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Abstract— We propose a decision-making model under un-
certainty to minimize the ex-ante regret in a distributionally
robust manner using the Wasserstein metric, where the regret
is defined as the difference of the expected cost achieved and
the best achievable expected cost for any given distribution of
uncertainty. First, we formulate a minimization problem of the
worst-case ex-ante regret over a Wasserstein ball. Subsequently,
we derive its surrogate as the proposed model using the
minimax inequality, whose objective function is above the
worst-case ex-ante regret on the decision space. Our main
contributions are to show that (i) the approximation error of
our model is uniformly bounded, and it vanishes depending on
the cost function, the uncertainty set, and the Wasserstein ball’s
radius; (ii) our model provides a finite-sample performance
guarantee and is asymptotically optimal; and (iii) an optimal
solution of our model for a class of two-stage linear programs
can be obtained using the cutting-plane method. Simulation
results demonstrate the effectiveness of our model.

Index Terms— Optimization, distributional robustness.

I. INTRODUCTION

Stochastic programming is a fundamental mathematical
framework for decision-making under uncertainty. In the
pursuit of cost reduction, risk-neutral decision-makers seek
to minimize the expected cost. However, this is impossible
in most cases as the underlying distribution of uncertainty is
unknown. Nevertheless, access to sample data of uncertainty
allows for making decisions with desired qualities.

Sample average approximation (SAA) is one of the sim-
plest data-driven methods, where the underlying distribution
is replaced by an empirical distribution [1], [2]. Although
conceptually straightforward, SAA may be unreliable if only
a few sample data are used. Robust optimization (RO) could
be a safe alternative in such a case, typically minimizing
the maximum possible cost for a (possibly data-driven)
uncertainty set [3], [4]. However, RO is criticized for being
too conservative, as it considers only worst-case scenarios.

Distributionally robust optimization (DRO) is yet another
prominent data-driven approach, where worst-case analyses
are conducted over a family of distributions referred to as an
ambiguity set to mitigate the impact of potential misspecifica-
tions in the underlying distribution. The objective function of
a DRO problem in the context of cost minimization is defined
as the worst-case expected cost. The mathematical properties
of a DRO problem heavily depend on the ambiguity set,
which can be defined using, for example, moment conditions
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[5], total variation distances [6] and Wasserstein distances
[7]–[9]. The size of an ambiguity set is adjustable, which
makes DRO more robust than SAA and less conservative
than RO.

Regret minimization also stands as a renowned paradigm
of decision-making under uncertainty. To be precise in the
subsequent discussions, we define and differentiate two re-
gret concepts, ex-ante and ex-post regret. On the one hand,
we employ the term “ex-ante regret” for a decision and a
distribution of uncertainty to describe the difference of the
expected cost incurred by the decision and the infimum of
achievable expected costs (cf. [10]).1 On the other hand, the
“ex-post regret” is defined for a decision and a realization of
uncertainty and indicates the difference of the cost incurred
by the decision and the infimum of achievable costs.

Attributed to the seminal publication [11], regret min-
imization strategies combined with RO and DRO have
demonstrated the capacity to reduce conservatism in their
counterparts focused on minimizing costs, when the latter ap-
proaches could even lead to pessimistic decisions. For exam-
ple, worst-case ex-post regret minimization models based on
RO are studied for linear programs (LPs) [12] and two-stage
LPs [13]. In [14], a worst-case ex-ante regret minimization
model is investigated for machine learning, which reveals
that regret is more robustly compared across an ambiguity
set than cost. However, the solvable data-driven counterpart
of the model cannot account for scenarios out of the sample
set. In [10], a comprehensive regret minimization model is
developed in a multi-stage setting with a variety of risk
measures, which allows the benchmark decision to accurately
forecast future information up to an arbitrary number of steps
ahead. As such, it incorporates both ex-ante and ex-post
regret minimization models based on DRO. However, the
analyses are conducted only for discrete probability spaces.
In [15], a linear-quadratic controller is designed for discrete-
time linear dynamical systems to minimize the worst-case
expected ex-post regret over a 2-Wasserstein ball. In addition,
[16] and [17] study the newsvendor problem to minimize the
worst-case ex-ante regret over moment-based ambiguity sets.

To the best of our knowledge, however, the literature lacks
an ex-ante regret minimization model based on DRO that can
be applied across a wide range of probability distributions
(without assuming the data-generating distribution to be
discrete as [10] or absolutely continuous with respect to the
empirical distribution as [14]) and application domains (not
in a domain-specific manner as [16] and [17]). Motivated

1Whereas we define the ex-ante regret to assess the suboptimality of a
decision in terms of the expected cost for a specified distribution, it can
also be defined under various risk measures, as generalized in [10].
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by this fact, we propose a novel decision-making model to
minimize the ex-ante regret in a distributionally robust way.

To this end, we first formulate a minimization problem
of the worst-case ex-ante regret over a Wasserstein ball,
which is referred to as the exact model. We use the Wasser-
stein metric to consider a general class of data-generating
distributions, which leads to ambiguity sets that are richer
and yet less conservative compared to, for example, moment
conditions or ϕ-divergences [9]. Subsequently, as no globally
optimal algorithm is readily available for the exact model, we
derive its surrogate as the proposed model using the minimax
inequality. The objective function of our model is above the
worst-case ex-ante regret on the decision space.

As our main contributions, we show the following:
• First, the approximation error of our model as a function

on the decision space is bounded. The error becomes
identically zero depending on the cost function, the
uncertainty set, and the Wasserstein ball’s radius.

• Second, our model provides an upper confidence bound
on the ex-ante regret with respect to the true distribution
of uncertainty and is asymptotically optimal.

• Third, an optimal point of our model within any given
tolerance can be obtained by the cutting-plane method
in finite iterations for a class of two-stage LPs.

The rest of this letter is organized as follows: In Section
II, we formulate our regret minimization model and analyze
its properties concerning approximation error. In Section III,
we explain in detail the performance guarantees offered by
our model with respect to the underlying distribution of
uncertainty. In Section IV, we discuss the tractability of our
model. In Section V, we provide simulation results.

Notation: We use R, R+, ξ ∈ Rm, Ξ, P⋆, and E to repre-
sent the real number set, the non-negative real number set,
the random vector of interest, a knowledge-based uncertainty
set of ξ (we have ξ ∈ Ξ deterministically), the unknown
distribution of ξ, and the expectation operator, respectively.
We assume that Ξ is closed. We let P (Ξ) and δξ denote the
set of Borel probability measures on Ξ and the Dirac delta
distribution centered at any ξ ∈ Ξ, respectively. We assume
that a set of N i.i.d. samples ξ̂1, . . . , ξ̂N of ξ is given, which
is a random object governed by the N -fold product P⋆N of
P⋆. For any vectors v1, . . . , vN of the same dimension, we
let v1:N := (v1, . . . , vN ). Moreover, we denote by 1m and
V (·) the m-dimensional vector of ones and the vertex set of
any given closed convex polytope, respectively.

II. PROPOSED MODEL

Our goal is to minimize the worst-case ex-ante regret using
Wasserstein DRO. This can be ideally achieved by solving
the optimization problem

inf
x∈X

R̂a
ε,p (x) , (1)

where x ∈ Rn and X represent the decision vector and its
non-empty feasible set, respectively. Here, R̂a

ε,p (x) denotes
the worst-case ex-ante regret over a p-Wasserstein ball for
any p ∈ [1,∞), i.e., R̂a

ε,p (x) := supP∈P̂ε,p
Ra (x,P),

where Ra (x,P) := Eξ∼P [f (x, ξ)] − infy∈X Eξ∼P [f (y, ξ)]

denotes the ex-ante regret of choosing x ∈ X , with a cost
function f : X × Ξ → R of interest, when ξ follows
P ∈ P (Ξ). The Wasserstein ball P̂ε,p := {P ∈ P (Ξ) :
Wp(P, P̂) ≤ ε} is of radius ε ∈ R+ and centered at the em-
pirical distribution P̂ := 1

N

∑N
i=1 δξ̂i , where Wp (P,P′) :=

{infπ∈Π(P,P′)

∫
Rm×Rm ∥ξ − ξ′∥p π (dξ, dξ′)}1/p denotes the

p-Wasserstein distance of P,P′ ∈ P (Rm) defined with any
norm ∥·∥ on Rm. Moreover, Π(P,P′) represents the set of
all joint distributions of (ξ, ξ′) ∈ Rm × Rm with marginals
P and P′ for ξ and ξ′, respectively. Unless stated explicitly
otherwise, ε ∈ R+, p ∈ [1,∞), and ∥·∥ are arbitrary.

It is worth contrasting R̂a
ε,p with the objective functions

of the other two Wasserstein DRO approaches mentioned
in Section I. To be specific, the worst-case expected cost
minimization model (M1) is formulated as

inf
x∈X

sup
P∈P̂ε,p

Eξ∼P [f (x, ξ)] .

Further, the worst-case expected ex-post regret minimization
model (M2) is written as

inf
x∈X

R̂p
ε,p (x) = inf

x∈X
sup

P∈P̂ε,p

Eξ∼P [R
p (x, ξ)] , (2)

where Rp : X × Ξ → R+, Rp (x, ξ) := f (x, ξ) −
infy∈X f (y, ξ) represents the ex-post regret of a decision x
with respect to a realization of ξ. We refer to the models M1
and M2 as needed, such as when discussing the properties
of our model and numerically testing its performance.

Throughout this letter, we impose the following three
assumptions on f :

Assumption 1: We have infx∈X ,ξ∈Ξ f (x, ξ) > −∞.
Assumption 2: We have supx∈X ,ξ∈Ξ f (x, ξ) < ∞.
Assumption 3: For any x ∈ X , f (x, ·) is measurable.
We introduce Assumptions 1 and 2 to have the approxi-

mation error of our model as a function on X well-defined;
note that if supξ∈Ξ f (x′, ξ) is infinite for some x′ ∈ X ,
so is R̂a

ε,p (x
′) for any ε > 0. Assumption 3 is required to

reformulate (1) using the strong duality result [8, Th. 7] for
Wasserstein DRO that is used in the following paragraph.

For notational simplicity, we define g : X 2 × Ξ → R,
g (x, y, ξ) := f (x, ξ) − f (y, ξ) and g̃ : X 2 × ΞN →
R, g̃ (x, y, ξ1:N ) := 1

N

∑N
i=1 g (x, y, ξi). As g (x, y, ·) is

measurable for any x, y ∈ X , [8, Th. 7] implies that
R̂a

ε,p (x) = sup
P∈P̂ε,p,y∈X

Eξ∼P [g (x, y, ξ)] (3)

= sup
y∈X

inf
λ∈R+

sup
ξ1:N∈ΞN

εpλ+ R̂s
p (x, y, ξ1:N , λ) , (4)

where R̂s
p (x, y, ξ1:N , λ) := g̃ (x, y, ξ1:N ) − 1

N

∑N
i=1 λ∥ξi −

ξ̂i∥p. Further, λ ∈ R+ is the Lagrange multiplier associated
with the Wasserstein distance constraint P ∈ P̂ε,p in (3); see
the proof of [7, Th. 4.2]. Thus, (1) is rewritten as

inf
x∈X

sup
y∈X

inf
λ∈R+

sup
ξ1:N∈ΞN

εpλ+ R̂s
p (x, y, ξ1:N , λ) . (5)

To our knowledge, however, no globally optimal algorithm
for (5) is readily available in the literature except for trivial
cases where f (x, ξ) is additively separable, i.e., f (x, ξ) =



f1 (x) + f2 (ξ) for some f1 : X → R and f2 : Ξ → R.2 3

Hence, we derive a surrogate of (5) as

inf
x∈X

R̂ε,p (x) , (6)

which is the proposed regret minimization model, where our
objective function R̂ε,p : X → R is defined as

R̂ε,p (x) := inf
λ∈R+

sup
y∈X ,ξ1:N∈ΞN

εpλ+ R̂s
p (x, y, ξ1:N , λ) .

The objective function is designed by applying the minimax
inequality to (4). Thus, R̂a

ε,p ≤ R̂ε,p by construction. More-
over, (6) can be regarded as an RO problem, which suggests
the possibility of applying existing RO algorithms [18]. The
tractability of our model is elaborated on in Section IV.

In what follows, we discuss some properties of the pro-
posed model as a surrogate of (1). First, we show that the
objective function of our model is below the worst-case
expected ex-post regret on the decision space.

Proposition 1: For all x ∈ X , R̂ε,p(x) ≤ R̂p
ε,p(x).

Proof: As Rp (x, ·) is measurable for any x ∈ X ,
according to [8, Th. 7], R̂p

ε,p (x) is equal to

inf
λ∈R+

{
εpλ+

1

N

N∑
i=1

sup
ξ∈Ξ,y∈X

g (x, y, ξ)− λ∥ξ − ξ̂i∥p
}
.

Since 1
N

∑N
i=1 supy∈X g (x, y, ξi) ≥ supy∈X g̃ (x, y, ξ1:N )

for any (x, ξ1:N ) ∈ X × ΞN , the statement holds.
As a corollary to Proposition 1, we additionally show that

the approximation error of our model is bounded. To be
precise, we define ∆̂ε,p : X → R+, ∆̂ε,p (x) := R̂ε,p (x) −
R̂a

ε,p (x) to represent the approximation error.
Corollary 1: The approximation error is uniformly

bounded as follows: ∆̂ε,p ≤ infx∈X R̂p
ε,p (x).

Proof: For any x ∈ X , we observe that

∆̂ε,p (x) ≤ supP∈P̂ε,p
Eξ∼P [R

p (x, ξ)]

− supP′∈P̂ε,p,y∈X Eξ∼P′ [g (x, y, ξ)]

= supP∈P̂ε,p
Eξ∼P [f (x, ξ)− infy′∈X f (y′, ξ)]

− supP′∈P̂ε,p,y∈X Eξ∼P′ [f (x, ξ)− f (y, ξ)]

≤ supP∈P̂ε,p
infy∈X Eξ∼P [f (y, ξ)− infy′∈X f (y′, ξ)]

≤ infy∈X supP∈P̂ε,p
Eξ∼P [R

p (y, ξ)] ,

where the penultimate and last inequalities follow from the
fact that we have supP′∈P̂ε,p

Eξ∼P′ [f (x, ξ)− f (y, ξ)] ≥
Eξ∼P [f (x, ξ)− f (y, ξ)] for any (P, x, y) ∈ P̂ε,N ×X 2 and
the minimax inequality, respectively. As infx∈X R̂p

ε,p (x) is
finite under Assumptions 1 and 2, the statement holds.

Subsequently, we show that the approximation error can
vanish regardless of x ∈ X , depending on g̃, Ξ, and ε.

2In such cases, we can obtain a solution to (1) by solving the optimization
problem infx∈X f1 (x) without uncertainty as g (x, y, ξ) = f1 (x)−f1 (y)
is independent of ξ. Thus, depending on the tractability of infx∈X f1 (x),
we can obtain a solution to (1) in a computationally efficient way.

3While the choice between the ex-ante and ex-post regret in the context of
distributionally robust regret minimization depends on the decision-maker’s
preference, (1) is computationally more challenging than M2 as only M2 is
known to admit an inf-sup reformulation (see the proof of Proposition 1).

Proposition 2: Suppose that either (i) supy∈X g̃(x, y, ·) is
upper semicontinuous for any x ∈ X and ε = 0 or (ii)
D(Ξ) := supξ,ξ′∈Ξ∥ξ − ξ′∥ < ∞ and ε ≥ D(Ξ). Then, we
have ∆̂ε,p = 0.

Proof: First, we assume that (i) holds. Let g :=
supx,y∈X ,ξ1:N∈ΞN g̃ (x, y, ξ1:N ), which is finite due to As-
sumptions 1 and 2. For any x ∈ X and γ > 0, we have

R̂0,p (x) ≤ sup
y∈X ,ξ1:N∈ΞN

R̂s
p (x, y, ξ1:N , g/γ)

= sup
y∈X ,ξ1:N∈ΞN

R̂s
p (x, y, ξ1:N , g/γ)

s.t.
1

N

∑N

i=1
∥ξi − ξ̂i∥p ≤ γ, (7)

where the inequality and equality follow from the definition
of R̂ε,p and the fact that R̂0,p ≥ 0, respectively. Since g ≥ 0,
we have R̂0,p (x) ≤ G (x, γ) for any x ∈ X and γ > 0,
where G (x, γ) := supy∈X ,ξ1:N∈ΞN {g̃ (x, y, ξ1:N ) : (7)}.
If ∆̂0,p (x

′) > 0 for some x′ ∈ X , then R̂0,p (x
′) ∈(

R̂a
0,p (x

′) , G (x′, γ)
]

for any γ > 0. This is contradictory
because if supy∈X g̃ (x′, y, ·) is upper semicontinuous, then
limγ→0+ G (x′, γ) = R̂a

0,p (x
′). Thus, we have ∆̂0,p = 0.

Next, we assume that (ii) holds. We have for any x ∈ X that

R̂a
ε,p (x) = sup

y∈X
inf

λ∈R+

sup
ξ1:N∈ΞN

εpλ+ R̂s
p (x, y, ξ1:N , λ)

= sup
ξ∈Ξ,y∈X

g (x, y, ξ) = sup
P∈P̂ε,p

Eξ∼P [R
p (x, ξ)] = R̂p

ε,p(x),

where the second equality holds as 1
N

∑N
i=1∥ξ − ξ̂i∥p ≤ εp

for any ξ1:N ∈ ΞN . Since R̂a
ε,p ≤ R̂ε,p ≤ R̂p

ε,p, it is further
deduced that R̂a

ε,p = R̂ε,p, i.e., ∆̂ε,p = 0.
Proposition 2 suggests that our model can cover both the

ex-ante regret minimization model based on SAA,
inf
x∈X

Ra
(
x, P̂

)
, (8)

and the worst-case ex-post regret minimization model based
on RO, infx∈X supξ∈Ξ Rp (x, ξ). The solution set of (8), if it
exists, is identical to that of the expected cost minimization
model based on SAA, infx∈X f̂N (x) := Eξ∼P̂ [f (x, ξ)].
However, for any ε > 0, solving either (1) or (6) typically
does not provide a solution to M1. We numerically compare
our model and M1 in Section V. In the following section,
we analyze performance guarantees offered by our model.

III. PERFORMANCE GUARANTEES

Minimizing the worst-case expected cost over a Wasser-
stein ball can provide both finite-sample and asymptotic
performance guarantees [7], [8]. In this section, we show
that our regret minimization model can similarly offer two
performance guarantees, assuming that a solution to it is
attainable. We denote any solution and the optimal value
of (6) by x̂⋆

ε,p,N and R̂⋆
ε,p,N , respectively. Further, we define

R : X → R+, R (x) := Ra (x,P⋆), to represent the true
ex-ante regret. Note that we have R⋆ := infx∈X R (x) = 0.

First, we prove that the ex-ante regret with respect to the
underlying distribution of uncertainty can be bounded above
with high probability using our model.



Proposition 3: Suppose that Eξ∼P⋆ [exp(∥ξ∥α)] < ∞ for
some α > p and p ̸= m/2. For any β∈(0, 1] and N≥1, there
exists an ε > 0 such that P⋆N [R(x̂⋆

ε,p,N ) ≤ R̂⋆
ε,p,N ] ≥ 1−β.

Proof: According to [8, Th. 18], there exists some ε > 0
as a function of β and N such that P̂ε,p contains P⋆ with
probability at least 1 − β, i.e., P⋆N

[
P⋆ ∈ P̂ε,p

]
≥ 1 − β.4

This implies that P⋆N [R ≤ R̂a
ε,p] ≥ 1 − β. As we have

R̂a
ε,p ≤ R̂ε,p, the statement holds.
Subsequently, we show that our model is asymptotically

optimal as the sample size tends to infinity. We define h :
X → R, h (x) := Eξ∼P⋆ [f (x, ξ)]. Further, we let f̂⋆

N :=
infx∈X f̂N (x) and h⋆ := infx∈X h (x).

Proposition 4: Suppose that g (x, y, ·) is Lipschitz contin-
uous for any x, y ∈ X and f̂N uniformly converges to h a.s.
Then, we have

R
(
x̂⋆
εN ,p,N

)
→ R⋆ a.s. as N → ∞

for any sequence εN ≥ 0 such that εN → 0.
Proof: To explicitly express the dependence of R̂ε,p and

R̂a
ε,p on N , we use R̂ε,p,N and R̂a

ε,p,N to represent them in
this proof, respectively. Let L := supx,y∈X L (x, y) where
L (x, y) denotes the Lipschitz constant of g (x, y, ·). As
R̂εN ,p,N (x) ≤ εpNL+ supy∈X ,ξ1:N∈ΞN R̂s

p

(
x, y, ξ1:N , L

)
=

εpNL+ supy∈X g̃ (x, y, ξ̂1:N ) for any x ∈ X , we have

R̂εN ,p,N ≤ R̂a
0,p,N + εpNL, (9)

which leads to supx∈X |R̂εN ,p,N (x)−R(x)| ≤ εNL +
supx∈X |R̂a

0,p,N (x)−R(x)|. Meanwhile, R̂a
0,p,N uniformly

converges to R a.s., because supx∈X |R̂a
0,p,N (x)−R(x)| ≤

supx∈X |f̂N (x)−h(x)|+ |f̂⋆
N−h⋆|, f̂N uniformly converges

to h a.s., and f̂⋆
N→h⋆ a.s. as indicated by the convergence

of f̂N [20, Proposition 5.2]. Thus, R̂εN ,p,N uniformly con-
verges to R a.s., implying that R(x̂⋆

εN ,p,N ) → R̂⋆
εN ,p,N a.s.

Taking the infimum of both sides in (9) for all x ∈ X
yields R̂⋆

εN ,p,N ≤ εpNL. This suggests that R̂⋆
εN ,p,N→0

a.s., as 0 ≤ R̂⋆
εN ,p,N by definition. Consequently, we have

R(x⋆
εN ,p,N ) → 0 a.s. Since R⋆=0, the proof is complete.

For detailed descriptions of conditions for the convergence
of f̂N assumed in Proposition 4, the reader is referred to
[2] and the references therein. In the following section, we
discuss the tractability of our model.

IV. SOLUTION METHOD

Our model (6) can be regarded as an RO problem to
determine (x, λ) under uncertainty of (y, ξ1:N ), which is thus
intractable in general [3].5 For example, suppose that X ⊂ R
and Ξ are compact convex polytopes, f (x, ξ) = |x−ξ⊤Mξ|
for any positive-definite matrix M ∈ Rm×m, {ξ⊤Mξ :
ξ ∈ Ξ} ⊆ X and ε = D(Ξ). As Proposition 2 holds
and infx∈X ,ξ∈Ξ f (y, ξ) = 0, x̂⋆

ε,p,N = 1
2 supξ∈Ξ ξ⊤Mξ

uniquely solves (6). Notably, maximizing the quadratic form
ξ⊤Mξ in ξ is NP-hard and intractable [21]. Nonetheless,
even if it is intractable, a solution to an RO problem may be

4Weaker conditions for this inequality to hold can be found in [19, Th. 2].
5We describe an optimization problem as intractable if no polynomial-

time algorithm is available for it under the common assumption P̸=NP [4].

obtained by the cutting-plane method [22]. In this section, we
show that despite the general intractability of (6), an optimal
point within any given tolerance can be obtained using the
cutting-plane method in finite iterations. This achievement is
contingent on the conditions of X , Ξ, f , p, and ∥·∥, but not
ε. We first describe how the cutting-plane method can tackle
(6) in general, assuming that a solution to it is attainable.

A. General Idea: Cutting-Plane Approach

By the cutting-plane method, (6) is decomposed into a
master problem and a subproblem that are iteratively solved.
The master problem is a relaxation of (6), which can be
generally written as

inf
x∈X ,λ∈R+,η∈R

{
εpλ+ η : (x, λ, η) ∈ MK

}
, (10)

where MK is a convex polytope defined at each iteration
step K ≥ 1 such that MK ⊇ M := {(x, λ, η) ∈ Rn+2 :
η ≥ R̂s

p (x, y, ξ1:N , λ) ∀ (y, ξ1:N ) ∈ X ×ΞN}. Note that the
solution set of (10) associated with (x, λ) for MK = M
is identical to that of (6). For any (x, λ) ∈ X × R+, we
consider the optimization problem

sup
y∈X ,ξ1:N∈ΞN

R̂s
p (x, y, ξ1:N , λ) . (11)

Given any solution
(
x(K), λ(K), η(K)

)
to the master problem

(10), if it exists, the subproblem is formulated to assess its
optimality as (11) for (x, λ) = (x(K), λ(K)). Let U ′

K denote
the optimal value of the subproblem. Then, LK := εpλ(K)+
η(K) and UK := εpλ(K)+U ′

K are respectively a lower bound
and an upper bound of R̂⋆

ε,p,N associated with x = x(K). As
such, if a convergence criterion based on LK and UK is met,
e.g., UK −LK ≤ ρ for a given tolerance ρ ≥ 0, then x(K) is
returned as our decision and the iteration stops. Otherwise,
a linear constraint, often referred to as a cut, is added to the
master problem to refine MK and obtain MK+1.

In principle, an optimal solution to (6) can be attained by
the cutting-plane method in finitely many iterations if we
can build MK , such that the solution sets of (10) and (6)
associated with (x, λ) are guaranteed to be equal for some
K < ∞, and obtain a solution to (10) for any K < ∞.
As a special case, we show in the next subsection that
our model for two-stage linear programming under right-
hand side uncertainty or objective uncertainty is solvable
in this sense, if an oracle based on the simplex method
is available for exactly solving LPs and mixed-integer LPs
(MILPs). Notably, two-stage linear programming highlights
its practical relevance across various applications [23]–[25].

B. Special Case: Two-Stage Linear Programming

In this subsection, we make the following assumption in
addition to Assumptions 1–3:

Assumption 4: (i) X is a compact convex polytope, and
Ξ is a closed convex polytope (ii) For any (x, ξ) ∈ X × Ξ,
f (x, ξ) is equal to the optimal value of the LP to determine
a decision vector z,

inf
z∈Rn2

+

{
(Aξ + a)

⊤
z : Bz ≥ Cx+ Eξ + b

}
, (12)



where either A ∈ Rn2×m or E ∈ Rr×m is zero while
B ∈ Rr×n2 , C ∈ Rr×n, a ∈ Rn2 , and b ∈ Rr. (iii) The
Wasserstein distance is of order 1 and defined with the 1- or
∞-norm, i.e., p = 1 and ∥·∥ ∈ {|·|, ∥·∥∞}.

In what follows, we show that an optimal point of (6)
within any given tolerance can be obtained using the cutting-
plane method with the oracle in finite iterations under
Assumption 4 when A is zero. We can similarly prove that
the same holds when E is zero (see [13]).6 Without loss of
generality, we let X ⊆ Rn

+. As for Assumption 4-(iii), we
first describe the method for the case with the 1-norm and
briefly explain how it extends to the case with the ∞-norm.

The dual of (12) is written as the LP supν∈N (Cx+Eξ+
b)⊤ν where ν and N := {ν ∈ Rr

+ : B⊤ν ≤ a} denote the
dual decision vector and its feasible set, respectively. Thus,
introducing auxiliary variables q+i , q

−
i ∈ Rm

+ for each i ≤ N

such that ξi = ξ̂i + q+i − q−i , we can rewrite (11) as

sup
w∈W,ν1:N∈NN

ϕ (w, ν1:N , x, λ) , (13)

where we define w :=
(
y, z1:N , q+1:N , q−1:N

)
,

W := {
(
y, z1:N , q+1:N , q−1:N

)
∈ X × Rn2N+2mN

+ :

− Cy +Bzi − E
(
q+i − q−i

)
≥ Eξ̂i + b ∀i ≤ N,

ξ̂i + q+i − q−i ∈ Ξ ∀i ≤ N},

and ϕ(w, ν1:N , x, λ) := 1
N

∑N
i=1{−λ1⊤

m(q+i +q−i )−a⊤zi+

[Cx+E(ξ̂i+q+i −q−i )+b]⊤νi}. For any (x, λ)∈X×R+, (13)
can be written as an LP in canonical form with respect to w
for a fixed ν1:N and vice versa. Thus, (13) is rewritten as

sup
w∈V(W),ν1:N∈V(NN )

ϕ (w, ν1:N , x, λ) . (14)

As a result, we can reformulate (6) equivalently as the LP

inf
x∈X ,λ∈R+,η∈R

{
ελ+ η : (x, λ, η) ∈ M}, (15)

where M := {(x, λ, η) ∈ Rn+2 : η ≥ ϕ(w, ν1:N , x, λ)
∀(w, ν1:N ) ∈ V(W) × V(NN )} is a convex polytope.
Since it may be impractical to identify all the vertices of
W and NN , we address (15) by the cutting-plane method
and decompose it into the master problem (10) and the
subproblem (14). With this aim, we let MK = {(x, λ, η) ∈
Rn+2 : η ≥ ϕ (w(k), ν

(k)
1:N , x, λ) ∀k = 0, . . . ,K − 1} with

any (w(0), ν
(0)
1:N ) ∈ W × NN such that q+1:N and q−1:N are

zero. For each k ≥ 1, (w(k), ν
(k)
1:N ) denotes any solution to

(14) for (x, λ) = (x(k), λ(k)). We impose the initialization
condition on (w(0), ν

(0)
1:N ) to make (10) bounded. As (15) is a

finite LP with M defined by |V (W)||V (N )|N hyperplanes
each of which corresponds to a cut, the iteration terminates
in O

(
|V (W)||V (N )|N

)
steps [26, Proposition 1].

However, the subproblem (14) is not easy to solve due to
the bilinear terms ν⊤i Eq+i ’s and ν⊤i Eq−i ’s in the objective
function. To add a valid cut to the master problem, we find
a vertex w(K) of W and that ν

(K)
1:N of NN separately as

6However, it is unclear whether the cutting-plane method for our model
can converge under any other condition than Assumption 4.

follows: First, we obtain ν
(K)
1:N by solving an MILP equivalent

of (13). This MILP can be acquired by explicitly imposing
the Karush–Kuhn–Tucker condition for (12) and applying the
Big-M method (see [13] and [26] for details). Subsequently,
we obtain w(K) by solving (13) with ν fixed to ν

(K)
1:N , which

is an LP. Using the solution to the MILP reformulation of
(13), we can locate a point w′∈W such that (w′, ν

(K)
1:N ) attains

the optimal value of (13). This ensures the existence of w(K).
Note that all the problems in the iteration process are an LP
or MILP. Hence, we conclude that our model (6) is solvable.

When the ∞-norm is adopted instead of the 1-norm, the
cutting-plane method can be applied similarly after replacing
w, W , and ϕ (w, ν1:N , x, λ) with w̃ := (w, ζ1:N ), W̃ :=
{(w, ζ1:N ) ∈ W × RN

+ : ζi1m ≥ q+i , ζi1m ≥ q−i ∀i ≤
N}, and ϕ̃ (w̃, ν1:N , x, λ) := 1

N

∑N
i=1{−λζi−a⊤zi+[Cx+

E(ξ̂i + q+i − q−i ) + b]⊤νi}, respectively.

V. NUMERICAL EXPERIMENT

We empirically examine the performance of our model
on the newsvendor problem to determine the inventory level
x∈X=[0, 100] before the demand ξ∈Ξ=[0, 100] is revealed.7

The cost function is defined as f (x, ξ) = cx− qmin {x, ξ}
where c=1 and q=5 denote the unit cost and price, respec-
tively. Furthermore, we let p = 1 and choose the 1-norm, i.e.,
∥·∥ = |·|. Note that f (x, ξ) can be written as the optimal
value of a two-stage LP in the form discussed in Section
IV-B, for which our model is solvable with the cutting-plane
method. Specifically, we have f (x, ξ) = infz1,z2∈R+

{z1 −
z2 : z1 − z2 ≥ (c− q)x, z1 − z2 ≥ cx− qξ}. We model the
underlying distribution of ξ as the normal distribution with
mean µ=20, 80 and standard deviation 30 truncated over Ξ.
Given a randomly generated sample set of size N = 10,
we compare our model against M1 and M28 for ε=eD (Ξ)
with e=0, 0.0001, 0.001, . . . , 1 in terms of the maximum ex-
ante regret over the Wasserstein ball and the ex-ante regret
with respect to the underlying distribution. As the maximum
ex-ante regret is difficult to calculate exactly, we evaluate an
upper bound (UB) and a lower bound (LB) on it. Specifically,
for any decision x ∈ X yielded by each model, the UB
and LB are computed as R̂ε,p (x) and supP∈P̂e

ε,p
Ra

ε,p (x,P),
respectively, where P̂e

ε,p ⊆ P̂ε,p contains only perturbed
empirical distributions (see [8, Th. 6]). Moreover, the true
ex-ante regret is computed approximately using 100,000
randomly generated scenarios of ξ. For statistical robustness,
we repeat the experiment with 100 independent sample sets.

Tables I and II show the results averaged over the 100
simulation runs. From Table I, we observe that the average
UBs associated with our model are strictly lower than the
average LBs associated with the others when e ∈ (0, 1);
the three models have the same solution for e=0, while our
model and M1 coincide when e = 1 by construction. This
implies that our model can effectively mitigate unexpected

7The source code of our implementation is available online:
https://github.com/CORE-SNU/DR-Regret.

8For the newsvendor problem of our interest, M1 admits an LP reformu-
lation [7, Corollary 5.1] while M2, which is of the inf-sup form (see the
proof of Proposition 1), can be solved in the same manner as our model.



TABLE I
AVERAGE UPPER AND LOWER BOUNDS ON MAXIMUM Ex-Ante REGRET

(e, µ) (0,20) (0.0001, 20) (0.001, 20) (0.01, 20) (0.1, 20) (1,20)

M1 UB 0.0000 0.0499 0.4954 4.3375 48.0910 80.0000
LB 0.0000 0.0495 0.4908 4.0923 47.0278 80.0000

M2 UB 0.0000 0.0500 0.4966 4.3611 33.5252 400.0000
LB 0.0000 0.0500 0.4958 4.1357 30.5143 400.0000

Ours UB 0.0000 0.0307 0.3067 3.0670 29.6306 80.0000
LB 0.0000 0.0000 0.0362 2.2741 26.2649 80.0000

(e, µ) (0,80) (0.0001, 80) (0.001, 80) (0.01, 80) (0.1, 80) (1,80)

M1 UB 0.0000 0.0500 0.4815 4.1375 29.5060 80.0000
LB 0.0000 0.0500 0.4789 3.8864 29.5060 80.0000

M2 UB 0.0000 0.0500 0.4819 3.9024 27.1683 400.0000
LB 0.0000 0.0500 0.4789 3.6513 26.4267 400.0000

Ours UB 0.0000 0.0282 0.2824 2.8142 23.1424 80.0000
LB 0.0000 0.0004 0.0726 2.4572 22.5625 80.0000

TABLE II
AVERAGE TRUE Ex-Ante REGRET

(e, µ) (0,20) (0.0001, 20) (0.001, 20) (0.01, 20) (0.1, 20) (1,20)
M1 4.2661 3.5083 3.5083 3.5083 14.5975 15.7801
M2 4.2661 4.1674 4.1674 4.1674 4.0248 96.4340

Ours 4.2661 2.4985 2.4985 2.4985 2.2567 15.7801
(e, µ) (0,80) (0.0001, 80) (0.001, 80) (0.01, 80) (0.1, 80) (1,80)

M1 2.9320 2.5129 2.5530 2.6827 2.1488 2.3963
M2 2.9320 2.6402 2.6402 2.6479 2.8457 243.8004

Ours 2.9320 2.4033 2.4033 2.4021 1.1958 2.3963

surges in ex-ante regret compared to M1 and M2. Table II
indicates that we can also reduce the ex-ante regret with re-
spect to the underlying distribution of uncertainty by properly
adjusting the Wasserstein ball’s radius. However, finding an
optimal radius for our model is a challenging task. Although
cross-validation can reportedly yield a satisfactory radius
for many Wasserstein DRO problems [7], [9], it involves
dealing with multiple Wasserstein DRO problems and is thus
computationally demanding. One possible alternative would
be to extend the statistical inference method [27] designed
with the focus on Wasserstein DRO problems for minimizing
costs to our setting, which we leave as a future work.

VI. CONCLUDING REMARKS

We presented a novel distributionally robust ex-ante regret
minimization model, whose objective function approximates
the worst-case ex-ante regret over a Wasserstein ball. We
proved that its approximation error is bounded, which even
becomes zero under certain conditions. Furthermore, it offers
performance guarantees on the true ex-ante regret. While a
solution to our model for a class of two-stage LPs can be
obtained by the cutting-plane method, it is unclear if this
is the only class with a convergence guarantee. Moreover,
it remains unanswered whether our model can be solved
using alternative techniques. Hence, exploring the tractability
of our model across a broader range of decision spaces,
uncertainty sets, and cost functions is an important future
research direction.
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