quantization constraints,
as exemplified by on-orbit servicing. The need for quantized
control is motivated by three propulsion system config-
urations: 1) a cluster of reaction control systems (RCS)
using chemical thrusters, 2) multilevel unidirectional electric
propulsion (EP) thrusters, and 3) modern hybrid propul-
sion systems [1]–[3]. NASA’s Evolutionary Xenon Thruster
(NEXT) propulsion system is an example of one that pro-
vides quantized control [4]. We investigate the case wherein
the control is three-dimensional, and each component is
required to belong to the finite set {0,± 1

mumax, . . . ,±umax}
where umax is a prescribed maximum control level and m
is a prescribed natural number specifying the coarseness
of the quantization. Each element of the set represents an
admissible control value. Enforcement of the quantization
constraint in an optimal control problem results in a non-
convex problem. Finite-dimensional approximations of the
optimal control problem for numerical purposes result in
mixed-integer programs (MIPs) [5].

A brute-force approach to compute a MIP’s globally
optimal solution is to enumerate integer combinations, solve
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a convex optimization problem for each combination, and
select the answer that minimizes the objective function. Al-
gorithms such as branch-and-bound and branch-and-cut [6]
often times provide efficient means of solving MIPs; how-
ever, worst-case complexity remains non-polynomial [7] and
such algorithms are not currently suitable for onboard space-
craft implementations. The best off-the-shelf solvers, such
as Gurobi [8], are designed to efficiently solve problems
on the assumption that they can utilize multi-threading on
many state-of-the-art processing cores, whereas computa-
tional resources available on spacecraft are restricted to a
small number of low-powered processing cores.

In this paper, we propose a convex relaxation of the control
set and use of a linear quantization-promoting objective
function to generate a linear optimal control problem whose
solutions satisfy the non-convex quantization constraint.
Its discrete-time, finite-dimensional approximations can be
solved as linear programs using efficient polynomial-time
algorithms apt for spacecraft onboard usage [9].

The dynamical system considered describes the controlled
orbital motion of a deputy spacecraft relative to a passive
(coasting) chief spacecraft in a circular orbit. In the Hill
frame, the linear time-invariant (LTI) equations of motion are
known as the Clohessy-Wiltshire (CW) equations [10]. An
alternative parameterization known as the modified linearized
relative orbital elements (LROEs) is linear time-varying
(LTV) and has an identically zero system matrix [11], [12].
In an optimal control setting, this fact renders the costate
constant and facilitates a more direct proof of quantization.

It is known that L1 norms promote sparsity and quan-
tization [13]. An extension of the L1 idea is the use of a
sum-of-absolute-values (SOAV) objective, which promotes
satisfaction of a prescribed quantization constraint. It has
been proved that minimizing this objective generates control
functions that satisfy the quantization constraint provided
the dynamical system is LTI and satisfies strict assumptions
about system structure [14]. The appearance of system
structure requirements is not surprising as previous convex
relaxations relied upon observability [15], [16], strong ob-
servability [17]–[19], and normality [20]. The needed system
structure requirement fails to hold for both the CW and
modified LROE systems. A key contribution of this paper
is that the requirement is replaced with an easily checkable
requirement on boundary conditions.

The remainder of the paper is organized as follows.
Section II outlines the modified LROE to represent relative
orbital dynamics as an LTV system. Section III introduces
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a SOAV objective function. Since it has been originally
developed for the general LTI system in [14], the SOAV
idea is adapted to the modified LROE system. Next, the
main technical contributions are presented in Sections IV
where it is proved that optimal solutions of the linear refor-
mulation satisfy the quantization constraint. Finally, Section
V presents Monte Carlo results to support the theoretical
results and compare with common alternative approaches.

II. OVERVIEW OF THE MODIFIED LROE
This section introduces the modified LROE-based LTV

system formulation of the linearized relative equations of
motion of a deputy spacecraft relative to a chief spacecraft
in a circular orbit [11]. Analysis begins with the controlled
CW equations [10], which are an LTI system describing the
relative motion in a Hill frame. The mean motion (angular
rate) of the chief’s circular orbit is n. The CW equations are

ẍ(t)− 3n2x(t)− 2nẏ(t) = u1(t),

ÿ(t) + 2nẋ(t) = u2(t), (1)
z̈(t) + n2z(t) = u3(t).

The x coordinate describes relative motion measured from
the chief spacecraft along its radius. The z coordinate de-
scribes the relative motion measured from the chief in the
angular momentum direction of the circular orbit. Finally, the
y coordinate describes the cross product of the z coordinate
and the x coordinate, which completes the right-hand system.
The relative control inputs in the coordinate directions are
given by u(t) = [u1(t), u2(t), u3(t)]

⊤.
There is a rich literature on parameterizing this relative

motion via relative orbital elements that match the integration
constants of the CW equations and provide insight into the
formation geometry [12], [21]. Among them, we prefer the
modified LROE in [11] because they are a simple LTV
system (4) with identically zero system matrix. In optimal
control, this renders the costate constant and makes analysis
of the control switching structure and synthesis of the optimal
controls simpler.

The modified LROE consists of the following 6 variables

œ =
[
A1, A2, xoff, yoff, B1, B2

]⊤
, where (2)

A1 = −
(3nx+ 2ẏ) cos (nt) + ẋ sin (nt)

n
,

A2 =
(3nx+ 2ẏ) sin (nt)− ẋ cos (nt)

n
,

xoff = 4x+
2ẏ

n
, yoff = −

2ẋ

n
+ y + (6nx+ 3ẏ)t,

B1 = z cos (nt)−
ż sin (nt)

n
, B2 = −z sin (nt)−

ż cos (nt)

n
. (3)

As shown in [11], this yields the following LTV system

œ̇(t) = B(t)u(t), where (4)

B(t) =
1

n


− sin(nt) −2 cos(nt) 0
− cos(nt) 2 sin(nt) 0

0 2 0
−2 3nt 0
0 0 − sin(nt)
0 0 − cos(nt)

 . (5)

It is a simple matter to show that, consistent with the CW
system, the modified LROE system is 1) controllable and
2) not normal in the coordinate directions, i.e., the system
is not controllable from each column of B(t). Normality
has been used previously to deduce quantization of optimal
controls [14], [20], though our work shows normality is not
necessary in the presence of our Assumption 4.1.

III. PROBLEM FORMULATION

For a spacecraft equipped with orthogonally aligned
thrusters, we address the problem of transferring from a
specified initial condition to a specified final condition with
quantized control input. Each element of u(t) is required to
satisfy the following quantization constraint:

uj(t) ∈ {0,± 1

m
Uj ,±

2

m
Uj , . . . ,±Uj}, j = 1, 2, 3, (6)

where Uj > 0 and m ∈ N are given. Note that the
constraint set is disconnected and non-convex. Also, we
assume a fixed final time tf > 0 and boundary condi-
tions œ0 = [A1,0, A2,0, xoff,0, yoff,0, B1,0, B2,0]

⊤ and œf =
[A1,f , A2,f , xoff,f , yoff,f , B1,f , B2,f ]

⊤ are given.
In this paper, this non-convex feasibility problem is refor-

mulated as an LP by introducing the sum-of-absolute-values
(SOAV) objective function as in [14] whose integrand is

ϕ(u(t)) =

3∑
j=1

Lj(uj(t)), where (7)

Lj(uj(t)) =

m∑
i=0

ωi

(
|uj(t)−

i

m
Uj|+ |uj(t) +

i

m
Uj|
)
,

(8)

with ω0 ∈ R being a positive weight constant and ωi ∈
R, i = 1, . . . ,m being non-negative weight constants that
satisfy

∑m
i=0 ωi = 1. Fixing arbitrary j ∈ {1, 2, 3}, we can

rewrite the piecewise linear function Lj as follows:

Lj(uj(t)) =
−akuj(t) + 2a′k, if uj(t) ∈ [− k

mUj ,−k−1
m Uj ],

2
∑m

i=0 ωi
i
mUj, if uj(t) = 0,

akuj(t) + 2a′k, if uj(t) ∈ [k−1
m Uj ,

k
mUj ],

(9)

where

ak = 2

k−1∑
i=0

ωi, a′k =

m∑
i=k

ωi
i

m
Uj, k = 1, . . . ,m. (10)

The key feature of this function is that, as shown in the next
section, it promotes a quantized control. Introducing it yields
the following optimal control problem.
Problem 1:

min
u

∫ tf

0

ϕ(u(t))dt

s.t. œ̇(t) = B(t)u(t), |uj(t)| ≤ Uj , j = 1, 2, 3

œ(0) = œ0, œ(tf ) = œf .

After discretization of the time domain, the finite-
dimensional approximation of this optimal control problem
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is an LP. Since LPs can be solved to global optimality
with polynomial-time interior-point methods (IPMs), this
formulation has significant computational advantages over
a non-convex, integer-based approach [22].

In the next section, we will show that any solution to Prob-
lem 1 satisfies the aforementioned non-convex quantization
constraint, i.e., the control inputs solving Problem 1 take
the predetermined quantized values in (6). However, before
proceeding to this proof, existence of an optimal solution
is shown. Note that the control constraints are convex, the
matrix-valued function B is continuous, the objective func-
tion is continuous and convex, and all boundary conditions
are specified. All conditions of Corollary 5.1 in [23, p. 67]
are satisfied. Therefore, an optimal solution exists whenever
a feasible one exists.

IV. PROOFS FOR THE QUANTIZED CONTROL

This section proves that any optimal solution to Problem 1
satisfies the non-convex quantization constraint (6). We first
introduce a version of the maximum principle [23, pp. 185-
186] tailored to Problem 1 and in a convenient form for use
in proving Theorems 4.2 and 4.3. Consider the following
general optimal control problem:

min
u

∫ tf

0

ℓ(t, u(t))dt

s.t. ẏ(t) = f(t, u(t)), y(t) ∈ Y and u(t) ∈ U ,
y(0) = y0 and y(tf ) = yf .

The time domain of the problem is the non-degenerate
interval I = [0, tf ]. The state trajectory y is absolutely con-
tinuous, the control input u is measurable, and the functions
ℓ and f satisfy some regularity conditions (see Assumption
3.1 in [23, p. 183]). The Hamiltonian for this problem is
given by

H(t, u(t), λ0, λ) = λ0ℓ(t, u(t)) + λ⊤f(t, u(t)). (11)

With this, necessary conditions for optimality can be stated.

Theorem 4.1 (Pontryagin’s Maximum Principle): If u∗

and y∗ are the optimal control and state trajectories, then
there exist a scalar constant λ0 ∈ {0,−1} and an absolutely
continuous vector function λ such that the following
conditions are satisfied:

1) Almost everywhere on I:

λ̇ = −∂H

∂y
(t, u∗, λ0, λ) = 0. (12)

Thus, λ is constant.
2) Almost everywhere on I:

H(t, u∗(t), λ0, λ) ≥ H(t, u(t), λ0, λ) ∀u(t) ∈ U
(13)

3) (λ, λ0) ̸= 0.
The second item is called the pointwise maximum condi-

tion. The third item is called the non-triviality condition.

A. Useful Properties

This subsection introduces a fundamental notation and a
lemma that are used throughout the remainder of the paper.
We first introduce the following notation for simplicity:

b1(t) = − 1

n
[sin(nt), cos(nt), 0, 2]⊤,

b2(t) =
1

n
[−2 cos(nt), 2 sin(nt), 2, 3nt]⊤, (14)

b3(t) = − 1

n
[sin(nt), cos(nt)]⊤.

Also, we introduce the following lemma and proof regarding
a function being zero on a set of positive measure.

Lemma 4.1: Let a, b, c, d ∈ R and p : I → R given by

p(t) = a sin(nt) + b cos(nt) + ct+ d. (15)

Let J ⊂ I have positive measure. If p = 0 on J , then p = 0
on I and a = b = c = d = 0.

Proof: The function p is analytic, from which it follows
that p = 0 on I . The function p is a linear combination of
linearly independent functions on the vector space of real-
valued functions. Hence, a = b = c = d = 0.

B. Theorem and Proof that u1 and u2 are quantized

With the optimality conditions stated, we now introduce
the main technical result of this paper in Theorem 4.2 and
4.3, which prove that the optimal solution to Problem 1 takes
quantized values. Since Problem 1 can be completely decom-
posed into two optimization problems, Theorem 4.2 and 4.3
deal with these two optimization problems respectively. The
following assumption is also made for Theorem 4.2. It is
reasonable since typical proximity operations occur over a
few orbits, and xoff is often assumed to be zero to avoid the
secular increase of y(t) in the Hill frame [24].

Assumption 4.1:

[A1,f , A2,f , xoff,f , yoff,f ] ̸= [A1,0, A2,0, xoff,0, yoff,0],(16)

|yoff,f − yoff,0| < 3U2

m

((
tf
2

)2
−
(

2
3n

)2)
, (17)

xoff,f = xoff,0, (18)
3
4ntf > 1. (19)

Theorem 4.2: Under Assumption 4.1, u∗
1(t) and u∗

2(t) in
Problem 1 satisfy (6) a.e. on I .

Proof: The objective function, dynamics, and con-
straints associated with u1 and u2 are decoupled from u3.
Hence, u∗

1 and u∗
2 from Problem 1 is equivalent to u∗

1 and
u∗
2 in the following problem.

Problem 2:

min
u1,u2

∫ tf

0

2∑
j=1

Lj(uj(t))dt

s.t. ẋ(t) =
2∑

j=1

bj(t)uj(t), |uj(t)| ≤ Uj j = 1, 2,

x(0) = [A1,0, A2,0, xoff,0, yoff,0]
⊤,

x(tf ) = [A1,f , A2,f , xoff,f , yoff,f ]
⊤,
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where x(t) ∈ R4 is the first four elements of œ(t). Now
we show that u∗

1(t) and u∗
2(t) in Problem 2 take quantized

values. The Hamiltonian for Problem 2 is given by

H(t, u(t), λ0, λ) = λ0

2∑
j=1

Lj(uj(t)) + λ⊤
2∑

j=1

bj(t)uj(t).

(20)

In this proof, the vector λ ∈ R4 is defined as λ = [a, b, c, d]⊤.
The remainder of the proof addresses the two cases: λ0 = 0
and λ0 = −1.

(Case 1: λ0 = 0) With λ0 = 0, the pointwise maximum
condition implies that u∗

j (t) ∈ {−Uj , Uj} provided that
λ⊤bj(t) ̸= 0 a.e. on I , i.e., the control is quantized. To show
that this is indeed the situation, two subcases are explored.
In the first subcase, suppose there exists J ⊂ I with positive
measure such that nλ⊤b1(t) = 0 on J . Therefore,

−a sin(nt)− b cos(nt)− 2d = 0 on J. (21)

By Lemma 4.1, a = b = d = 0. From the non-triviality
condition, it is concluded that c ̸= 0 such that nλ⊤b2(t) =
2c ̸= 0. The pointwise maximization condition implies that

u∗
2(t) =

{
+U2, c > 0

−U2, c < 0
a.e. on I. (22)

Inspection of the equations of motion reveals that this control
violates (18) in Assumption 4.1. Hence, the first subcase is
impossible.

In the second subcase, suppose there exists J ⊂ I with
positive measure such that nλ⊤b2(t) = 0 on J . Therefore,

−2a cos(nt) + 2b sin(nt) + 2c+ 3dnt = 0 on J. (23)

By Lemma 4.1, a = b = c = d = 0. This violates the non-
triviality condition, and the second subcase is impossible.
Hence, the optimal control is quantized when λ0 = 0.

(Case 2: λ0 = −1) With λ0 = −1, the pointwise
maximum condition implies that u∗

j (t) satisfies (6) provided
that λ⊤bj(t) ̸= ±ak a.e. on I . To show this, we first let
Hj(t, uj(t), λ0, λ) = λ0Lj(uj(t)) + λ⊤bj(t)uj(t), j = 1, 2.
Clearly, H = H1 + H2. For λ0 = −1, we substitute (9)
into Hj and then provide the maximizer of Hj , that is, the
optimal control u∗

j (t), as in [14]:

argmax
uj(t)

Hj(t, uj(t), λ0, λ) =

[k−1
m Uj ,

k
mUj ], if λ⊤bj(t) = ak,

[− k
mUj ,−k−1

m Uj ], if λ⊤bj(t) = −ak,
Uj, if am < λ⊤bj(t),
k′−1
m Uj , if ak′−1 < λ⊤bj(t) < ak′ ,

0, if −a1 < λ⊤bj(t) < a1,
−k′−1

m Uj , if −ak′ < λ⊤bj(t) < −ak′−1,
−Uj, if λ⊤bj(t) < −am,

(24)

where k = 1, . . . ,m and k′ = 2, . . . ,m. Consequently, the
pointwise maximum condition generates a quantized control
except possibly when the following three subcases occur.

In the first subcase, suppose there exists J ⊂ I with
positive measure such that λ⊤b1(t) = ak on J . Therefore,

a sin(nt) + b cos(nt) + 2d+ nak = 0 on J. (25)

By Lemma 4.1, λ⊤b1(t) = ak on I , a = b = 0, and d =
−n

2 ak. Substituting them into λ⊤b2(t) gives

λ⊤b2(t) = −3

2
nakt+

2c

n
, and (26)

λ⊤b2(0)− λ⊤b2(tf ) =
3

2
naktf > 2ak ≥ 2a1, (27)

where the first inequality follows from (19) in Assump-
tion 4.1. Note that λ⊤b2 is an affine decreasing function on
I . If λ⊤b2(t) ≤ a1 on I , due to (27), there is an interval with
positive measure such that λ⊤b2(t) < −a1 on that interval.
In conjunction with the maximizer of Hj and the equations
of motion, this violates (18). Similarly, it is also impossible
that λ⊤b2(t) ≥ −a1 on I . If λ⊤b2(t) > a1 on a positive
measure interval and λ⊤b2(t) < −a1 on another positive
measure interval, then (18) requires λ⊤b2 to be symmetric
with respect to the point ( tf2 , 0) and u∗

2 to be symmetric with
respect to the same point a.e. on I . It yields c = 3

8 tfn
2ak.

Letting tα ∈ [0,
tf
2 ) be such that λ⊤b2(tα) = a1, we have

yoff,f − yoff,0 =

∫ tf

0

3tu∗
2(t)dt−

∫ tf

0

2

n
u∗
1(t)dt

≤
∫ tα

0

3(2t− tf )u
∗
2(t)dt

≤
∫ tα

0

3(2t− tf )
U2

m
dt. (28)

The first inequality follows from the facts that u∗
1(t) ≥ 0 a.e.

on I , u∗
2(t) = 0 a.e. on (tα, tf − tα), and u∗

2 is symmetric
with respect to (

tf
2 , 0) a.e. on I . Furthermore, on [0, tα),

u∗
2(t) ≥ U2

m a.e. and 2t − tf is negative, which gives the
second inequality. Lastly, we have

tα =
tf
2

− 2a1
3nak

≥ tf
2

− 2

3n
> 0, (29)

where the equality is a consequence of λ⊤b2(
tf
2 ) = 0 and

λ⊤b2(tα) = a1, the first inequality follows from the fact that
ak ≥ a1 for k = 1, . . . ,m, and the second inequality is due
to (19). The result of the last integral in (28) is 3U2

m (t2α −
tf tα), which is a convex quadratic function in tα. Under the
constraint in (29) and tα <

tf
2 , it attains its maximum at

tα =
tf
2 − 2

3n . Therefore,

yoff,f − yoff,0 ≤ −3U2

m

((
tf
2

)2

−
(

2

3n

)2
)
, (30)

which violates (17) in Assumption 4.1. Hence, the first
subcase is impossible.

In the second subcase, suppose there exists J ⊂ I with
positive measure such that λ⊤b1(t) = −ak on J . As with
the first subcase, this also violates (17) in Assumption 4.1.
Hence, the second subcase is impossible.
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In the third subcase, suppose there exists J ⊂ I with
positive measure such that λ⊤b2(t) = ±ak on J . Therefore,

−2a cos(nt)+2b sin(nt)+(2c±nak)+3dnt = 0 on J. (31)

By Lemma 4.1, λ⊤b2(t) = ±ak on I , a = b = d = 0,
and c = ±n

2 ak. Hence, u∗
2(t) is either non-negative or non-

positive a.e on I . This, together with (18) in Assumption 4.1,
imply that u∗

2(t) = 0 a.e. on I . Furthermore, λ⊤b1(t) = 0
on I , which implies that u∗

1(t) = 0 a.e. on I . Therefore,
u∗
1(t) and u∗

2(t) are zero a.e. on I . It violates (16) in
Assumption 4.1, and the third subcase is impossible. Hence,
the optimal control is quantized when λ0 = −1.

C. Theorem and Proof that u3 is quantized

We now turn our attention to u3(t) in Problem 1 and intro-
duce the following theorem stating that the optimal solution
u∗
3(t) of Problem 1 satisfies the quantization constraint.
Theorem 4.3: The optimal control u∗

3(t) in Problem 1
satisfies (6) a.e. on I .

Proof: The proof is similar to the one in the previous
section. The objective function, dynamics, and constraints
associated with u3 are decoupled from u1 and u2. Hence, u∗

3

from Problem 1 is equivalent to u∗
3 in the following problem.

Problem 3:

min
u3

∫ tf

0

L3(u3(t))dt

s.t. ẋ(t) = b3(t)u3(t), |u3(t)| ≤ U3,

x(0) = [B1,0, B2,0]
⊤, x(tf ) = [B1,f , B2,f ]

⊤,

where x(t) ∈ R2 is the last two elements of œ(t) and tf is
fixed. The Hamiltonian for Problem 3 is given by

H(t, u3(t), λ0, λ) = λ0L3(u3(t)) + λ⊤b3(t)u3(t). (32)

In this proof, the vector λ ∈ R2 is defined as λ = [e, f ]⊤.
The remainder of the proof addresses the two cases: λ0 = 0
and λ0 = −1.

(Case 1: λ0 = 0) With λ0 = 0, the pointwise maximum
condition implies that u∗

3(t) ∈ {−U3, U3} provided that
λ⊤b3(t) ̸= 0 a.e. on I , i.e., the control is quantized. To
show that this is indeed the situation, suppose there exists
J ⊂ I with positive measure such that

nλ⊤b3(t) = −e sin(nt)− f cos(nt) = 0 on J. (33)

It follows from Lemma 4.1 that e = f = 0. This violates the
non-triviality condition, and this case is impossible. Hence,
the optimal control is quantized when λ0 = 0.

(Case 2: λ0 = −1) With λ0 = −1, the pointwise
maximum condition implies that u∗

3(t) satisfies (6) provided
that λ⊤b3(t) ̸= ±ak a.e. on I . To show this, suppose there
exists J ⊂ I with positive measure and index k such that
λ⊤b3(t) = ±ak on J . It follows from Lemma 4.1 that
e = f = 0 and ak = 0. This violates ak > 0, and this
case is impossible. Hence, the optimal control satisfies the
quantization constraint when λ0 = −1.

V. NUMERICAL RESULTS

The theoretical results hold in a continuous-time setting.
For efficient numerical solution, Problem 1 is discretized (as
done in [15]–[20]) resulting in a finite-dimensional linear
program solvable with IPMs. Given that quantization is not
guaranteed in the finite-dimensional setting, the performance
of this approach is demonstrated statistically in a Monte
Carlo analysis. Optimization is done using the convex op-
timization solver ECOS [25] in Python.

The approach is compared with two popular alternatives:
the L1 problem with integrand |u1(t)| + |u2(t)| + |u3(t)|,
which is a special case of Problem 1, and the minimum
energy problem with integrand u2

1(t) + u2
2(t) + u2

3(t). The
L1 problem is known to promote control quantization of a
bang-bang nature (large changes in control values between
nodes). The minimum energy problem is known to promote
non-quantized control with small changes between nodes.

We discretize all problems with a zero-order hold on the
control and time step ∆t = 50 s. The Monte Carlo analysis
consists of 50 000 feasible problems (samples) with random-
ized boundary conditions divided into 50 batches with each
batch containing a random time of flight (TOF) between
4000 s to 28 000 s. The TOF is fixed within each batch but
randomized between the batches. The initial condition is
fixed: œ0 = 0. The components of œf are sampled from
a uniform distribution given by [−800, 800]m such that
Assumption 4.1 is satisfied. The other fixed parameters are
given by

m = 3, Umax := U1 = U2 = U3 = 1× 10−5 m/s2,

n = 1.106× 10−3 s−1, ω0 = ω1 = ω2 = ω3 = 0.25. (34)

For each trial, time is non-dimensionalized by tf , control
input by Umax, and state vector by Umax

n2 .
As an example, Figure 1 shows the solution of Problem 1

in the trial whose œf is [60, 0, 0, 50, 0, 0]⊤ m and tf is
8000 s. Performance of the approach is quantified in two
ways. First, the quantization success rate is analyzed. If the
distance from uj(tk) to its closest quantized value in (6) is
less than 1% of Umax for every j ∈ {1, 2, 3}, the node tk
is labeled “quantization holds.” The success rate for a given
sample is defined by dividing the number of labeled nodes in
the control profile by the total number of nodes in the sample.
Table I shows the quantization success rate distributions for
the three approaches. The mean quantization success rates of
Problem 1 and the L1 problem are both 98%, whereas that
of the minimum energy problem is less than 1%. The results
of Problem 1 and the L1 problem imply that, in each trial,
quantization fails approximately 2% of the time. It is due to
discretization, which was highlighted in prior studies using
the maximum principle [15], [16].

Second, the slew rate is analyzed [26]. The slew rate
measures the change in control between nodes, and it is
calculated by dividing the infinity norm of changes in u
between temporal nodes by ∆t. Table I shows the means of
the maximum slew rates in each trial. Minimizing L1 leads
to quantization but typically at higher slew rates. Minimizing
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Fig. 1. Hill frame trajectory (left) and a representative control profile
u2(t) (right) from Problem 1. The left displays the top view of the trajectory
(red), œ0 (black dot), and the unforced trajectory with initial value œf (black
dotted ellipse). The right displays desirable quantization values (black dotted
lines) and the control profile (red lines). The control inputs circled in blue
do not satisfy the quantized constraint.

TABLE I
QUANTIZATION SUCCESS RATES AND SLEW RATES DISTRIBUTIONS

Quantization Success Rate Mean of the
Min Max Std Dev∗ Mean Max Slew Rates

Problem [%] [%] [%] [10−8 m/s3]
Problem 1 91.4 99.6 1.0 98.0 7.0
L1 93.7 99.4 1.0 98.0 20
Min Energy 0 73.6 4.5 0.81 1.9
∗ Standard Deviation.

energy leads to lower slew rates but not quantization. Con-
sequently, these results show that the proposed approach has
two advantages: 1) quantization and 2) lower slew rates.

VI. CONCLUSION

The problem of close-proximity relative-orbit control with
an element-wise control quantization constraint was investi-
gated. Despite the quantization constraint being non-convex,
a linear programming formulation of the problem was pre-
sented leading to an efficient numerical solution using IPMs.
Proofs that solutions of the linear formulation satisfy the
constraint were based on continuous-time optimal control
and relied upon an assumption on boundary conditions.
Because numerical methods solve a discrete-time approx-
imation of the problem, quantization is not guaranteed in
practice. Despite this fact, Monte Carlo simulations indicate
that quantization is achieved numerically with high probabil-
ity. The slew rates, or changes between quantization levels,
were also low as appropriate for electric propulsion systems.
In conclusion, the linear formulation provides an efficient,
practical means of solving the orbit transfer problem with
control quantization.
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