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Abstract— The energy-to-peak (L2–L∞) performance of
continuous-time Markov jump linear systems (MJLS) is studied
from a new perspective: by considering an output norm which
is different from the one treated in the existing MJLS literature,
we devise upper and lower bounds to the worst-case energy-
to-peak gain (L2–L∞ induced norm). The lower bound can
be efficiently computed by solving an ordinary differential
equation, or, if the jump process is irreducible, a Lyapunov
(algebraic) equation. The upper bound is obtained from the
controllability Gramian of the MJLS (a set of coupled Lyapunov
equations). As a by-product of this result, we are also able to
show the consistence of the corresponding L2–L∞ system norm
vis-à-vis the H2 norm of MJLS: it is proven that the H2 norm
is an upper bound to the worst-case energy-to-peak gain, a
feature which was not proven in other works devoted to the
MJLS case. In the case without jumps, it is shown that both
bounds coincide with the actual L2–L∞ system norm.

I. INTRODUCTION

The incorporation of stochastic jump phenomena into
systems and control theory has motivated a significant part of
the scientific research which has been conducted over the last
50 years or so. The safety critical requirements of modern
technologies such as robotics, aeronautics, electronics and
distributed computing, to cite a few areas, have pushed the
boundaries in all possible directions, giving rise to a mature
and rich theory. Among the various existing approaches, we
can cite hybrid systems, switched systems, and Markov jump
systems as themes of recurring interest [1]–[5].

Notwithstanding the formidable progresses witnessed by
the research community in recent times, many seemingly
simple extensions have somewhat resisted the test of time,
and, despite all the efforts for their solution, still remain to
be solved. Such is the case, for instance, of the performance
analysis of Markov jump linear systems in the energy-to-peak
(L2-L∞) sense. Some of the classical references dealing with
worst-case performance in the input-output sense (induced
system norms) include, for instance, [6]–[8]. In the MJLS
case, we can cite [9]–[12] as a sample of other references
which dealt with L2-L∞ performance, chiefly with respect
to the design of L2-L∞ filters, and with no examination
of the inherent conservatism involved in the performance
analysis. There are also several works devoted to the discrete-
time MJLS case, such as [13]–[15]. This scenario, however,
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falls outside the scope of the present note (which is the
continuous-time setup).

The interest in the L2-L∞ metrics typically comes from
situations in which large instantaneous excursions are un-
desirable (which is intrinsically different, for instance, from
the H∞ setup, in which performance is measured from the
smoother perspective of L2-L2, or energy-to-energy, gain). In
practice, the L2-L∞ perspective is useful in those situations
where the outputs must not exceed some predefined thresh-
old, at the penalty of adverse phenomena such as saturations,
damages to electromechanical components, ketoacidosis, or
reaching an economic default, for instance. From an analyst’s
perspective, the computation of L2-L∞ system norms helps
us to know beforehand whether such adversities can occur, in
a worst-case scenario. (Of course, in cases where the exact
norm cannot be computed precisely, the next best thing is
to obtain some bounds for it, or, in control/filtering design
problems, to ensure that a guaranteed cost is attained – even
if at the expense of some conservatism.)

A. Our approach and contributions

Every one of the aforementioned papers devoted to MJLS
considered the output norm (with E standing for expectation)

y 7→ sup
t≥0

√
E
[
∥y(t)∥2

]
. (1)

In this note, however, we shall consider the output norm
∥y∥∞ = supt≥0 maxi=1,...,p E[|yi(t)|], where yi(t) is the
ith output at time t. Following the nomenclature of [6], in
the deterministic case (i.e., the scenario without jumps) we
are thus considering an L∞,∞ norm for the output, whereas
(1) reduces to the L∞,2 norm. Therefore, in a sense, we are
generalizing the classical setup towards a different direction
than the existing literature. The profits of this choice of norm
are the following contributions:

• We consider an output norm which is not only consistent
with the L∞ norm of deterministic signals, but is also
consistent with the H2 norm of MJLS: it is shown
that the H2 norm is an upper bound to the worst-
case energy-to-peak gain. The lack of such a result for
setups involving the norm (1) leaves open the possibility
that the L2-L∞ cost considered by [9]–[12] has no
connection with the H2 norm, as shown in Section IV.

• The possibility that there is a gap between the L2-L∞
norm and its upper bound motivates us to derive a lower
bound as well. It is shown that the computation of this
lower bound is tantamount to the solution of an ordinary
differential equation, or, if the Markov jump process is
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irreducible, of a Lyapunov (algebraic) equation. To the
best of the author’s knowledge, the analysis of the lower
bound is new and has no counterpart in the literature that
considers the output norm (1). Nevertheless, it is also a
(conservative) lower bound for the L2-to-L∞ norm with
respect to (1). In the case without jumps, the lower and
upper bounds possess the good feature of coinciding
with the actual L2-L∞ norm (Section III-A).

• The algebraic properties of the proposed upper bound
for the L2-L∞ norm make it possible for us to derive
a linear matrix inequalities-based procedure for the
synthesis of state-feedback controllers, in the spirit of
[7] (Section III-B).

This paper is organized as follows. The bare essentials of
notation and preliminaries are enclosed in Section II. Some
auxiliary results of germane importance are provided in
Section II-A. Section III features the main results (Theorem
11 and Corollaries 13, 14, and 15), and Section IV provides a
numerical example which compares our results with a recent
work from the literature. Finally, some concluding remarks
are included in Section V.

II. PRELIMINARIES

Throughout the paper, ei will stand for a column vector
whose entries are all equal to zero, except for the ith entry,
which is one. The Euclidean norm of x ∈ Rn is ∥x∥ =√
x′x = tr(xx′)1/2, and |xi| = |e′ix| is the modulus of the

ith component of x. If M is a positive semidefinite matrix
(M ≥ 0), then we define dmax(M) as its largest diagonal
entry. The Kronecker delta is δij , and 1A is the indicator
random variable (equal to one if the event A occurs and
equal to zero otherwise). The Kronecker product and sum are
denoted ⊗,⊕, and diag(X1, . . . , XN ) stands for the block-
diagonal matrix whose diagonal blocks are X1, . . . , XN .

Consider a complete stochastic basis (Ω,F, {Ft}, P ), car-
rying a continuous-time Markov process θ = {θ(t); t ≥ 0}
with state space S = {1, . . . , N}, such that, for i, j ∈ S:

P
{
θ(t+ h) = j | θ(t) = i

}
= δij + λijh+ o(h), (2a)

where o(h) means h → 0 ⇒ o(h)/h → 0, and the transition
rate matrix Λ = [λij ] ∈ RN×N satisfies the usual constraints

N∑
j=1

λij ≡ 0, and i ̸= j =⇒ λij ≥ 0. (2b)

Our interest is with the performance of the MJLS

G :

{
ẋ(t) = Aθ(t)x(t) +Bθ(t)v(t), t ≥ 0

y(t) = Cθ(t)x(t)
(3)

with Aθ(t) ∈ Rn×n, Bθ(t) ∈ Rn×m, and Cθ(t) ∈ Rp×n.
System (3) is intimately related to the state transition ma-
trix Φ(t, τ), which is the (unique) solution of the random
differential equation

∂

∂t
Φ(t, τ) = Aθ(t)Φ(t, τ), Φ(τ, τ) = I, t ≥ τ. (4)

Definition 1: System (3) is said to be mean square stable
whenever, for all x(0) satisfying E[∥x(0)∥2] < ∞, we have
v ≡ 0 =⇒ limt→∞ E

[
∥x(t)∥2

]
= 0.

The input norm that will be considered in the paper is

∥v∥2 =

(∫ ∞

0

E
[
∥v(t)∥2

]
dt

)1/2

, (5a)

whereas the output norm is, by definition,

∥y∥∞ = sup
t≥0

max
j=1,...,p

E
[
|yj(t)|

]
, yj(t) = e′jy(t), (5b)

so our interest will be with what is commonly known as the
energy-to-peak performance (L2-to-L∞ induced norm):

Definition 2: If system (3) is mean square stable, we
define its worst-case energy-to-peak gain as

∥G∥ = sup
v

{
∥y∥∞; v ∈ V, x(0) = 0

}
(6)

where V stands for the set of all Rm-valued, adapted, input
processes with unit energy; i.e., v ∈ V if and only if:

(i) v(t) ∈ Rm is Ft-measurable for all t ≥ 0;
(ii) ∥v∥2 = 1.
In Section III, we will show that the mean square stability

of (3) allows us to obtain upper bounds for ∥G∥ in terms of
the H2 norm:

Definition 3: The H2 norm of system (3) is defined as

∥G∥H2
=

(
m∑
i=1

∫ ∞

0

E
[
∥yi(t)∥2

]
dt

)1/2

, (7)

where yi is the output of (3) driven by a unit impulse applied
to the ith input channel, and x(0) = 0.

It should be clear from Definitions 2 and 3 that there is
no loss of generality in the following assumption, which will
be considered in the remainder of this paper:

Assumption 4: System (3) is mean square stable, and
x(0) = 0 ∈ Rn.

Remark 5: Mean square stability (MSS) is the most ex-
tensively studied stability notion for (3), and some crite-
ria for checking it include the Hurwitz property of the
matrix Λ′ ⊗ I + diag(A1 ⊕ A1, . . . , AN ⊕ AN ), as well
as the solvability of linear matrix inequalities or algebraic
(Lyapunov) equations. For a comprehensive account on the
subject, including examples which show that MSS neither
implies nor is implied by the asymptotic stability of each
individual operating mode, see [5, Chapter 3].

A. Auxiliary Results

A corollary of [5, Theorems 3.25 and 5.4] will be useful:
Corollary 6: If (3) is mean square stable, then there is a

unique solution to the coupled Lyapunov-like equations

AiQi +QiA
′
i +

N∑
j=1

λjiQj + νiBiB
′
i = 0, i ∈ S, (8)

where νi ≡ P{θ(0) = i}. In addition, we have ∥G∥2H2
=

tr(
∑N

i=1 CiQiC
′
i) < ∞.



Remark 7: In [5, Section 5.3], the solution of (8) is called
the controllability Gramian of (3). As shown in [5, Proposi-
tion 3.20], one elementary way for computing it analytically
is via vectorization [16]. Later on, we shall devise upper
bounds for ∥G∥ in terms of the matrix

∑N
i=1 CiQiC

′
i, in the

spirit of [6, Theorem 1].
Our main results will rely heavily on the performance

analysis of the multiple-input single-output (MISO) systems
G1, . . . ,Gp defined as

Gj :

{
ẋ(t) = Aθ(t)x(t) +Bθ(t)v(t)

yj(t) = e′jCθ(t)x(t).
(9)

Lemma 8: Under Assumption 4, we have

∥Gj∥ ≤ ∥G∥ ∀ j ∈ {1, . . . , p}. (10)
Proof: We have for all j ∈ {1, . . . , p} and t ≥ 0 that

E|yj(t)| ≤ maxi=1,...,p E|yi(t)|, so

∥yj∥∞ = sup
t≥0

E
[
|yj(t)|

]
≤ sup

t≥0
max

i=1,...,p
E
[
|yi(t)|

]
= ∥y∥∞,

and the result follows by taking the supremum of both sides
with respect to v ∈ V .

The remainder of this subsection comprises two technical
results which will also be necessary for our further develop-
ment. For their proofs, see the Appendix.

Lemma 9: We have, for small h > 0 and all s ≥ 0, that

E(1{θ(s+h)=i} − 1{θ(s)=i} |Fs) = λθ(s)ih+ o(h). (11)
Lemma 10: We have that

E
(
Cθ(t)Φ(t, τ) |Fτ

)
= C̄eF (t−τ)(eθ(τ) ⊗ In), (12)

where

C̄ = [C1 · · · CN ], F = Λ′ ⊗ I + diag(A1, . . . , AN ).
(13)

III. MAIN RESULTS

The main result of this paper, stated next, relates the L2-
L∞ and H2 norms of system (3), as well as the cost

|G|t =

√
dmax

(
t∫
0

C̄eF (t−τ)Π(τ)eF ′(t−τ)C̄ ′dτ

)
(14)

with C̄, F as in (13), and

Π(τ) =

 P{θ(τ)=1}B1B
′
1 0

. . .
0 P{θ(τ)=N}BNB′

N

 . (15)

Theorem 11: Under Assumption 4, the worst-case energy-
to-peak gain of system (3) is bounded as follows:

sup
t≥0

|G|t ≤ ∥G∥ ≤

√√√√dmax

(
N∑
i=1

CiQiC ′
i

)
, (16)

with |G|t as in (14), and Q as in Corollary 6. In particular,
this yields the more conservative bound ∥G∥ ≤ ∥G∥H2 .

Proof: The triangle and Cauchy-Schwarz inequalities
imply, for all t ≥ 0, j ∈ {1, . . . , p} and v ∈ V , the following:

E|yj(t)| = E

∣∣∣∣∫ t

0

e′jCθ(t)Φ(t, s)Bθ(s)v(s)ds

∣∣∣∣
≤
∫ t

0

E
[
|e′jCθ(t)Φ(t, s)Bθ(s)v(s)|

]
ds

≤
∫ t

0

E
[
∥e′jCθ(t)Φ(t, s)Bθ(s)∥∥v(s)∥

]
ds

≤
(∫ t

0

E
[
∥e′jCθ(t)Φ(t, s)Bθ(s)∥2

]
ds

)1/2

∥v∥2,

so ∥G∥ is upper bounded by the quantity

sup
t≥0

max
j=1,...,p

(∫ t

0

E
[
∥e′jCθ(t)Φ(t, s)Bθ(s)∥2

]
ds

)1/2

. (17)

For later use, let yij(τ) = e′jCθ(τ)Φ(τ, 0)Bθ(0)ei stand for
the output response of (9) with respect to an impulsive input
such as the one considered in Definition 3. The tower rule,
combined with time homogeneity, yields∫ t

0

E
[
∥e′jCθ(t)Φ(t, s)Bθ(s)∥2

]
ds

=

∫ t

0

E
[
E
(
∥e′jCθ(t)Φ(t, s)Bθ(s)∥2

∣∣∣Fs

)]
ds

=

∫ t

0

E
[
E
(
∥e′jCθ(t−s)Φ(t− s, 0)Bθ(0)∥2

∣∣∣F0

)]
ds

=

N∑
i=1

∫ t

0

E
[
|e′jCθ(τ)Φ(τ, 0)Bθ(0)ei|2

]
dτ

=

N∑
i=1

∫ t

0

E
[
yij(τ)

2
]
dτ ≤

N∑
i=1

∫ ∞

0

E
[
yij(τ)

2
]
dτ = ∥Gj∥2H2

with ≤ becoming an equality when t → ∞. We have
therefore proven that ∥G∥ ≤ maxj=1,...,p(∥Gj∥2H2

)1/2 =
maxj=1,...,p∥Gj∥H2

, so, from Corollary 6, we promptly get

∥G∥2 ≤ max
j=1,...,p

N∑
i=1

e′jCiQiC
′
iej = dmax

(
N∑
i=1

CiQiC
′
i

)
,

yielding the second ≤ in (16). Using also dmax(·) ≤ tr(·),
we have from Corollary 6 that ∥G∥ ≤ ∥G∥H2

.
In order to prove the first inequality in (16), we shall

analyze ∥Gj∥ for all j ∈ {1, . . . , p}, and then use Lemma
8. Using the already proven part of (16), we know that
∥Gj∥ ≤ ∥G∥H2

is finite, so we can interchange the order
of suprema in the following:

∥Gj∥ = sup
v∈V

sup
t≥0

E
[
|yj(t)|

]
= sup

t≥0
sup
v∈V

E
[
|yj(t)|

]
≥ sup

t≥0
sup
v∈V

E
[
yj(t)

]
, (18)

where ≥ is because of the monotonicity of expectation.
Using now the tower rule, we get

E
[
y(t)

]
=

∫ t

0

E
(
Cθ(t)Φ(t, τ)Bθ(τ)v(τ)

)
dτ



=

∫ t

0

E
(
E
(
Cθ(t)Φ(t, τ)

∣∣Fτ

)
Bθ(τ)v(τ)

)
dτ

=

∫ ∞

0

E
(
U(t, τ)′v(τ)

)
dτ, (19)

where, from Lemma 10:

U(t, τ)′ :=

{
C̄eF (t−τ)(eθ(τ) ⊗Bθ(τ)), τ ∈ [0, t],

0, otherwise.
(20)

Considering all v ∈ V , we therefore have from the Cauchy-
Schwarz inequality that

E
[
yj(t)

]
≤
(∫ t

0

E
(
e′jU(t, τ)′U(t, τ)ej

)
dτ

)1/2

, (21)

with equality holding for the following v ∈ V:

v(τ) =

(∫ t

0

E
(
e′jU(t, τ)′U(t, τ)ej

)
dτ

)−1/2

U(t, τ)ej .

Putting together Lemma 8 and (18), we therefore obtain for
all t ≥ 0 that

∥G∥2 ≥ max
1≤j≤p

{∫ t

0

E
(
e′jU(t, τ)′U(t, τ)ej

)
dτ

}
= dmax

(∫ t

0

E
(
U(t, τ)′U(t, τ)

)
dτ

)
,

which completes the proof, because

E
(
U(t, τ)′U(t, τ)

)
= C̄eF (t−τ)E

[
(eθ(τ)e

′
θ(τ))⊗ (Bθ(τ)B

′
θ(τ))

]
eF

′(t−τ)C̄ ′

= C̄eF (t−τ)Π(τ)eF
′(t−τ)C̄ ′.

Remark 12: It is presently unknown whether the inequal-
ity ∥G∥ ≤ ∥G∥H2 (which is also valid in the case without
jumps treated in [6]) would still hold if the output norm (1)
were considered instead of (5b).

The upper bound in (16) can be computed via well known
results in the literature, such as linear matrix inequalities
or coupled Lyapunov equations, as indicated in Corollary 6
(see [5, Chapter 5] and [17] for details). As for the lower
bound, we propose computationally amenable procedures in
the sequel:

Corollary 13: Under the same conditions of Theorem 11,
we have for all t ≥ 0 that

|G|t =
√
dmax

(
C̄Z(t)C̄ ′

)
, (22)

where Z(t) ∈ RNn×Nn satisfies the following ODE:

Ż(t) = FZ(t) + Z(t)F ′ +Π(t), Z(0) = 0. (23)

If, in addition, the jump process θ is irreducible, with
invariant probabilities π1, . . . , πN , then we also have that

∥G∥ ≥
√
dmax

(
C̄ZC̄ ′

)
, (24)

with Z ∈ RNn×Nn denoting the (unique) solution of the
Lyapunov equation

FZ + ZF ′ +Π = 0, (25)

with Π = diag(π1B1B
′
1, . . . , πNBNB′

N ).
Proof: Letting Z(t) =

∫ t

0
eF (t−τ)Π(τ)eF

′(t−τ)dτ , we
have, for small h, that

Z(t+ h) = eFh

(
Z(t) +

t+h∫
t

eF (t−τ)Π(τ)eF
′(t−τ)dτ

)
eF

′h

≈ Z(t) + h
(
FZ(t) + Z(t)F ′ +Π(t)

)
+ o(h),

yielding (23).
Before we directly address the irreducible case, notice

that the uniqueness of Z as in (25) stems from the Hurwitz
property of F (a consequence of mean square stability, as
shown in [5, Proposition 3.13 and Theorem 3.15]). Let then
vec and vec−1 stand for the usual vectorization operation and
its inverse [16]. We can decompose Z(t) = Z+vec−1[ζ(t)],
with Z as in (25) and

ζ̇(t) = (F ⊕ F )ζ(t) + w(t), ζ(0) = 0,

where w(t) ≡ vec[Π(t) − Π] is bounded and vanishes to
zero then t → ∞. Invoking [18, Fact 16.21.20], we therefore
conclude that t → ∞ ⇒ ζ(t) → 0 ⇒ Z(t) → Z, so the fact
that (22) holds for all t yields (24), when t → ∞.

A. The case without jumps

This section considers the case where N = 1, so that
(Ai, Bi, Ci) ≡ (A,B,C) and λij = 0 in (2)–(3). In this case
(already studied in [6, Theorem 1d]), we have the following:

Corollary 14: In the case without jumps, there is no
conservatism in (16) and (24):

sup
t≥0

|G|t = ∥G∥ =
√

dmax(CZC ′). (26)

If, in addition, the output of (3) is a scalar process (p = 1),
then we also have ∥G∥ = ∥G∥H2

in (16).
Proof: In the case without jumps, mean square stability

becomes equivalent to the asymptotic stability of A = F ,
which is then a Hurwitz matrix by hypothesis. This implies,
in (14), the following (when t → ∞):

|G|t →

√
dmax

(∞∫
0

CeAsBB′eA′sC ′ds

)
=
√
dmax(CZC ′),

where Z, just as in (25), satisfies AZ + ZA′ + BB′ = 0,
i.e., it is the controllability Gramian of the pair (A,B). The
final statement for p = 1 is because of the obvious fact that
dmax(·) = tr(·) for scalar arguments (see [6] as well).

B. L2-L∞ control

Consider now the following controlled version of (3):

GK :

{
ẋ(t) =

(
Aθ(t) +Gθ(t)Kθ(t)

)
x(t) +Bθ(t)v(t)

y(t) =
(
Cθ(t) +Hθ(t)Kθ(t)

)
x(t)

(27)

along with the problem of designing controller gains
K1, . . . ,KN ∈ Rq×n such that (27) is stabilized in the mean
square sense, and ∥GK∥ is less than a prespecified value γ.

The lack of an exact characterization of the L2-L∞ norm
(6) makes the direct optimization of this criterion rather
impossible, as of now. An indirect alternative, based on



Theorem 11 and expressed through linear matrix inequalities,
is to work with the upper bound in (16), in the spirit of [7]:

Corollary 15: Given γ > 0, suppose there are matrices
P1, R1, S1, . . . , PN , RN , SN such that

N∑
i=1

[
Ci Hi

] [Pi R′
i

Ri Si

] [
C ′

i

H ′
i

]
< γ2I, (28a)

coupled with

Her(AiPi +GiRi) +

N∑
j=1

λjiPj + νiBiB
′
i < 0, (28b)[

Pi R′
i

Ri Si

]
> 0, i ∈ S, (28c)

where Her(·) ≡ (·) + (·)′ and νi ≡ P{θ(0) = i}, are
satisfied. In this case, the controller gains Ki ≡ RiP

−1
i

render system (27) mean square stable, with ∥GK∥ < γ.
Proof: Substituting Ri ≡ KiPi in (28b), we get

Her[(Ai + GiKi)Pi] +
∑N

j=1 λjiPj + νiBiB
′
i < 0. Using

then [5, Theorem 3.25], we get mean square stability of (27),
along with the guarantee that there are Qi < Pi, i ∈ S,
such that Her[(Ai + GiKi)Qi] +

∑N
j=1 λjiQj + νiBiB

′
i ≡

0. Considering now (28a), we obtain, after using Schur’s
complements in (28c), that

γ2I >

N∑
i=1

[
Ci Hi

] [ Pi PiK
′
i

KiPi RiP
−1
i R′

i

] [
C ′

i

H ′
i

]

≥
N∑
i=1

(Ci +HiKi)Qi(Ci +HiKi)
′, (29)

so dmax[
∑N

i=1(Ci +HiKi)Qi(Ci +HiKi)
′] < γ2, and the

desired result follows from Theorem 11.

IV. NUMERICAL EXAMPLE

In the numerical example of [12, Section VI], the au-
thors considered various observational scenarios involving
the linearized longitudinal dynamics of an unmanned aerial
vehicle. We will consider here just the scenario of cluster
observations, and that the filter order is equal to three; our
particular interest in this scenario stems from the fact that the
filter parameters (Af1, Bf1 and so forth) were fully described
therein. These parameters correspond to a MISO (multiple-
input single-output) system, whose Markov jump process is
irreducible, with stationary probabilities π1 ≈ 0.5224, π2 ≈
0.2985, π3 ≈ 0.1791.

Our purpose here is to show, in this particular example,
how tight the bounds in Theorem 11 and Corollary 13 are,
and to compare them with the worst-case gain analysis of
[12, Proposition 2] (which, as it will be shown in Section V,
is yet another upper bound to ∥G∥).

Figure 1 features a plot of the right-hand side of (22),
which was obtained through the numerical solution of the
ODE (23) until practical convergence (∥Ż(120)∥ < 10−3,
in this example), and compares it with three other bounds
(which are static, in the sense that they do not involve
integration). The figure evidences that, in this example:

• There is no loss in replacing this procedure (solving an
ODE) with the solution of the equation (25); the latter
yields the same result with less computational effort.

• The difference between the lower and upper bounds in
(16) is as tight as 10%: the H2 norm is 288.1911, and
(C̄ZC̄ ′)1/2 is 261.5105.

• The upper bound from [12, Proposition 2] is around
423.7447, which is about 62% larger than (C̄ZC̄ ′)1/2.
Even though this discrepancy is a natural consequence
of the fact that [12] considers a different output norm,
it also clearly illustrates that [12, Proposition 2] is not,
in general, a tight upper bound to the performance
considered here.
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Fig. 1. Comparison between the lower bound |G|t = (C̄Z(t)C̄′)1/2

in (22), obtained by numerically solving the ODE (23) (blue curve), and
various other static bounds. Dotted, black: (C̄ZC̄′)1/2 ≈ 261.5105 as in
(24), obtained by solving the algebraic equation (25). Dashed, red: H2 norm,
approximately 288.1911 (upper bound in (16)). Dot-dash, black: minimum
γ in [12, Proposition 2], around 423.7447.

V. CONCLUDING REMARKS

1) Conservatism of the H2 norm in the MISO case: As
shown in the MISO example of the preceding section (Figure
1), the H2 norm can be strictly larger than supt|G|t in (14).
This leaves open a question: dissimilarly to the linear time-
invariant case studied in [6], [7], is there a gap between
the energy-to-peak performance and the H2 norm, i.e., is it
possible that ∥G∥ < ∥G∥H2 in the MISO case with jumps?

An examination of the proof of Theorem 11 up until (17)
suggests that, in order to “close the gap” between these two
norms, we should be able to produce a disturbance v ∈ V
for which the expression which precedes (17) becomes equal
to E|yj(t)|. Dissimilarly to the LTI case, however, choosing
v(s) ∝ B′

θ(s)Φ(t, s)
′C ′

θ(t)ej is not a viable option, because
this disturbance is not adapted to the filtration {Fs}. A deeper
study of these matters is worthy of future investigation.

2) Relationship with the output norm (1): As mentioned
in Section I, references [9]–[12] addressed the energy-to-
peak performance with respect to the output norm (1) (de-
noted ∥y∥∞,2 in the sequel), yielding a different induced
norm than (6). Using Jensen’s inequality, we get that(

E
[
|yj(t)|

])2 ≤ E
[
|yj(t)|2

]
≤ E

[
∥y(t)∥2

]
(30)



for all t ≥ 0 and j ∈ {1, . . . , p}, which yields ∥y∥∞ =
supt≥0 maxj=1,...,p E[|yj(t)|] ≤ supt≥0{E[∥y(t)∥2]}1/2 =
∥y∥2,∞ for all v ∈ V . Therefore:

• The lower bound in (16) is also a lower bound to the
energy-to-peak performance induced by (1).

• Upper bounds for the energy-to-peak performance in-
duced by (1), such as [12, Proposition 2] (or the perfor-
mance itself), are also upper bounds to the performance
(6) considered here. As shown in Figure 1, however, this
can yield quite conservative estimates of (6).

APPENDIX

Proof of Lemma 9: We indeed have that

E
(
1{θ(s+h)=i} |Fs

)
= E

(
1{θ(s+h)=i} | θ(s)

)
=

N∑
j=1

P{θ(s+ h) = i | θ(s) = j}1{θ(s)=j}

=
(
1 + λiih+ o(h)

)
1{θ(s)=i} +

∑
j ̸=i

(
λjih+ o(h)

)
1{θ(s)=j}

= 1{θ(s)=i} + λθ(s)ih+ o(h),

concluding the proof.
Proof of Lemma 10: Let, for each i, j ∈ S and s ≥ 0:

Hi(s, j) = E
(
Φ(s, 0)1{θ(s)=i}

∣∣ θ(0) = j
)
∈ Rn×n. (31)

Bearing in mind that the evolution of Φ in (4) is entirely
described in terms of θ, and that the system’s coefficients
are homogeneous, we have that

Hi

(
t− τ, θ(τ)

)
=

N∑
j=1

Hi(t− τ, j)1{θ(τ)=j}

=

N∑
j=1

E
(
Φ(t− τ, 0)1{θ(t−τ)=i} | θ(0) = j

)
1{θ(τ)=j}

=

N∑
j=1

E
(
Φ(t, τ)1{θ(t)=i} | θ(τ) = j

)
1{θ(τ)=j}

= E
(
Φ(t, τ)1{θ(t)=i} | Fτ

)
∗
= 1{θ(τ)=i}I +

∫ t

τ

E
(
Ψi(s)

∣∣Fτ

)
ds, (32)

where ∗
= is from Dynkin’s formula [5, Section 4.3], and

Ψi(s) =

lim
h→0

E
(
Φ(s+ h, τ)1{θ(s+h)=i} |Fs

)
− Φ(s, τ)1{θ(s)=i}

h
.

We have now, for small h > 0, that

E
(
Φ(s+ h, τ)1{θ(s+h)=i} |Fs

)
− Φ(s, τ)1{θ(s)=i}

= E
[
Φ(s+ h, τ)

(
1{θ(s+h)=i} − 1{θ(s)=i}

)
|Fs

]
+ E

[(
Φ(s+ h, τ)− Φ(s, τ)

)
1{θ(s)=i} |Fs

]
≈ (I + hAθ(s))Φ(s, τ)E

[
1{θ(s+h)=i} − 1{θ(s)=i} |Fs

]
+ hAiΦ(s, τ)1{θ(s)=i}

≈ (I + hAθ(s))Φ(s, τ)λθ(s)ih+ hAθ(s)Φ(s, τ)1{θ(s)=i},

thanks to Lemma 9. This allows us to write Ψi(s) =
AiΦ(s, τ)1{θ(s)=i} + λθ(s)iΦ(s, τ), so

Hi

(
t− τ, θ(τ)

)
− 1{θ(τ)=i}I

≡
∫ t

τ

(
AiHi(s− τ, θ(τ)) +

N∑
k=1

λkiHk(s− τ, θ(τ))

)
ds,

which, letting H(s, j) =
[
H1(s, j)

′ · · · HN (s, j)′
]′

, is just

H
(
t−τ, θ(τ)

)
−(eθ(τ)⊗I) =

∫ t

τ

FH
(
s−τ, θ(τ)

)
ds, (33)

from which we can conclude the proof:

E
(
Cθ(t)Φ(t, τ) |Fτ

)
=

N∑
i=1

CiE
(
Φ(t, τ)1{θ(t)=i} |Fτ

)
= C̄H

(
t− τ, θ(τ)

)
= C̄eF (t−τ)(eθ(τ) ⊗ I). (34)
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