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Abstract— Autonomous systems operate in environments that
can be observed only through noisy measurements. Thus,
controllers should compute actions based on their beliefs
about the surroundings. In these settings, we design a Model
Predictive Controller (MPC) based on a continuous-state Linear
Time-Invariant (LTI) system model operating in a discrete-state
environment described by a Hidden Markov Model (HMM).
Environment constraints are modeled as chance constraints
and environment observations can be asynchronous with system
state measurements and controller updates. We show how to
approximate the solution of the MPC problem defined over
the space of feedback policies by optimizing over a trajectory
tree, where each branch is associated with an environment
measurement. The proposed approach guarantees chance con-
straint satisfaction and recursive feasibility. Finally, we test
the proposed strategy on navigation examples in partially
observable environments, where the proposed MPC guarantees
chance constraint satisfaction.

I. INTRODUCTION

Autonomous systems operating in uncertain environments
make decisions based on noisy measurements. When un-
certainties are uni-modal, the decision-making process is
usually divided into two steps. First, noisy measurements are
leveraged to estimate the system state. Then, the controller
is designed assuming perfect state feedback [1]. This sepa-
ration strategy is optimal for stabilizing linear unconstrained
systems affected by additive Gaussian disturbances and
noises [2]. For systems subject to state and input constraints,
the estimation and control problems can be separated, but it
is necessary to compute error bounds associated with the
state estimate. These bounds should then be leveraged in a
robust control design to guarantee constraint satisfaction [3].

When uncertainties are multi-modal, the optimal control
policy minimizing the expected cost can be computed by
modeling the problem using a Partially Observable Markov
Decision Process (POMDP), which is a decision-making
formalism to jointly model estimation and control prob-
lems. Unfortunately, solving POMDPs is computationally
intractable, even for systems with discrete state and action
spaces [4]. For this reason, several strategies have been
proposed in the literature to approximate the solution to
POMDPs [5]–[9].

We focus on Mixed-Observable Markov Decision Pro-
cesses (MOMDPs) where perfect state feedback is not avail-
able only for a subset of the state space [10]. In particular,
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Fig. 1: Navigation task where a drone has to plan a route without knowing
the exact location of the windy region, which will be inferred during
navigation via noisy measurements.

we focus on control problems where perfect state feed-
back is available for the system state, whereas only partial
noisy discrete measurements are available to estimate the
environment mode. These settings are common in several
practical applications such as autonomous driving and robot
navigation, where it is often possible to compute a reasonably
accurate estimate for the vehicle state, but it is hard to
estimate the state of the surroundings which is multi-modal.
For instance, in autonomous driving the environment state
could encode the intentions of other vehicles or pedestrians,
e.g., the intent of drivers to perform lane change or lane-
keeping maneuvers [11]–[13].

Several strategies have been proposed for the control de-
sign of autonomous systems operating in partially observable
environments [11]–[19]. These approaches leverage a Model
Predictive Controller (MPC) which solves an optimization
problem over a trajectory tree. Each branch of the tree is
associated with either a sensor measurement, a disturbance
realization, or an environment mode; thus such a trajectory
tree encodes a policy.1 The resulting MPC policy computes
actions to influence the environment or to gather sensor
measurements that can be used for inference [13]–[16].

In this work, we model the environment evolution and
the sensor accuracy using a Hidden Markov Model (HMM).
Then, we design an MPC policy that optimizes a trajectory
tree constructed based on the environment’s HMM and the
current belief. Our contribution is twofold. First, we show
how to construct a trajectory tree that guarantees chance con-
straint satisfaction. Compared to previous works, we update
the constraint enforced at each branch of the tree based on
the environment belief and the imposed chance constraints.
In particular, we design Algorithm 1 to compute a set of
constraints that guarantee chance constraint satisfaction. As

1In [20], it was shown that for linear systems subject to state and input
constraints optimizing over a trajectory tree is equivalent to optimizing over
the space of feedback policies, when the objective is to minimize the worst-
case cost and perfect state feedback is available.
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shown in the results section, the proposed strategy guarantees
chance constraint satisfaction, while standard scenario MPC
approaches fail. Second, we show that our MPC design
guarantees recursive feasibility. To guarantee recursive fea-
sibility in the case of asynchronous observations and chance
constraints, we design an MPC problem where the optimiza-
tion is defined for a trajectory tree, where each branch is
associated with an observation sequence and a different set of
constraints that are time-varying. Finally, we test our strategy
on a navigation example, where the environment state is
unknown to the controller. We show that our MPC guarantees
chance constraint satisfaction and recursive feasibility, even
when only noisy environment measurements are available.

Notation: We denote the ith element of a vector v ∈ Rn

as v[i]. For a function Z : Rn → R and a vector v ∈ Rn,
we indicate Z(v) as the value of the function Z at the
point v. Furthermore, for a vector v, we define the function
Sort(v) sorting the elements of v in descending order
and the function ArgSort(v) returning the indices of the
vector v that would sort the vector, i.e., v[ArgSort(v)] =
Sort(v). Given a set S ⊂ Rn, we define its complement as
Sc = Rn \ S and its cardinality as |S|. The set of positive
integers is denoted as Z0+ = {0, 1, 2, . . .}, and the set of
positive reals as R0+ = [0,∞). Finally, we use the symbol
∅ to denote the empty set.

II. PROBLEM FORMULATION

A. System and Environment Models

We consider the following linear time-invariant system:

xt+1 = Axt +But, (1)

where xt ∈ Rn and ut ∈ Rm denote the state and the control
input at time t. The system operates in an environment repre-
sented by partially observable discrete states. We model the
environment evolution as a hidden Markov model (HMM)
given by the tuple H = (E ,O, T, Z), where:

• E = {1, . . . , |E|} is a set of partially observable envi-
ronment states;

• O = {1, . . . , |O|} is the set of observations.
• The function T : E × E → [0, 1] describes the prob-

ability of transitioning to a state e′ given the current
environment state e, i.e., T (e′, e) = P(e′|e).

• The function Z : E × O × Z0+ → [0, 1] describes
the probability of observing o at time step t, given the
environment state e, i.e., Z(e, o, t) = P(o|e, t).

As the environment state et is partially observable, it is com-
mon practice to introduce the following belief vector [21]:

bt ∈ B = {b ∈ R|E|
0+ :

∑|E|
e=1 b[e] = 1}, (2)

where each element bt[e] represents the posterior probability
that the state of the environment et equals e ∈ E , given the
observation vector ot ∈ Ok collecting k observations stored
up to time t, the system trajectory xt ∈ Rn×(t+1), and the
belief vector b0 at time t = 0, i.e., bt[e] = P(e|ot,xt, b0).
We recall that the belief vector is a sufficient statistic and it
can be recursively updated by using the Bayes rule [21].

System (1) is subject to the input and state constraints:

ut ∈ U and P
(
xt ∈ X (et)|bt

)
≥ 1− ϵ, ∀t ∈ {0, 1, . . .}.

(3)
Notice that at each time t the constraint set X (et) is a
function of the partially observable environment state et that
is not known at execution. For this reason, the above chance
constraint is conditioned on the environment belief bt.

B. Control Objectives

Our goal is to design a control policy π mapping the state
xt ∈ Rn and the environment belief bt ∈ B to a control
action ut ∈ Rm, i.e.,

πMPC : Rn × B → Rm. (4)

The above policy (4) in closed-loop with system (1) should
guarantee that input and state constraints (3) are satisfied.
Throughout the paper we make the following assumptions.

Assumption 1. The input and state constraint set U and X (e)
are compact sets containing the origin for all e ∈ E .

Assumption 2. During the control task, we collect K envi-
ronment observations. Furthermore, we know the time steps
t1, . . . , tK at which these K observations are collected.
Thus, we introduce the following set collecting these time
instances:

Tobs = {t1, . . . , tK}. (5)

Our problem is motivated by the navigation task shown
in Figure 1, where a drone has to fly from an origin to a
destination while avoiding high windy areas. In this example,
the system state xt represents the position of the drone, while
the environment state et represents the location of the windy
area. Such a location is unknown, but we know that it may
be either in region #1 (blue ellipse) or region #2 (red ellipse).
In this example, a robust plan (blue trajectory) would simply
avoid the possible windy areas. On the other hand, a policy
based on observations about the wind location would first
fly the drone toward the windy regions and then adjust its
trajectory based on measurements (green tree of trajectories).

III. CONTROL DESIGN

A. Belief update

In this section, we present the belief update equation. The
belief vector from (2) is a sufficient statistic for an HMM and
it can be recursively computed based on observations [21].
As discussed in Assumption 2, the time instances at which
observations are collected are known and stored in the set
Tobs. Given such a set of time instances, we write the belief
update as follows [21]:

bt = fb(bt−1, ot, t) =

{
Θ(ot, t)Ωbt−1/ηt If t ∈ Tobs
Ωbt−1 otherwise

(6)

where ηt = P(ot|bt−1),

Ω =


T (1, 1) . . . T (1, |E|)
T (2, 1) . . . T (2, |E|)

...
...

T (|E|, 1) . . . T (|E|, |E|)

 (7)
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and

Θ(ot, t) = diag
( [

Z(1, ot, t) . . . Z(|E|, ot, t)
] )

. (8)

B. The MPC optimization problem

Given the system state xt and the environment belief bt
at time t, we introduce the following MPC optimization
problem:

J∞(xt, bt) = min
πt

E

[
t+N−1∑
k=t

h(xk|t, uk|t) + V (xt+N |t)
∣∣∣bt]

subject to xk+1|t = Axk|t +Buk|t,

bk+1|t = fb(bk|t, ok+1|t, k + 1),

xt|t = xt, bt|t = bt,

uk|t = πk|t(xk|t, bk|t),

uk|t ∈ U ,
P
(
xk|t ∈ X (ek|t)|bk|t

)
≥ 1− ϵ,

xt+N |t ∈ XF ,∀k ∈ {t, . . . , t+N}.
(9)

where πt = {πt|t, . . . , πt+N−1|t}. In the above problem,
h : Rn×Rm → R and V : Rn → R represent the stage cost
and the terminal cost, respectively. Furthermore, the terminal
constraint XF satisfies the following assumption:

Assumption 3. The terminal constraint set XF ⊂ X (e) for
all e ∈ E is a control invariant set, i.e., for all x ∈ XF there
exists a u ∈ U such that Ax+Bu ∈ XF .

In problem (9), the variable xk|t indicates the predicted
state at time k for a prediction computed at time t. The
same notation is used for the control action uk|t, the belief
vector bk|t, the observation ok|t, and the environment state
ek|t. Note that if k /∈ Tobs, we have that ok|t = ∅. Thus at
the predicted time k, the policy πk|t maps the predicted state
xk|t and belief bk|t to the control action uk|t.

Solving problem (9) is challenging for two reasons: (i) the
optimization is defined over the space of feedback policies
{πt|t, . . . , πt+N−1|t} that are continuous functions with un-
countable degrees of freedom which render the optimization
problem infinite-dimensional, and (ii) the system predicted
states are subject to chance constraints. To overcome these
challenges, in the next section we first rewrite the above
problem as an optimization over a tree of trajectories. Then,
we leverage this reformulation to approximate the chance
constraints. The proposed reformulation builds upon our
previous work [16] where we did not consider constraint
sets that change as a function of the environment state.

C. Finite-dimensional reformulation

In this section, we reformulate the chance-constrained
optimization problem (9) as a finite-dimensional problem.
First, we introduce the observation vector ot:t+N collecting
the observations from time t to time t+N , i.e.,

ot:t+N = [otk , . . . , otj ], (10)

where tk and tj are the time steps at which the kth and
jth observations are collected. Without loss of generality,

we assume that t ≤ tk < . . . < tj ≤ t + N . Let Mt:t+N

be the number of observations collected from time t to t+
N , we have that there are |O|Mt:t+N possible sequences of
observations that we denote as:

oi
t:t+N = {oitk , . . . , o

i
tj} for all i ∈ {1, . . . , |O|Mt:t+N }. (11)

Leveraging the St:k = |O|Mt:k sequence of observa-
tions (10), we define the finite-dimensional optimization
problem:

Jf (xt, bt) =

min
ut

t+N−1∑
k=t

St:k∑
i=1

vik|th(x
i
k|t, u

i
k|t) +

St:t+N∑
i=1

vit+N |tV (xi
t+N |t)

subject to xi
k+1|t = Axi

k|t +Bui
k|t, (12a)

bik+1|t = fb(b
i
k|t, o

i
k+1|t, k + 1), (12b)

vik+1|t = fv(v
i
k|t, o

i
k+1|t, k + 1), (12c)

xi
t|t = xt, b

i
t|t = bt, v

i
t|t = bt, (12d)

ui
k|t = uj

k|t, if oi
t:k = oj

t:k, (12e)

ui
k|t ∈ U , xi

t+N |t ∈ XF , (12f)

P
(
xi
k|t ∈ X (eik|t)|bik|t

)
≥ 1− ϵ, (12g)

∀k ∈ {t, . . . , t+N},
∀i∈{1, . . . , St:t+N},∀j∈{1, . . . , St:t+N}.

where ut = {u1
t|t, . . . , u

St:t+N

t+N−1|t} and ui
k|t is the predicted

control action at time k for a prediction computed at time
t and observation sequence i. Constraint (12e) enforces
causality, i.e., if observation sequences oi

t:t+N and oj
t:t+N

are indistinguishable up to time k̄, then the control actions
ui
k|t must be equal to uj

k|t for all k ∈ {t, . . . , k̄}. As
we collect Mt:k observations from time t to time k, the
causality constraint (12e) guarantees that at the predicted
time k we have at most |O|Mt:k different control actions,
i.e., ui

k|t ̸= uj
k|t if and only if oi

t:k ̸= oj
t:k. In problem (12),

vik|t is the unnormalized belief vector and constraint (12c)
represents the unnormalized belief vector update equation:

vt = fv(vt−1, ot, t) =

{
Θ(ot, t)Ωvt−1 If t ∈ Tobs
Ωvt−1 otherwise

where Θ and Ω are defined as in (7)–(8). The unnormalized
belief vector is initialized using the belief bt and it allows us
to rewrite the expectation as a summation [16, Proposition 1].

Proposition 1. For all x ∈ Rn and b ∈ B, we have that
J∞(x, b) = Jf (x, b). Furthermore, let {π∗

t|t, . . . , π
∗
t+N−1|t}

and {u1,∗
t|t , . . . , u

St:t+N ,∗
t+N−1|t} be the optimizer of problems (9)

and (12) respectively, we have that π∗
t|t(xt, bt) = u1,∗

t|t .

Proof: As the predicted belief bk|t is defined by the belief
bt and the Mt:k observations collected from time t to time
k, we have that the policy πk|t is evaluated at most |O|Mt:k

times. Thus, optimizing over the set of policies from (9)
is equivalent to optimizing over the set of control actions
from (12), each associated with an observation sequence oi

t:k

for i ∈ {1, . . . , |O|Mt:t+N }. Thus, as from [16, Proposition 1]
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Algorithm 1: Chance Constraint Approximation
1 inputs: bt, t, ϵ;
2 Compute bi

k|t for all k ∈ {t, . . . , t+N − 1} and for all
i ∈ {1, . . . , |O|Mt:t+N };

3 for k ∈ {t, . . . , t+N − 1} do
4 for i ∈ {1, . . . , |O|Mt:t+N } do
5 Ci

k|t = ∅;
6 bsort = Sort(bi

k|t);
7 esort = ArgSort(bi

k|t);
8 penv = 0, j = 0;
9 while penv ≤ 1− ϵ do

10 penv = penv + bsort[j];
11 Ci

k|t.append(esort[j]);
12 j = j + 1;
13 end
14 end
15 end
16 Return: Ci

k|t

we have that the expected cost from (9) is equivalent to the
cost function in (12), we conclude that J∞(x, b) = Jf (x, b)
and π∗

t|t(xt, bt) = u1,∗
t|t for all x ∈ Rn and b ∈ B.

The key assumption leveraged by the proposed reformu-
lation is that the HMM is defined for a set of discrete states.
This allows us to reformulate the expectation as a summation
and the policy as a finite set of control actions. Thus, no
assumption on the cost function is required.

D. Chance constraint reformulation

We present the chance constraint approximation strategy.
For each predicted time k and observation sequence i, we use
Algorithm 1 to compute the set of environment states Ci

k|t
such that P(eik|t ∈ Ci

k|t|bik|t) ≥ 1−ϵ. Then, we leverage such
a set to reformulate the chance constraint from problem (12).

In Algorithm 1, we first compute the predicted belief
bik|t. Then, we sort the belief vector (line 6) and compute
the vector esort collecting the environment states sorted in
descending order by their belief (lines 7), i.e.,

P(esort[j] = eik|t) = bsort[j],∀j ∈ E .

See Section I for further details on notation. In line 8, we
initialize the scalar penv to keep track of the probability that
eik|t ∈ Ci

k|t, i.e., penv = P(eik|t ∈ Ci
k|t). Finally, we append

esort[j] to the set Ci
k|t, until the probability that eik|t belongs

to Ci
k|t is greater than 1− ϵ.

Given the sets Ci
k|t computed with Algorithm 1, we

introduce the following finite time optimal control problem:

min
ut

t+N−1∑
k=t

St:k∑
i=1

vik|th(x
i
k|t, u

i
k|t) +

St:t+N∑
i=1

vit+N |tV (xi
t+N |t),

subject to (12a) − (12f),

xi
k|t ∈ X (e),∀e ∈ Ci

k|t,

∀k ∈ {t, . . . , t+N − 1},∀i∈{1, . . . , St:t+N},
(13)

Given the optimal solution from the above problem
{u1,∗

t|t , . . . , u
St:t+N ,∗
t+N−1|t}, we define the MPC policy as:

πMPC(xt) = u∗,1
t|t . (14)

Next, we show that the above policy is recursively feasible
and it guarantees that state and input constraints are satisfied.

IV. PROPERTIES

First, we show that the policy (14) returns a feasible
control action at all times, if (13) is feasible at time t = 0.
Theorem 1. Let Assumptions 1–3 hold. If problem (13) is
feasible at time t = 0, then problem (13) is feasible at
all time steps t ∈ {1, 2, . . .}. Furthermore, we have that
πMPC(xt) ∈ U for all t ∈ {0, 1, . . .}.

Proof: Assume that the belief and control sequences

{b1,∗t|t , . . . , b
|O|Mt:t+N ,∗
t+N |t },

{u1,∗
t|t , . . . , u

|O|Mt:t+N ,∗
t+N−1|t },

(15)

are the optimal solution from problem (13) at time t. For
j ∈ {1, . . . , |O|Mt+1:k}, we define the observation vector
ōj
t:k collecting the jth sequence of observations from time

t + 1 to k and the observation ot measured at time t if
t ∈ Tobs, i.e.,

ōj
t:k =

{
[ot,o

j
t+1:k] If t ∈ Tobs

oj
t+1:k Otherwise.

(16)

Let T = {t + 1, . . . , t + N − 1} and tf = t + N − 1,
we leverage (15) and (16) to define the following candidate
solution:

b̄jk|t+1 =

{
bi,∗k|t If oi

t:k = ōj
t:k and k ∈ T ,

fb(b
i,∗
tf |t, o

i,∗
tf |t, tf ) If oi

t:t+N−1 = ōj
t:t+N−1

ūj
k|t+1 =

{
ui,∗
k|t If oi

t:k = ōj
t:k and k ∈ T ,

ūi If oi
t:t+N−1 = ōj

t:t+N−1
(17)

where ūi satisfies Axi,∗
t+N |t + Būi ∈ XF . Note that the

existence of such a control action is guaranteed from As-
sumption 3. Furthermore, from definition (16) we have that
b̄it+1|t+1 = bt+1 for all i ∈ {1, . . . , |O|Mt+1:k}. From this
fact we have that b̄i,∗k|t+1 is feasible for all k ∈ {t, . . . , t+N}
and i ∈ {1, . . . , St+1:t+1+N}. Furthermore, by equation (17)
we have b̄jk|t+1 = bi,∗k|t for all k ∈ T , which in turn implies
that Cj

k|t+1 = Ci
k|t. Thus, the tree of trajectories associated

with the predicted candidate input from (17) satisfies state
and input constraints. Finally, from Assumption 3, we have
that XF ⊂ X (e) for all e ∈ E , which implies that for all e ∈
E , x ∈ XF and b ∈ B, we have that P(x ∈ X (e)|b) = 1. This
fact, together with the feasibility of the optimal solution (15),
implies that (17) is a feasible solution for problem (13) at
time t+ 1. Thus, πMPC(xt) = u∗,1

t|t ∈ U at all times.
In Proposition 1, we showed that the infinite-dimensional

problem (9) is equivalent to the finite-dimensional chance
constraint problem (12), which is still challenging to solve.
Next, we show that the optimal solution from problem (13)
is feasible for problem (12), i.e., the chance constraint
problem (12) can be approximated by solving (13).

Proposition 2. An optimal solution to problem (13) is a
feasible solution for problem (12).
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Fig. 2: The above figures show the closed-loop trajectories (in blue) for different wind region locations (red ellipse) and noisy observations ot1 and ot2
that are collected at t1 = 4 and t2 = 8. The red dots represent the location of the drone when the observations are collected, and the figures’ sub-captions
detail which observations are collected in each scenario.

Proof: Let (15) be an optimal solution to problem (12). By
definition, we have that (15) satisfies constraints (12a)–(12f)
of problem (12). Furthermore, by construction we have that
xi,∗
k|t ∈ X (e),∀e ∈ Ci

k|t implies that P(xi,∗
k|t ∈ X (e)|bi,∗k|t) ≥

1− ϵ, which leads to the desired result.
Note that the result from Proposition 2 and the recursive

feasibility from Theorem 1 imply that the chance constraint
from (3) is satisfied at all times.

V. NAVIGATION EXAMPLE

We consider the following LTI system:

xt+1 =

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

xt +

0 0
1 0
0 0
0 1

ut, (18)

where at each time t the state xt collects the system position
(Xt, Yt) and velocity (vxt , v

y
t ). The control action ut =

[axt , a
y
t ], where axt and ayt represent the acceleration subject

to saturation constraints, i.e., ut ∈ U = {u ∈ Rm : ||u||∞ ≤
20} for all time t ∈ {0, 1, . . .}.

For the initial condition x0 = [−4, 0, 0, 0] and b0 =
[0.5, 0.5], we tested the proposed strategy on a navigation
task where a drone has to reach a goal state xgoal =
[14, 0, 0, 0], while avoiding with high probability a windy
region Xwind. The MPC problem with horizon N = 22 is
solved with CasADi [22] and the cost function h(x, u) =
0.1||x−xgoal||22+ ||u||22 and V (x) = 103||x−xgoal||22.2 The
exact location of the wind region is partially known and it
has to be inferred by partial noisy observations. In particular,
we know that the center of the windy region may be either at
loc0 = [7,−0.2] or loc1 = [6, 0.2]. We design a controller

2Code available online at: https://github.com/urosolia/
Mixed_observable_MPC. All experiments are run on a 2015 Macbook
Pro with a 2.5GHz i7 and 16 GB of RAM.

that avoids the windy region Xwind with high probability by
enforcing the following chance constraint:

P(xt ̸∈ Xwind|bt) = P(xt ∈ X c
wind|bt) ≥ 0.8, (19)

for all t ∈ {0, 1, . . .}. In the above chance constraint, each
element of the two-dimensional belief vector bt represents
the center of the windy region being in locations loc0 or
loc1. The belief is computed based on the noisy observations
collected at time t1 = 4 and t2 = 8. At time t1 the sensor
returns an observation that is exact with probability 0.6, and
at t2 the probability of the observations being correct is
0.75. Notice that as time passes the accuracy of the sensor
increases as it would be in a real scenario, since we get closer
to the area of interest. Furthermore, we assume to know the
region where the measurements can be taken.

We performed the control task 1000 times by randomly
sampling the wind location and the noisy observations col-
lected by the controller. Out of these 1000 trials, the con-
troller flew the drone over the windy region only 106 times.
Thus, we verify that the chance constraint is empirically
satisfied for the closed-loop system. We emphasize that the
controller does not know the exact location of the windy
area and the control action is computed based on noisy
observations and the known sensor accuracy. Figure 2 shows
the closed-loop trajectories for all possible wind locations
and noisy observations. Notice that in the scenarios from
Figures 2b, 2c, 2f, and 2g, the controller receives contradict-
ing observations about the wind location, thus it decides to
avoid both regions where the wind may be located. Indeed
when the observations collected at time t1 and t2 are not in
agreement, the controller does not have a strong belief about
the wind location and to satisfy the chance constraint (19)
it is forced to avoid both regions. On the other hand, when
the two observations are in agreement the controller decides
to fly over one of the possible windy areas, as shown in
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Fig. 3: Trajectory tree planned by the MPC at different time steps for an experiment where ot1 = loc0 and ot2 = loc0.

Figures 2a, 2d, 2e, and 2h. It is important to underline that,
as the sensor accuracy is 0.6 at time t1 and 0.75 at time
t2, there is a low probability that both measurements are
incorrect and that the controller flies over the wind region.

Figure 3 shows the planned tree of trajectories at time
t ∈ {1, 5, 9} for an experiment where ot1 = loc0 and
ot2 = loc0. Note that observations about the wind location
are collected at time t ∈ Tobs = {t1 = 4, t2 = 8}.
Thus, for time t < t1 the controller plans a trajectory tree
that branches twice, as the controller will behave differently
as a function of the collected observation (Fig. 3a). For
t1 < t < t2, the controller plans a trajectory that branches
once, as only one observation will be collected in the future
(Fig. 3b). Finally, for t > t2 the controller plans a single
trajectory (Fig. 3c). This example shows that the tree of
trajectories encodes a policy where each branch represents
how the closed-loop system would evolve depending on
the collected observations. Most importantly, we notice that
each branch satisfies different constraints, i.e., the planned
trajectory avoids either the wind location #1 (red ellipse),
the wind location #2 (green ellipse), or both regions. These
constraints are computed via Algorithm 1 and they allow us
to guarantee chance constraints satisfaction.

We compare the proposed approach with a scenario MPC,
where the optimization problem is carried out over a trajec-
tory tree and in each branch only the constraint associated
with one environment mode is considered, as in [11], [13].
Table I shows the percentage of constraint violations over
1000 random simulations. Notice that only the proposed
approach empirically satisfies the chance constraint (19).

TABLE I: Comparison with a scenario MPC approach.
Proposed Approach Scenario MPC

% of constraint violation 10.6% 25.5%

VI. CONCLUSIONS

We presented an MPC design for autonomous systems
operating in partially observable discrete environments. First,
we reformulated the MPC problem as a finite-dimensional
optimization problem over a trajectory tree. Then, we pre-
sented an algorithm to compute the constraints enforced at
each tree branch. We demonstrated that our approach guaran-
tees recursive feasibility and chance constraint satisfaction.
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