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Abstract— We propose an early termination technique for
mixed integer conic programming within branch-and-bound
based solvers. Our approach generalizes previous early ter-
mination results for ADMM-based solvers to a broader class
of primal-dual algorithms, including both operator splitting
and interior point methods. The complexity for checking early
termination is O(n) for each termination check assuming a
bounded problem domain. We show that this domain restriction
can be relaxed for problems whose data satisfies a simple rank
condition, in which case each check requires an O(n2) solve
using a linear system that is factored only once at the root
node. We further show how this approach can be used in
hybrid model predictive control problems with bounded inputs.
Numerical results show that our method leads to a moderate
reduction in the computational time required for branch-and-
bound conic solvers with interior-point based subsolvers.

I. INTRODUCTION

A. Literature review

Mixed integer conic programming (MICP) is a power-
ful tool for modelling many real-world applications, e.g.
hybrid model predictive control [1], portfolio optimization
[2], power electronics [3] and robust truss topology [4].
The branch-and-bound (B&B) method is the technique most
commonly used to search for optimal solutions in mixed
integer programming (MIP). It solves a sequence of relaxed
convex subproblems, while the number of such problems
increases exponentially w.r.t. the number of integer variables.

Many techniques have been developed to speed up MIP
computation. Cutting plane methods are widely used and can
significantly reduce the number of nodes that a B&B solver
must visit. Presolving [5] is a collection of problem reduction
operations applied before solving an MIP, including bound
strengthening, coefficient strengthening, constraint reduction
and conflict analysis. In addition to presolving an MIP,
one can also apply many heuristic methods to accelerate
the computation. Most acceleration methods can be broadly
classified into two types, start and improvement heuristics
[6], both of which are crucial for pruning nodes in B&B
algorithms. Start heuristics aim to find a feasible solution as
early as possible when the B&B algorithm starts, e.g. fea-
sibility pump methods [7]. On the other hand, improvement
heuristics search for feasible points of better objective value
based on information from feasible points already obtained,
e.g. RINS [8] and the crossover method [9].

Pruning is usually an effective method to reduce the total
number of nodes to be solved in B&B. Suppose U is the
upper bound corresponding to the value of the best integer
feasible solution so far. After updating the upper bound
U with a new integer feasible point, one can prune any

unevaluated nodes that are known to have an optimal value
or a lower bound that is greater than U . Consequently, if a
dual feasible point of a relaxed problem within a B&B search
can be generated prior to convergence with its dual objective
already larger than the current upper bound U , then one
can stop the node computation immediately before solving
it to optimality. This is called early termination and has
been implemented in dual feasible algorithms like active-set
methods [10], [11], [12], [13]. However, many central ideas
in dual feasible methods, such as the use of basic feasible
solutions, are not easily generalizable to conic programming.

At the heart of any B&B method is an optimization
algorithm for solving convex problems. Many state-of-the-art
conic optimization algorithms are primal-dual methods, and
most can be classified into two types: second-order methods
such as the interior point method (IPM) [14], and first-order
methods such as the operator splitting method (OSM) [15].
Both of them start from an infeasible initial point, and attain
a feasible point when the algorithm converges to a global
optimum and generate a certificate of infeasibility otherwise.
This makes early termination difficult since primal-dual
methods do not typically reach a dual feasible point until the
algorithm converges at optimality. Recently, [16] proposed
a heuristic method to generate a dual feasible point for
a specialized primal-dual IPM, but the feasibility of dual
iterates is still not theoretically guaranteed and it applies only
to mixed-integer quadratic programming.

B. Contributions and organization

In this paper we generalize an early termination strategy
for MICP, initially proposed for ADMM [17], to any primal-
dual optimization method. We develop efficient methods
to find a dual feasible point for early termination at each
iteration. We relax the boundedness assumption in [17] to
a more general rank condition on the problem data that
is applicable to many real-world scenarios. We propose a
simple correction step that costs O(n) flops for bounded
problems, and a more general optimization-based one costing
O(n2) flops at each iteration once we obtain a factorization
at the start of an MICP. Both costs are relatively small
compared to the factorization time O(n3) per iteration in
IPMs and no worse than the per iteration cost of OSMs.
We also show that mixed-integer model predictive control
(MIMPC) with bounded input satisfies the condition for the
optimization-based correction.

Section II provides background on conic optimization.
Section III presents our early termination strategy for mixed
integer conic programming and describes how to implement
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it in both OSMs and IPMs. Section IV discusses the algo-
rithmic structure and the computation complexity of early
termination. Numerical results are shown in Section V and
conclusions are summarized in Section VI.

C. Notation

We denote the set of n×n symmetric matrices by Sn and
the set of positive semidefinite matrices by Sn+. We denote
the number of elements in the discrete set I as |I|. The norm
∥ · ∥ is the Euclidean norm. The projection of x ∈ Rn onto
the set C is denoted ΠC(x). The support function of C is

σC(x) := sup
y∈C

⟨x, y⟩.

We denote the dual cone K∗ and polar cone K◦ of a convex
cone K by K∗ := {y ∈ Rn | supx∈K⟨x, y⟩ ≥ 0}, and
K◦ := {y ∈ Rn | supx∈K⟨x, y⟩ ≤ 0}, respectively.

II. BACKGROUND

A. Problem formulation

We will consider MICPs in the general form:

min
x,s

1

2
x⊤Px+ q⊤x

s.t. Gx = h

Ax+ s = b, s ∈ K,

l̄ ≤ x ≤ ū, xI ∈ Z,

(1)

where G ∈ Rp×n, A ∈ Rm×n, h ∈ Rp, b ∈ Rm and
K is a proper cone. The vector x ∈ Rn is the decision
variable with interval bounds defined by l̄, ū ∈ Rn, and I
denotes the entries of x constrained to a finite integer set Z .
The objective function is convex quadratic with symmetric
positive semidefinite P ∈ Sn+ and vector q ∈ Rn. We denote
the continuous relaxation of (1) within a B&B solver as

min
x,s

1

2
x⊤Px+ q⊤x

s.t. Gx = h

Ax+ s = b, s ∈ K,

l ≤ x ≤ u,

CP(l, u) (2)

where the integer relaxation of Z is incorporated into the
box constraint l̄ ≤ l ≤ x ≤ u ≤ ū.

B. Dual form for OSMs

Following [17], the dual of the continuous relaxation (2)
is

max
x,y,yb,z

− 1

2
x⊤Px− h⊤z + b⊤y − σ[l,u](yb)

s.t. Px+ q +G⊤z −A⊤y + yb = 0,

x ∈ Rn, y ∈ K◦, yb ∈ Rn, z ∈ Rp,

(3)

where the support function σ[l,u](yb) is explicit, i.e.

σ[l,u](yb) = u⊤y+b + l⊤y−b , (4)

where y+b = max{yb, 0}, y−b = min{yb, 0}, which is suitable
to generate a correction for early termination of any MIP
based on an OSM solver, e.g. OSQP [18] and PDHG [19].

C. Dual form for primal-dual IPMs

For IPMs that rely on logarithmically homogeneous self-
concordant barrier (LHSCB) functions [14], there is no
standard explicit barrier function for box constraints. We
instead reformulate the box constraint l ≤ x ≤ u into two
nonnegative inequalities x ≥ l, x ≤ u that have well-defined
barrier functions, and obtain the alternative dual formulation:

max
x,y,y+,y−,z

− 1

2
x⊤Px− h⊤z − b⊤y − u⊤y+ + l⊤y−

s.t. Px+ q +G⊤z +A⊤y + y+ − y− = 0

x ∈ Rn, y ∈ K∗, y− ≥ 0, y+ ≥ 0, z ∈ Rp,

(5)

where K∗ = −K◦ for a proper cone K. If we define
yb := y+ − y− for (5), then we find that the dual form
for IPMs (5) is equivalent to its counterpart (3) for OSMs.
We can therefore design a unified dual correction mechanism
for both IPMs and OSMs, which we describe in Section III.

The primal-dual IPM typically requires factorization of a
matrix in the form

K :=

 P G⊤ A⊤

G 0 0
A 0 −Hk

 (6)

to compute the search direction for every iteration k, where
Hk is a scaling matrix that depends on the choice of cones
but which is always positive semidefinite. By adding small
perturbation to diagonals of K, the matrix can become
quasi-definite and be factorized by LDL decomposition with
complexity O((n + p + m)3) [20], [21]. An IPM always
generates a sequence (xk, sk, zk, yk, ykb ) such that sk ∈ K
and yk ∈ K∗, which is the same as in OSMs [18], [19].

D. Branch and bound

The B&B method computes an optimal solution x in (1) by
exploring different integer combinations in a tree. It repeat-
edly branches on entries of x in the integer index set I and
solves continuous convex relaxation subproblems in the form
of (2) until a global optimizer is found. Meanwhile, B&B
always maintains a global upper bound U corresponding to
the value of the best integer feasible solution of (1) found
so far. This upper bound is very useful in pruning unsolved
nodes, and we will explore early evaluation of this bound
inside each convex subproblem in the rest of the paper.

III. EARLY TERMINATION FOR PRIMAL-DUAL
ALGORITHMS

In this section we first review the early termination tech-
nique we proposed in [17], arguing that it is also applicable
in other OSMs (Section III-A), and then tailor it for primal-
dual IPMs (Section III-B). We also relax our boundedness
assumption and improve the optimization-based correction
discussed in [17] (Section III-C) and discuss how we can
apply it to hybrid MPC problems (Section III-D).

The key to our proposed early termination method is to
utilize the current dual iterate, which has a conic feasible yk

from a primal-dual algorithm (either an OSM or an IPM),
and then remove linear dual residuals by adding corrections
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to unconstrained dual variables yb in (3) or (5). We thereby
obtain a dual feasible solution for (3) or (5) and generate the
corresponding dual cost for early termination. To ensure our
early termination always works, we first make the following
boundedness assumption as in [17]:

Assumption 3.1: The domain of x in the MIP relax-
ation (2) is bounded, i.e. l, u ∈ Rn are both finite.
The assumption is applicable to many real world scenarios,
e.g. x is an 0-1 switching signal or subjected to some
physical limitations, like in some QP problems where ∥x∥
is bounded. We will show how to relax it in Section III-C.

A. Correction for OSMs

ADMM can generate iterates yk ∈ K◦, ∀k ≥ 0 in [22].
For any dual iterates (xk, yk, ykb , z

k) generated by ADMM,
we can offset the residual

rk := Pxk + q +G⊤zk −A⊤yk + ykb (7)

by setting ∆ykb = −rk so that (xk, yk, ykb + ∆ykb , z
k) is a

dual feasible point for (3), which is suitable for the early
termination technique proposed in [17]. A useful property
of ADMM is that every yk is in the conic constraint set
K◦. However, such a property can be generalized to any
OSM because we always tackle a conic constraint s ∈ K
by either projection to the polar cone K◦, i.e. ΠK◦(vk), or
projection to K, i.e. ΠK(v

k). The former is what we want
for early termination directly, as in a primal-dual hybrid
gradient (PDHG) solver [19]. For the latter, due to the
Moreau decomposition [23, §2.5],

v = ΠK(v) + ΠK◦(v), ∀v, (8)

we can generate an ”equivalent” dual iterate (I −ΠK)(v) ∈
K◦, which gives the yk we obtain in ADMM [17]. We
can therefore generalize the early termination method we
proposed in [17] to any OSM within a B&B solver.

B. Correction for primal-dual IPMs

The main idea behind our correction strategy is to adjust
the iterate (xk, yk, yk+, y

k
−, z

k) to be dual feasible via the
correction on the dual of box constraint. A similar idea can
be applied to primal-dual IPMs, which also generate dual-
feasible conic iterates yk for every iteration k. Suppose we
define ∆yb := ∆y+−∆y− with ∆y+,∆y− ≥ 0 for the IPM
dual formulation (5). We can verify ∆yb is an unconstrained
variable for the dual correction. If we only make corrections
on y− and y+, leaving other variables fixed, then the change
of dual cost in (5) becomes

−∆y⊤+u+∆y⊤−l = ∆y⊤+(l − u) + (∆y− −∆y+)
⊤l

= ∆y⊤+(l − u)−∆y⊤b l.
(9)

Note that we have ∆y⊤+(l−u) ≤ 0 due to ∆y+ ≥ 0, l−u ≤
0. Meanwhile, the linear residual is

rk := Pxk + q +G⊤zk +A⊤yk + yk+ − yk− (10)

before the correction. To maximize the dual objective in (5)
given ∆ykb = −rk, we set ∆yk+,∆yk− as

∆yk+ = max{0,∆ykb }, ∆yk− = ∆yk+ −∆ykb . (11)

Hence, (xk, yk, yk+ +∆yk+, y
k
− +∆yk−, z

k) is a dual feasible
point and we can enable early termination checking via (5).

C. Optimization-based correction

In Section III-A and III-B we applied a correction to
potentially every entry of yk+, y

k
− to ensure dual feasibility,

which explains the need for Assumption 3.1. However, the
crux of our early termination strategy is to offset the linear
residual rk in (10) via corrections on unconstrained dual
variables, which means we can exploit other dual variables
beyond box constraints. If we allow for corrections to the
unconstrained dual variables x, yb, z in early termination,
then Assumption 3.1 can be generalized to the following:

Assumption 3.2: [P, I⊤B , G⊤] has rank n, i.e. full row-
rank, where B is the set of entries that have explicit bounded
constraints lB ≤ xB ≤ uB and IB is the incidence matrix
from the span of x to entries in B, i.e. xB = IBx.
Given Assumption 3.2 we can always generate a dual feasible
correction (∆xk,∆ykb ,∆zk) since the linear system

P∆xk + I⊤B ∆ykB +G⊤∆zk = −rk. (12)

always has a solution. It is also a generalization for setting
∆ykb = −rk discussed in Section III-B, which is useful if
some entries of l, u for box constraints are infinite or the
difference u − l is so large that the corrected dual cost is
excessively sensitive to the correction ∆ykb .

Due to the existence of different coefficients for the
support function σ[l,u](yb) in (3), or −u⊤y+ + l⊤y− in (5),
we divide the optimization-based correction into two steps.
For the first step, we solve the optimization problem

min
∆xk,∆zk,∆yk

B

1

2
∆xk⊤P∆xk + (Pxk)⊤∆xk + h⊤∆zk

+
η

2
∥∆ykB∥2 +

γ

2
∥∆zk∥2

s.t. P∆xk + I⊤B ∆ykB +G⊤∆zk = −rk,

(13)

which produces a correction (∆xk,∆ykB,∆zk) while max-
imizing the corrected dual cost w.r.t. ∆xk,∆zk with regu-
larizations for ∆ykB,∆zk. The corresponding KKT condition
of (13) isP I⊤B G⊤

IB −ηI 0
G 0 −γI

∆xk

∆ykB
∆zk

 =

 −rk

−IBx
k

h−Gxk

 (14)

if we set λk = xk +∆xk. The matrix on the left-hand side
does not depend on the active node, and hence only needs
to be factored once at the initialization of an MIP solver and
can be reused later for any node’s computation. Meanwhile,
solving (14) is computationally efficient compared to the
factorization step (6) of an IPM in every iteration, or not
worse than the computation of an OSM per iteration. For
the second step, we complete ∆ykb by setting ∆yj = 0
for any index j /∈ B. If an IPM is used, we compute
∆yk+,∆yk− from ∆ykb as described in (11) Section III-B, and
(xk +∆xk, yk, yk+ +∆yk+, y

k
− +∆yk−, z

k +∆zk) is a dual
feasible point for early termination.
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D. Applications in control

A common type of MIP arising in control engineering is
optimal control with discrete-valued inputs as encountered
in hybrid MPC problems, which takes the form:

min
x,u

T−1∑
t=0

(x⊤
t Qtxt + u⊤

t Rtut) + x⊤
TQTxT + 2q⊤T xT

s.t. xt+1 = Āxt + B̄ut, x0 = xinit,

ut ∈ Ut, ∀t = 0, 1, . . . , T − 1,

(15)

where xinit ∈ Rnx is the initial state, (Ā, B̄) models the
system dynamics, and Ut describes the constraints for each
input ut ∈ Rnu . The set Ut can be composed entirely or in
part by discrete valued constraints. Our optimization-based
correction is suitable for the hybrid-MPC (15) due to the
following theorem:

Theorem 3.3: Assumption 3.2 is satisfied in the hybrid
MPC problem (15) when Ut is bounded for t = 0, . . . , T−1.

Proof: Suppose x := [x0; . . . ;xT ;u0; . . . ;uT−1]. The
corresponding block components of [P, I⊤B , G⊤] become

P =

[
Q

R

]
, IB =

[
0nuT×nx(T+1) InuT

]
,

G =


I
Ā −I

Ā −I
. . .

. . .
Ā −I

0
B̄

. . .
. . .

B̄

 ,

where Q = diag(Q0, . . . , QT ), R = diag(R0, . . . , RT−1) are
block diagonal. Hence, [P, I⊤B , G⊤] can be reordered into an
upper triangular matrix in the form

Inx Ā⊤

Inu B̄⊤

−Inx

. . . Ā⊤

Inu B̄⊤

−Inx

...
...

...
...

...
...

...
...


.

The matrix above is full row rank since every diagonal term
is either 1 or −1. Hence, [P, I⊤B , G⊤] is full row rank and
the Assumption 3.2 is satisfied.
Note that the system (14) is also banded for the sparse
formulation (15) and we can exploit its structure to accelerate
the computation as in [24], which reduces the cost per
iteration from O((mxN)3) to O(N(nx + nu)

3). Moreover,
our method can be applied directly to outer approximation
(OA) [25] if the OA only replaces the conic constraint K with
some linear constraints without introducing new variables.
Otherwise, we can combine it with bound strengthening
techniques [5] to satisfy Assumption 3.2.

IV. ALGORITHM AND COMPLEXITY OF COMPUTATION

We next summarize how to implement early termination
in a B&B method, which corresponds to steps 3-17 in
Algorithm 1. For every iteration k in a node CP(x, x̄), we
can obtain a primal-dual iterate (xk, sk, yk, ykb , z

k) from an

OSM or an IPM with an approximate dual cost Dk. Note that
this iterate is conic feasible but doesn’t satisfy the dual linear
constraint, i.e. (3) or (5). We then check whether the algo-
rithm finds an optimal solution x̂ or detects the infeasibility
of CP(x, x̄) (steps 5-10). These steps are inherent to a primal-
dual algorithm even without early termination and do not
incur any additional cost. We then activate early termination
when we find the approximate dual cost is larger than the
current upper bound, i.e. Dk ≥ U (step 11). This heuristic
follows [16] since Dk is close to the optimal solution of
CP(x, x̄) when the dual linear residual rk is small enough,
and can save computation time on early termination.

Once early termination is enabled, we then compute
a feasible correction (∆xk,∆ykb ,∆zk) using one of the
methods discussed in Section III-A, III-B or Section III-C
and compute the dual cost Dk at the dual feasible point
(xk+∆xk, yk, ykb+∆ykb , z

k+∆zk) (step 12). If Dk > U , we
know the optimum of CP(x, x̄) is larger than Dk due to weak
duality, and hence larger than U , which indicates we can
stop the node computation and prune this node immediately
(step 14). Otherwise, we continue computing until we solve
CP(x, x̄) and proceed with the standard B&B (steps 18-27).

Algorithm 1 B&B for MICP with early termination

Require:
Initialization: U ← +∞, node tree T ← CP(l, u)

1: while T ≠ ∅ do
2: Pick and remove CP(x, x̄) from T
3: for k = 1, 2 . . . do
4: Generate (xk, sk, yk, yk

b , z
k) and an estimated dual cost

Dk from OSMs or IPMs
5: if termination criteria is satisfied then
6: return optimal solution x̂ = xk and f(x̂)
7: end if
8: if infeasibility of CP(x, x̄) is detected then
9: return CP(x, x̄) infeasible

10: end if
11: if Dk ≥ U then
12: Compute the corrected dual cost Dk via (xk +

∆xk, yk, yk
b +∆yk

b , z
k +∆zk)

13: if Dk ≥ U then
14: return CP(x, x̄) terminates early
15: end if
16: end if
17: end for
18: if CP(x, x̄) terminates early or is infeasible then
19: prune current node
20: else if f(x̂) > U then
21: prune current node
22: else if x̂ is integer feasible then
23: U ← f(x̂), x∗ ← x̂
24: prune nodes in T with lower bound > U
25: else
26: branch node CP(x, x̄)
27: end if
28: end while

Let us now consider the computational complexity of
early termination. The estimated dual cost Dk, the iterate
(xk, yk, ykb , z

k) and the residual rk (10) are already com-
puted from a primal-dual algorithm and therefore do not
incur any extra cost for checking early termination. We
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recompute corrections ∆x,∆z,∆yb and the corrected cost
Dk at every time we check for early termination. Indeed,
we compute the cost change ∆Dk := Dk − Dk first and
then the corrected cost via Dk = Dk + ∆Dk, which is
more efficient than computing Dk directly. The correction (9)
requires an additional O(n) flops to generate a feasible dual
cost. For an optimization-based correction (13), we need no
more than O((2n+p)2) flops to solve the linear system (14)
if we save the factorization of the matrix in (14) from the
start of an MICP. Both correction costs are relatively small
compared to the O(n+p+m)3 flops per IPM iteration. For an
OSM, each early termination check is no more costly than the
original computation per iteration, so that its computational
time is negligible inside every M iterations, e.g. M = 25 in
OSQP [26].

V. NUMERICAL RESULTS

We implement Algorithm 1 and a counterpart without
early termination, i.e. removing steps 3-17 in Algorithm 1.
Both were written in Julia with every convex relaxation
solved by the IPM solver Clarabel.jl [21]. Tests are
implemented on Intel Core i7-9700 CPU @3.00GHz, 16GB
RAM. Experiments for OSMs can be found in [17].

A. Mixed integer model predictive control
We next consider the following hybrid MPC problem

current reference tracking in power electronics [3]:

min
x,u

T−1∑
t=0

γtl(xt) + γTV (xT )

s.t. x0 = xinit,

xt+1 = Āxt + B̄ut, ||ut − ut−1||∞ ≤ 1,

ut ∈ {−1, 0, 1}6, ∀t = 0, 1, . . . , T − 1,

(16)

where γ is a discount factor and T is the time horizon. The
quadratic state penalty cost l(xt) is for current tracking and
V (xT ) is a final stage cost computed using approximate dy-
namic programming. The initial state is xinit and the system
dynamics is xt+1 = Āxt + B̄ut with xt ∈ R12 representing
the internal motor currents, voltages and the input ut ∈ R6

including three semiconductor devices positions with integer
values {−1, 0, 1} and three additional binary components
required to model the system. The ramp rate constraint
∥ut − ut−1∥∞ ≤ 1 avoids shoot-through in the inverter
positions (changes from −1 to 1 or vice-versa) that can
damage the components.

By eliminating xt, t ∈ {1, . . . , T} via the state dynamics,
(16) reduces to a problem depending only on the input vari-
ables u0, . . . , uT−1 and the initial state x0; we refer readers
to [3] for details. We set T = 8 for the time horizon and
simulate closed-loop MIMPC for 100 consecutive intervals.
Figure 1 compares the performance of B&B with and without
early termination. We apply the simple early termination
introduced in Section III-B. We start to count time only
after the first feasible solution of (16), and consequently
a finite upper bound U is found. This ensures that the
reductions show in Figures 1 and 2 represent the reduction
in computation cost relative to an idealized omniscient early

termination scheme. For all 100 intervals, early termination
has produced a noticeable reduction in computational time,
averaging to about 20%.
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Fig. 1: MIMPC T = 8, reduced dense form

We implement another experiment for (16) using the
sparse form discussed in Section III-D with the optimization-
based correction of η = γ = 1. Figure 2 shows it also reduces
the computational time about 15% to 20% over 100 intervals.
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Fig. 2: MIMPC T = 8, sparse form

B. Portfolio optimization

We also test our proposed early termination technique on a
portfolio optimization problem, which can be formulated as
a mixed integer second-order cone (SOC) programming [2],

min
x,b,l

r⊤x

s.t. x⊤Λx ≤ ρ,∑n

i=1
xi = 1,

∑n

i=1
bi ≤ K,

Lmin ≤
∑n

i=1
li ≤ Lmax, b ≤ Hl, l ≤ H⊤b,

lj ∈ {0, 1}, for j ∈ {1, ..., L}
− bi ≤ xi ≤ bi, bi ∈ {0, 1}, i ∈ {1, ..., n}.

There are n assets categorized into L industry sectors,
with the mapping from assets to sectors captured by matrix
H ∈ Rn×L. We define x ∈ Rn as the fractions of portfolio
value held in each asset: xi > 0 and xi < 0 denote buying
and selling (i.e. shorting) respectively, and must sum to unity.
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The vector r ∈ Rn is the expected return for n assets, and Λ
is the covariance for market volatility and restricted below
a certain level ρ, which is formulated as a SOC constraint.
The binary vectors b ∈ Rn and l ∈ RL denote whether we
invest in an asset, respectively in a sector or not. The number
of assets we can invest in is upper-bounded by K and the
number of sectors is limited to [Lmin, Lmax].

We use the early termination strategy as in Section III-B
and choose n = 20, L = 3, Lmin = 1, Lmax = L, ρ =
100,K = 10 and simulate the portfolio problem over 100
consecutive days. We use data on returns from the S&P
500 for the period 2015-2020 grouped according to GICS
sector. Estimates for r and Λ were computed using standard
statistical methods; see [27, §13]. Figure 3 shows the early
termination can reduce computation time about 10%-15%
after we find the first integer feasible solution, which shows
that our early termination can also be effective for MICPs.

VI. CONCLUSION

We generalized our early termination technique of ADMM
in [17] to primal-dual algorithms including operator splitting
methods and interior point methods in MICPs. We showed
how to utilize existing dual iterates inside either an OSM
or an IPM to generate a dual feasible point for early
termination with little additional efforts, and we provided
two sufficient conditions for two proposed early termination
techniques respectively. We also show that the optimization-
based correction can be directly applied to an MIMPC if the
input is bounded. Numerical results showed the proposed
early termination can reduce the total computational time in
MICPs effectively.
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