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Abstract— Federated learning (FL) has recently gained much
attention due to its effectiveness in speeding up supervised
learning tasks under communication and privacy constraints.
However, whether similar speedups can be established for rein-
forcement learning remains much less understood theoretically.
Towards this direction, we study a federated policy evaluation
problem where agents communicate via a central aggregator
to expedite the evaluation of a common policy. To capture
typical communication constraints in FL, we consider finite
capacity up-link channels that can drop packets based on a
Bernoulli erasure model. Given this setting, we propose and
analyze QFedTD - a quantized federated temporal difference
learning algorithm with linear function approximation. Our
main technical contribution is to provide a finite-sample analysis
of QFedTD that (i) highlights the effect of quantization and
erasures on the convergence rate; and (ii) establishes a linear
speedup w.r.t. the number of agents under Markovian sampling.
Notably, while different quantization mechanisms and packet
drop models have been extensively studied in the FL, distributed
optimization, and networked control systems literature, our
work is the first to provide a non-asymptotic analysis of their
effects in multi-agent and federated reinforcement learning.

I. INTRODUCTION

Is it possible to obtain statistical models of high accuracy
for supervised learning problems (e.g., regression, classifica-
tion, etc.) by aggregating information from multiple devices
while keeping the raw data on these devices private? This
is the central question of interest in the popular machine
learning paradigm of federated learning (FL) [1]. When the
data-generating distributions of the participating devices are
identical (or sufficiently similar), several works have shown
that one can reap the benefits of collaboration by exchanging
locally trained models via a central aggregator (server) [2],
[3]. In practice, these models are typically high-dimensional
and need to be exchanged over unreliable communication
links of limited bandwidth. As such, a large body of work
in FL has investigated the effects of uploading quantized
models (or model-differentials, i.e., gradients) over channels
prone to packet drops/erasures [4], [5]. Drawing inspiration
from this literature, in this paper, we ask: Can we establish
collaborative performance gains for federated reinforcement
learning (FRL) problems subject to similar communication
challenges? As it turns out, little to nothing is known about
this question from a theoretical standpoint.
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Towards this direction, we study one of the most basic
problems in RL, namely policy evaluation, in a federated
setting. Specifically, in our problem, N agents, each of
whom interacts with the same Markov Decision Process
(MDP), communicate via a server to evaluate a fixed policy.
While each agent can evaluate the policy on its own using
Monte-Carlo sampling or temporal difference (TD) learning
algorithms [6], [7], the reason for communicating is the same
as in the standard FL setting: to achieve an N -fold speedup in
the sample-complexity of policy evaluation relative to when
an agent acts alone. In the recent survey paper on FRL [8],
the authors mention that the goal of the FRL framework is to
achieve such speedups while respecting privacy constraints,
i.e., without revealing the raw data (states, actions, and
rewards) of the agents. Relative to the FL setting, proving
finite-time rates for FRL is significantly more challenging
since we need to deal with temporally correlated Markovian
samples. Indeed, even for the single-agent setting, finite-time
rates under Markovian sampling have only recently been
established [9]–[12]. For the multi-agent setting, almost
all the prior works on TD learning make a restrictive i.i.d.
sampling assumption [13], [14]. The only two exceptions
to this are the very recent papers [15], [16] that establish
linear speedups under Markovian sampling; however, none of
the above works consider any communication constraints. As
such, establishing linear speedups in FRL under Markovian
sampling and communication constraints remains largely
unexplored. In this regard, our contributions are as follows.

Contributions. Our first contribution is to formulate a
federated policy evaluation problem under two practical
constraints on the communication channels: finite capacity
and packet drops (lossy links). To capture these constraints,
we propose and analyze QFedTD - a federated TD algorithm
with linear function approximation where agents upload
quantized TD update directions to the server over Bernoulli
erasure channels [17], [18]. While various quantization and
erasure models have been extensively analyzed in the FL
[4], distributed optimization [19], and networked control
literature [17], [18] for almost two decades, our work is the
first to formally study them in multi-agent/federated RL.

Our second and most significant contribution is to provide
a rigorous non-asymptotic analysis of QFedTD that clearly
highlights the effects of quantization and erasures, and
establishes an N -fold linear speedup in sample-complexity
relative to the single-agent setting. Since RL algorithms often
require several samples to achieve acceptable accuracy, our
speedup result under realistic communication models is of
significant practical importance. We now comment on some
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of the highlights of our analysis relative to [15] and [16].
Our work crucially departs from both these papers in that,
in addition to correlated Markovian samples, we need to
contend with two other sources of randomness: one due to
randomized quantization and the other due to the Bernoulli
packet-dropping processes. Even in the absence of communi-
cation challenges, our analysis has the following key benefits.
Unlike [16], our work does not employ any projection step.
Moreover, compared to the analysis in [15] that relies on
Generalized Moreau Envelopes, our proof is significantly
shorter and simpler. As a byproduct of this simpler analysis,
we derive bounds that have a tighter linear dependence on
the mixing time (consistent with the centralized setting)
as opposed to the quadratic dependence in [15], [16]; see
Section III for more discussion on this point.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a setting involving N agents, where all agents
interact with the same Markov Decision Process (MDP). Let
us denote the shared MDP by M = (S,A,P,R, γ), where
S is a finite state space of size n, A is a finite action space,
P is a set of action-dependent Markov transition kernels, R
is a reward function, and γ ∈ (0, 1) is the discount factor. We
are interested in a policy evaluation (PE) problem where the
agents exchange information via a central aggregator (server)
to evaluate the value function associated with a policy µ.
Here, the policy is a map from the states to the actions, i.e.,
µ : S → A. In what follows, we first briefly review some key
concepts relevant to PE with function approximation. Then,
we formally describe our communication model, objectives,
and technical challenges.

Policy Evaluation with Linear Function Approxima-
tion. The policy µ to be evaluated induces a Markov Reward
Process (MRP) with transition matrix Pµ and reward function
Rµ : S → R. The purpose of PE is to evaluate the
value function V µ(s) for each s ∈ S, where V µ(s) is the
discounted expected cumulative reward obtained by playing
policy µ starting from initial state s. Formally,

V µ(s) = E

[ ∞∑
k=0

γkRµ(sk)|s0 = s

]
, (1)

where sk represents the state of the Markov chain at the
discrete time-step k under the action of the policy µ. Our
particular interest is in the RL setting where the Markov
transition kernels and reward functions are unknown.

In several large-scale practical settings, the size n of the
state space S is large, thereby creating a major computational
challenge. To work around this issue, we will resort to the
popular idea of linear function approximation where V µ is
approximated by vectors in a linear subspace of Rn spanned
by a set of m basis vectors {ϕℓ}ℓ∈[m]

1; importantly, m≪ n.
To be more precise, let us define the feature matrix Φ ≜
[ϕ1, ...,ϕm] ∈ Rn×m. Given a weight (model) vector θ ∈
Rm, the parametric approximation V̂ θ of V µ is then given
by V (θ) := V̂ θ = Φθ. If we denote the s-th row of Φ as

1Given a positive integer m, we use the notation [m] = 1, ...,m.

ϕ′
s, then the approximation of V µ(s), in particular, is given

by V̂ θ(s) = ⟨θ,ϕ′
s⟩. Throughout, we will make the standard

assumption [9] that the columns of Φ are independent and
that the rows are normalized, i.e., ∥ϕ′

s∥22 ≤ 1,∀s ∈ S.
Communication Model and QFedTD Algorithm. Given

the above setup, the goal of the server-agent system is to
collectively estimate the model vector θ∗ corresponding to
the best linear approximation of V µ in the span of Φ. To
achieve this goal, we now describe a multi-agent variant
of the classical TD(0) algorithm [6]. All agents start out
from a common initial state s0 ∈ S with an initial estimate
θ0 ∈ Rm. Subsequently, at each time-step k ∈ N, a
global model vector θk is broadcasted by the server to all
agents. Each agent i ∈ [N ] then takes an action ai,k =
µ(si,k), and observes the next state si,k+1 ∼ Pµ(·|si,k) and
instantaneous reward ri,k = Rµ(si,k); here, si,k is the state
of agent i at time-step k. Using the model vector θk and the
observation tuple oi,k = (si,k, ri,k, si,k+1), agent i computes
the following local TD update direction:

gi,k(θk, oi,k) = (ri,k + γ⟨ϕ′
si,k+1

,θk⟩ − ⟨ϕ′
si,k

,θk⟩)ϕ′
si,k

.

We will often use gi,k(θk) as a shorthand for gi,k(θk, oi,k).
Note that although all agents play the same policy µ, and
interact with the same MDP, the realizations of the local
observation sequences {oi,k} can differ across agents. We
assume that these observation sequences are statistically in-
dependent across agents.2 Intuitively, based on this indepen-
dence property, one can expect that exchanging agents’ local
TD update directions should help reduce the variance in the
estimate of θ∗. This is precisely where the communication-
induced challenges we describe below play a role.

Channel Effects. We model two key aspects of realistic
communication channels in large-scale FL settings: finite
capacity (due to limited bandwidth) and erasures/packet
drops. To account for the first issue, we will employ a simple
unbiased quantizer which is a (potentially random) mapping
Q : Rm → Rm satisfying the following constraints [5].

Definition 1. (Unbiased Quantizer) We say that a quantizer
Q is unbiased if the following hold for all x ∈ Rm: (i)
E [Q(x)] = x, and (ii) there exists some constant ζ ≥ 0
such that E

[
∥Q(x)− x∥22

]
≤ ζ∥x∥22, where the expectation

is w.r.t. the randomness of the quantizer.

The constant ζ captures the amount of distortion intro-
duced by the quantizer. Using any quantizer that satisfies
Definition 1, each agent i computes an encoded version
hi,k(θk) = Q(gi,k(θk)) of gi,k(θk). Here, we assume that
the randomness of the quantizer is independent across agents
and also independent of the Markovian observation tuples.

Next, to capture packet drops, we assume that the encoded
TD directions are uploaded to the server over Bernoulli era-
sure channels. Specifically, the transmission of information
from an agent i to the server is over a channel whose statistics
are governed by an i.i.d. random process {bi,k}, where for

2For each agent i, the observations over time are, however, correlated
since they are all part of a single Markov chain.
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each k, bi,k follows a Bernoulli fading distribution, i.e.,
bi,k = 0 with erasure probability (1− p), and bi,k = 1 with
probability p. The packet-dropping processes are assumed
to be independent of all other sources of randomness in
our model. We are now in a position to describe the global
model-update rule at the server:

θk+1 = θk + αvk; vk =
1

N

N∑
i=1

bi,khi,k(θk), (2)

where α is a constant step-size/learning rate. We refer to the
overall updating scheme described above as the Quantized
Federated TD learning algorithm, or simply QFedTD.

Objective and Challenges. The main goal of this paper
is to provide a finite-time analysis of QFedTD. This is non-
trivial for several reasons. Even in the single-agent setting,
providing a non-asymptotic analysis of TD(0) without any
projection step is known to be quite challenging due to tem-
poral correlations between the Markov samples. To analyze
QFedTD, we need to contend with three distinct sources of
randomness: (i) randomness due to the temporally correlated
Markov samples {oi,k}i∈[N ]; (ii) randomness due to the
quantization step; and (iii) randomness due to the Bernoulli
packet dropping processes {bi,k}i∈[N ]. Furthermore, unlike
a single-agent setting, our goal is to establish a “linear
speedup” w.r.t. the number of agents under the different
sources of randomness above. This necessitates a very careful
analysis that we provide in the subsequent sections.

III. MAIN RESULT

In this section, we state and discuss our main result
pertaining to the non-asymptotic performance of QFedTD.
First, however, we need some technical preparation. As is
standard, we assume that the rewards are uniformly bounded,
i.e., ∃r̄ > 0 such that Rµ(s) ≤ r̄,∀s ∈ S. This ensures that
the value function in (1) is well-defined. Next, we make a
standard assumption that plays a key role in the finite-time
analysis of TD learning algorithms [7], [9], [10].

Assumption 1. The Markov chain induced by the policy µ
is aperiodic and irreducible.

Assumption 1 implies that the Markov chain induced by
µ admits a unique stationary distribution π [20]. Let Σ =
Φ⊤DΦ, where D is a diagonal matrix with entries given by
the elements of π. Since Φ is assumed to be full column rank,
Σ is full rank with a strictly positive smallest eigenvalue
ω < 1; ω will later show up in our convergence bounds. Next,
we define the steady-state local TD direction ∀θ ∈ Rm:

ḡ(θ) ≜ Esi,k∼π,si,k+1∼Pµ(·|si,k)[gi,k(θ, oi,k)]. (3)

Essentially, the deterministic recursion θk+1 = θk+αḡ(θk)
captures the limiting behavior of the TD(0) update rule. In
[9], it was shown that the iterates generated by this recursion
converge exponentially fast to θ∗, where θ∗ is the unique
solution of the projected Bellman equation ΠDTµ(Φθ∗) =
Φθ∗. Here, ΠD(·) is the projection operator onto the sub-
space spanned by {ϕℓ}ℓ∈[m] with respect to the inner product

⟨·, ·⟩D, and Tµ : Rn → Rn is the policy-specific Bellman
operator [7]. We now define the notion of mixing time τϵ
that will play a crucial role in our analysis.

Definition 2. Let τϵ be the minimum time step such that
∥E [gi,k(θ, oi,k)|oi,0] − ḡ(θ)∥ ≤ ϵ (∥θ∥+ 1) ,∀k ≥ τϵ,∀θ ∈
Rm,∀i ∈ [N ],∀oi,0.3

Assumption 1 implies that the Markov chain induced by µ
mixes at a geometric rate [20], i.e., the total variation distance
between P (si,k = ·|si,0 = s) and the stationary distribution
π decays exponentially fast ∀k ≥ 0,∀i ∈ [N ],∀s ∈ S.
This immediately implies the existence of some K ≥ 1
such that τϵ in Definition 2 satisfies τϵ ≤ K log( 1ϵ ) [11].
Loosely speaking, this means that for a fixed θ, if we want
the noisy TD update direction to be ϵ-close (relative to θ)
to the steady-state TD direction (where both these directions
are evaluated at θ), then the amount of time we need to
wait for this to happen scales logarithmically in the precision
ϵ. For our purpose, we will set ϵ = αq , where q is an
integer satisfying q ≥ 2. Unlike the centralized setting where
q = 1 suffices [9], [10], to establish the linear speedup
property, we will require q ≥ 2. Henceforth, we will drop
the subscript of ϵ = αq in τϵ and simply refer to τ as
the mixing time. Let us define by σ ≜ max{1, r̄, ∥θ∗∥}
the “variance” of the observation model for our problem.
Finally, let ζ ′ ≜ max{1, ζ}, where ζ is as in Definition 1,
and δ2k ≜ ∥θ∗ − θk∥2. We can now state our main result.

Theorem 1. Consider the update rule of QFedTD in (2).
There exist universal constants C0, C2, C3 ≥ 1, such that
with α ≤ ω(1−γ)

C0τζ′ , the following holds for T ≥ 2τ :

E
[
δ2T

]
≤ (1− αω(1− γ)p)TC1 +

τσ2

ω(1−γ)

(
C2αζ

′

N + C3α
3
)
,

(4)
where C1 = 4δ20 + 2pσ2.

Discussion: There are several important takeaways from
Theorem 1. From (4), we first note that QFedTD guarantees
linear convergence (in expectation) to a ball around θ∗ whose
radius depends on the variance σ2 of the noise model. While
the linear convergence rate gets slackened by the probability
of successful transmission p, the “variance term”, namely
the second term in (4), gets inflated by the quantization
parameter ζ. Both of these channel effects are consistent
with what one observes for analogous settings in FL [4].
Next, compared to the centralized setting [10, Theorem 7],
the variance term in (4) gets scaled down by a factor of
N , up to a higher-order O(α3) term that can be dominated
by the (α/N) term for small enough α. Before we make
this point explicit, it is worth noting that our variance bound
exhibits a tighter dependence on the mixing time τ relative
to [15] and [16], where similar bounds are established. In
particular, while this dependence is O(τ) for us, it is O(τ2)
in [15, Theorem 4.1] and in [16, Theorem 4]. Notably, the
O(τ) dependence that we establish is consistent with results
on centralized TD learning [9], [10], and is in fact the optimal

3Unless otherwise specified, we use ∥ · ∥ to denote the Euclidean norm.
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dependence on τ under Markovian data [21]. We now show
that with a suitable choice of step-size α, if the number of
iterations T is chosen to be large enough, then the mean-
square error of QFedTD converges exactly to 0 at a rate
of O(1/(NT )), i.e., we obtain a linear speedup in sample-
complexity w.r.t. the number of agents N . To see this, let

α =
logNT

ω(1− γ)pT
, and T ≥ 2C0Nτζ

′ logNT

ω2(1− γ)2p
. (5)

We can then easily show that (see our extended technical
report [22] for the details)

E[δ2T ] ≤ O

((
ζ ′

p

)
max{δ20 , σ2}τ log(NT )

ω2(1− γ)2NT

)
. (6)

As far as we are aware, our work is the first to establish
a linear speedup result of the above form under Markovian
sampling and communication constraints.

IV. PROOF OF THE MAIN RESULT

In this section, we prove Theorem 1. We start by intro-
ducing the following definitions to lighten the notation:

η
(i)
k,τ (θ) ≜ ∥E [gi,k(θ, oi,k)|oi,k−τ ]− ḡ(θ)∥, k ≥ τ,

δk,τ ≜ ∥θk − θk−τ∥, k ≥ τ.
(7)

For our analysis, we will need the following result from [9].

Lemma 1. The following holds ∀θ ∈ Rm:

⟨θ∗ − θ, ḡ(θ)⟩ ≥ ω(1− γ)∥θ∗ − θ∥2.

We will also use the fact that the random TD update
directions and their steady-state versions are 2-Lipschitz [9],
i.e., ∀i ∈ [N ],∀k ∈ N, and ∀θ,θ′ ∈ Rm, we have:

max{∥gi,k(θ)− gi,k(θ
′)∥, ∥ḡ(θ)− ḡ(θ′)∥} ≤ 2∥θ − θ′∥.

(8)
From [10], we also have that ∀i ∈ [N ],∀k ∈ N,∀θ ∈ Rm:

∥gi,k(θ, oi,k)∥ ≤ 2∥θ∥+ 2r̄. (9)

Equipped with the above basic results, we now provide an
outline of our proof before delving into the technical details.

Outline of the proof. We start by defining:

ḡN (θk) ≜
1

N

N∑
i=1

bi,kḡ(θk), and

ψk ≜ ⟨vk − ḡN (θk),θk − θ∗⟩.

(10)

Since for all i ∈ [N ], bi,k is independent of θk, we
have E [⟨ḡN (θk),θk − θ∗⟩] = pE [⟨ḡ(θk),θk − θ∗⟩]. Thus,
recalling that δ2k ≜ ∥θ∗ − θk∥2, and using (2), we obtain

E
[
δ2k+1

]
= E

[
δ2k
]
− 2αE [⟨θ∗ − θk,vk⟩] + α2E

[
∥vk∥2

]
= E

[
δ2k
]
− 2αpE [⟨θ∗ − θk, ḡ(θk)⟩]

+ 2αE [ψk] + α2E
[
∥vk∥2

]
.

(11)
The main technical burden in proving Theorem 1 is in
bounding E

[
∥vk∥2

]
and E [ψk] in the above recursion.

Following the centralized analysis in [9], [10], one can easily

bound E
[
∥vk∥2

]
using (9). However, this approach will fall

short of yielding the desired linear speedup property. Hence,
to bound E

[
∥vk∥2

]
, we need a much finer analysis, one

that we provide in Lemma 2. Leveraging Lemma 2, we then
establish an intermediate result in Lemma 3 that bounds
E [∥θk − θk−τ∥]. This result, in turn, helps us bound E [ψk]
in Lemma 4. We now proceed to flesh out these steps; some
routine calculations are omitted and can be found in [22]. In
what follows, τ = τϵ with ϵ = αq , q ≥ 2.

Lemma 2. (Key Technical Result) For k ≥ τ , we have

E
[
∥vk∥2

]
≤ 60ζ ′pE

[
δ2k
]
+ 12σ2p

(
10
ζ ′

N
+ α2q

)
. (12)

Proof. Note that ∥vk∥2 ≤ 3
N2 (T1 + T2 + T3), with

T1 = ∥
N∑
i=1

bi,kgi,k(θ
∗)∥2,

T2 = ∥
N∑
i=1

bi,k(gi,k(θk)− gi,k(θ
∗))∥2, and

T3 = ∥
N∑
i=1

bi,k(gi,k(θk)− hi,k(θk))∥2.

(13)

We now proceed to bound T1−T3. To that end, we first write
T1 as T1 = T11 + T12, with T11 =

∑N
i=1 b

2
i,k∥gi,k(θ

∗)∥2,
and T12 =

∑N
i,j=1
i ̸=j

bi,kbj,k⟨gi,k(θ
∗),gj,k(θ

∗)⟩. Now using

(9), we obtain T11 ≤ 8(∥θ∗∥2 + r̄2)
∑N

i=1 b
2
i,k. Recall-

ing that σ ≜ max{1, r̄, ∥θ∗∥}, we then have E [T11] ≤
16σ2E

[∑N
i=1 b

2
i,k

]
= 16σ2Np. Next, to bound the cross-

terms in T12, we will exploit the mixing property in Def-
inition 2. To that end, we note that since (i) ḡ(θ∗) = 0
[9], (ii) the packet-dropping processes are independent of
the Markovian tuples, and (iii) gi,k(θ

∗) and gj,k(θ
∗) are

independent for i ̸= j,

E [T12] =

N∑
i,j=1
i ̸=j

E [bi,kbj,k]⟨E [E [gi,k(θ
∗)|oi,k−τ ]− ḡ(θ∗)] ,

E [E [gj,k(θ
∗)|oj,k−τ ]− ḡ(θ∗)]⟩.

Using the Cauchy-Schwarz inequality followed by Jensen’s
inequality, we can further bound the above inner-product
via E

[
η
(i)
k,τ (θ

∗)
]
× E

[
η
(j)
k,τ (θ

∗)
]

≤ 4σ2α2q . For the last
inequality, we used the mixing property by noting that k ≥ τ .
Combining this analysis with the fact that E [bi,kbj,k] =
E [bi,k]E [bj,k] = p2, we obtain that E [T12] ≤ 4N2p2σ2α2q.
Combining the bounds for E [T11] and E [T12] thus yields:

E [T1] ≤ 16σ2Np+ 4N2p2σ2α2q. (14)

Now, using (8), we see that

E [T2] ≤ N

N∑
i=1

E
[
b2i,k∥gi,k(θk)− gi,k(θ

∗)∥2
]

≤ 4NE
[
δ2k
] N∑
i=1

E
[
b2i,k

]
= 4pN2E

[
δ2k
]
.

(15)
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Defining λi,k(θk) ≜ hi,k(θk) − gi,k(θk), we now turn to
bounding T3 by writing it as T3 = T31 + T32 where,

T31 =

N∑
i=1

b2i,k∥λi,k(θk)∥2, and

T32 =

N∑
i,j
i ̸=j

bi,kbj,k⟨λi,k(θk),λj,k(θk)⟩.
(16)

We now proceed to bound E [T31] and E [T32] as follows:

E [T31] =

N∑
i=1

E
[
b2i,k

]
E
[
E
[
∥λi,k(θk)∥2|oi,k,θk

]]
(a)

≤
N∑
i=1

pζE
[
∥gi,k(θk)∥2

]
(b)

≤ 8Npζ(E
[
∥θk∥2

]
+ σ2)

≤ 16NpζE
[
∥θk − θ∗∥2

]
+ 24Npζσ2,

where (a) follows from the variance bound of the quantizer
map Q(·), and (b) follows from (9). Next, observe that:

E [T32] = p2
N∑

i,j=1
i ̸=j

E [E [⟨λi,k(θk),λj,k(θk)⟩|oi,k, oj,k,θk]] .

Using the fact that the randomness of the quantization map is
independent across agents, and the unbiasedness of Q(·), we
conclude that E [T32] = 0. Combining the bounds on E [T1],
E [T2], and E [T3] above yields the desired result.

Later in the analysis, we will once again need to invoke
a mixing time argument by conditioning on θk−τ . This will
give rise to the δk,τ = ∥θk − θk−τ∥ term that we proceed
to bound below by leveraging Lemma 2.

Lemma 3. Let α ≤ 1
484τζ′ and k ≥ 2τ . Then, we have

E
[
δ2k,τ

]
≤ 480α2τ2pζ ′E

[
δ2k
]
+ α2τ2pσ2

(
360ζ ′

N
+ 4αq

)
.

Proof. We start with a bound on δ2k+1:

δ2k+1 = δ2k − 2α⟨vk,θ
∗ − θk⟩+ α2∥vk∥2

≤ (1 + α)δ2k + (α+ α2)∥vk∥2

≤ (1 + α)δ2k + 2α∥vk∥2.
(17)

Using Lemma 2 and the fact that p < 1, we obtain

E
[
δ2k+1

]
≤ (1 + 121αζ ′)E

[
δ2k
]
+ 24αpσ2

(
10ζ ′

N
+ α2q

)
︸ ︷︷ ︸

B

.

Iterating this inequality, we get for any k − τ ≤ k′ ≤ k,

E
[
δ2k′

]
≤ (1 + 121αζ ′)τE

[
δ2k−τ

]
+B

τ−1∑
ℓ=0

(1 + 121αζ ′)ℓ.

(18)

Now using (1 + x) ≤ ex,∀x ∈ R, observe that (1 +
121αζ ′)ℓ ≤ (1+121αζ ′)τ ≤ e0.25 ≤ 2, for α ≤ 1/(484τζ ′).
Thus,

∑τ−1
ℓ=0 (1+121αζ ′)ℓ ≤ 2τ . Plugging this bound in (18),

E
[
δ2k′

]
≤ 2E

[
δ2k−τ

]
+ 2τB. (19)

Next, observe that δ2k,τ ≤ τ
∑k−1

ℓ=k−τ ∥θℓ+1 − θℓ∥2 =

τα2
∑k−1

ℓ=k−τ ∥vℓ∥2. Since k ≥ 2τ , we have ℓ ≥ τ . Hence,
we can invoke Lemma 2 to bound E

[
∥vℓ∥2

]
. This yields

E
[
δ2k,τ

]
≤ α2τ

k−1∑
ℓ=k−τ

60ζ ′pE
[
δ2ℓ
]
+ 0.5ατ2B. (20)

Using (19) to bound E
[
δ2ℓ
]

above, we further obtain

E
[
δ2k,τ

]
≤ α2τ

k−1∑
ℓ=k−τ

120ζ ′p
(
E
[
δ2k−τ

]
+ τB

)
+

1

2
ατ2B.

Simplifying using α ≤ 1/484ζ ′τ , p < 1, and q ≥ 2 yields

E
[
δ2k,τ

]
≤ 120α2τ2pζ ′E

[
δ2k−τ

]
+α2τ2σ2p

(
180ζ ′

N
+ 2αq

)
.

Using δ2k−τ ≤ 2δ2k+2δ2k,τ and 240α2τ2ζ ′ ≤ 1/2 to simplify
the above inequality, we arrive at the desired result.

Our next result provides a bound on E [ψk], and is the
final ingredient we need to prove Theorem 1.

Lemma 4. Define gN (θk) ≜ 1
N

∑N
i=1 bi,kgi,k(θk), and let

α ≤ 1/(484ζ ′τ) and k ≥ 2τ . We have

E [ψk] ≤ ατp

(
3191ζ ′E

[
δ2k
]
+ σ2

(
2461ζ ′

N
+ 30αq

))
.

Proof. We can write ψk = T1 + T2 + T3 + T4 + T5, with

T1 = ⟨θk − θk−τ ,gN (θk)− ḡN (θk)⟩,
T2 = ⟨θk−τ − θ∗,gN (θk−τ )− ḡN (θk−τ )⟩,
T3 = ⟨θk−τ − θ∗,gN (θk)− gN (θk−τ )⟩,
T4 = ⟨θk−τ − θ∗, ḡN (θk−τ )− ḡN (θk)⟩,
T5 = ⟨θk − θ∗,vk − gN (θk)⟩.

(21)

Note that T1 ≤ 1
2ατ δ

2
k,τ +

1
2ατ∥gN (θk)− ḡN (θk)∥2, and so

T1 ≤ 1

2ατ
δ2k,τ + ατ∥gN (θk)∥2 + ατ∥ḡN (θk)− ḡN (θ∗)∥2.

Using (8), note that ∥ḡN (θk)− ḡN (θ∗)∥2 ≤ 4
N

∑N
i=1 b

2
i,kδ

2
k.

Also, ∥gN (θk)∥2 can be bounded exactly in the same way as
the first two terms in (13) of Lemma 2. Using these bounds
and invoking Lemma 3 yields:

E [T1] ≤ 304ατζ ′pE
[
δ2k
]
+ ατpσ2

(
300ζ ′

N
+ 3αq

)
.

Next we bound E [T3] and E [T4]. Observe that:

E [T3] =
1

N

N∑
i=1

E [bi,k⟨θk−τ − θ∗, (gi,k(θk)− gi,k(θk−τ ))⟩]

≤ pE

[
δk−τ

1

N

N∑
i=1

∥gi,k(θk)− gi,k(θk−τ )∥

]
(8)
≤ ατp

2
E
[
δ2k−τ

]
+

2p

ατ
E
[
δ2k,τ

]
.
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Using δ2k−τ ≤ 2δ2k + 2δ2k,τ and Lemma 3, we then obtain:

E [T3] ≤ 1441ατpζ ′E
[
δ2k
]
+ 6ατpσ2

(
180ζ ′

N
+ 2αq

)
.

Using the same process, we can derive the exact same bound
for E [T4]. We now bound E [T2]. For ease of notation, let
us define Fk,τ = ({oi,k−τ}Ni=1,θk−τ ). Observe:

E [T2] = E [E [T2|Fk,τ ]] = E[⟨θk−τ − θ∗,

p

N

N∑
i=1

(E [gi,k(θk−τ , oi,k)|Fk,τ ]− ḡ(θk−τ ))⟩]

≤ E

[
δk−τ

p

N

N∑
i=1

η
(i)
k,τ (θk−τ )

]
≤ pαqE [δk−τ (1 + ∥θk−τ∥)] .

Since α < 1, we have δk−τ (δk−τ +2σ) ≤ δ2k−τ

α +2σδk−τ +

ασ2 =
(

δk−τ√
α

+
√
ασ

)2

≤ 2
(

δ2k−τ

α + ασ2
)

. Using q ≥ 2,

E [T2] ≤ 2pαqE
[
1

α
δ2k−τ + ασ2

]
≤ 2pαE

[
δ2k−τ

]
+ 2pαq+1σ2.

(22)

Using δ2k−τ ≤ 2δ2k+2δ2k,τ , Lemma 3, and simplifying yields:

E [T2] ≤ 5ατpζ ′E
[
δ2k
]
+ ατpσ2

(
ζ ′

N
+ 3αq

)
. (23)

Finally, to bound T5, let Fk = {{oi,k}Ni=1,θk}. We have

E [T5] = E

⟨θk − θ∗,E [vk − gN (θk)|Fk]︸ ︷︷ ︸
T51

⟩

 . (24)

Note that T51 = p
N

∑N
i=1 E [hi,k(θk)− gi,k(θk)|Fk] = 0,

based on the unbiasedness of Q(·). Thus, E [T5] = 0.
Collecting the bounds on T1 − T5 concludes the proof.

With the help of the auxiliary lemmas provided above, we
are now ready to prove our main result, i.e., Theorem 1.

Proof of Theorem 1. Letting α ≤ 1
484ζ′τ , we can apply

the bounds in Lemmas 1, 2, and 4 to (11). This yields:

E
[
δ2k+1

]
≤ E

[
δ2k
]
− αp(2(1− γ)ω − 6446ατζ ′)E

[
δ2k
]

+ 5162
α2τpσ2ζ ′

N
+ 61α(2+q)τpσ2.

(25)
For α ≤ ω(1−γ)

C0τζ′ with C0 = 6446, we then obtain:

E
[
δ2k+1

]
≤ (1− αω(1− γ)p)E

[
δ2k
]

+ 5162
α2τpσ2ζ

N
+ 61α(2+q)τpσ2.

(26)

Iterating the last inequality, we have ∀k ≥ 2τ :

E
[
δ2k
]
≤ ρk−2τE

[
δ22τ

]
+

τσ2

ω(1− γ)

(
C2αζ

′

N
+ C3α

3

)
,

where ρ = (1−αω(1− γ)p), C2 = 5162, C3 = 61, and we
set q = 2. It only remains to show that with our choice of
α, E

[
δ22τ

]
= O(δ20 + σ2). This follows from some simple

algebra and steps similar to those in the proof of Lemma 3.
We omit these details here; they can be found in [22].
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