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Abstract— For control-affine nonlinear systems, we augment
a predefined Lyapunov-based global stabilizer with a hybrid
obstacle avoidance design preserving the Lyapunov decrease.
While the method can be applied to the general class of
control-affine systems, the size of the avoidance neighborhood
is not a design parameter. Our design shows that a system can
achieve global asymptotic stability with simultaneous unsafe set
avoidance via hybrid feedback, which overcomes well-known
issues of topological obstructions.

Index Terms— Lyapunov methods, constrained control, sta-
bility of hybrid systems

I. INTRODUCTION

In recent years, the classical Lyapunov-based stabilization
problem for continuous-time dynamical systems has been
endowed with additional constraints on forward invariance
of certain safe (or viable) sets, by augmenting classical Lya-
punov functions with barrier certificates (see, e.g., [1], [2],
[12], [15], [16] and references therein). Barrier certificates,
or barrier functions, ensure that certain unsafe or undesirable
sets are never reached by the solutions, as long as the system
is initialized outside those sets.

Combining (Lyapunov-based) stabilizing feedback and
(barrier-based) avoidance laws ensuring safety is a chal-
lenging problem, as well clarified in [4], [5], where it is
emphasized that discontinuous or hybrid feedback is gener-
ally required (see also [14, Fig. 7]). Classical and historical
solutions, such as artificial potential fields [11], are limited
to dynamics where setting the input to zero one can stop
the state (the so-called driftless case). Obstacle avoidance
with drift is more challenging. In fact, even for the linear
case, global stabilizers with point avoidance are nontrivial
and approaches necessarily depend on the position of the
obstacle and on corresponding controllability/stabilizability
assumptions (see the counterexamples in [7, Sec. 2]). Our
recent works [6], [7], focusing on linear system dynamics,
provide solutions when the obstacle to be avoided does not
belong to the set of induced equilibria, whereas [3] provides
a partial solution when the obstacle sits on an induced
equilibrium. Nonlinear generalizations of these techniques
do not provide general constructive techniques. For example,
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they are given as extensions of the driftless case developed
in [17] with certain compatibility conditions, or they are just
sketched in [8] without any stability proof.

In this paper we exploit the “avoidance shell” construction
proposed in [7] for the linear case and show that it can
be exploited for stabilization with avoidance tasks also in
the presence of nonlinear dynamics. The design that we
propose is different from the one in [6], [7] as it exploits the
gradient of the Lyapunov function to prevent any increase of
the Lyapunov function during the avoidance maneuver. As
a consequence, multiple obstacles, arbitrarily close to each
other can be avoided, while preserving the stabilization task
certified by a prescribed Lyapunov function. The downside
of the proposed construction is that the size of the obstacles
can not be specified as a parameter, making the proposed
redesign in principle not suitable to address problems such
as collision avoidance among robots. In light of these consid-
erations, the main goal of this work is to propose sufficient
conditions under which the general problem of simultaneous
avoidance and stabilization can be solved with an appropriate
construction of the avoidance controller. Section II defines
the problem, Section III presents the novel avoidance mech-
anism, Section IV presents the hybrid automaton ensuring
stabilization and avoidance, together with our main result,
and a numerical example is discussed in Section V.
Notation: For x, y ∈ Rn we use the vector norm |x| =√∑n

i=1 x
2
i . and |x|y = |x − y|. For A ⊂ Rn closed and

r > 0 we define Br(A) = {x ∈ Rn|miny∈A |x− y| ≤ r}
and for A = {0} we use Br = Br(0). The closure, the
boundary and the interior of a set are denoted by A, ∂A
and int(A), respectively. For 1, β ∈ N, we use the notations
Nβ = {1, . . . , β} and Zβ = {−β, . . . , 0, . . . , β}. The class
of positive definite functions is defined as P = {ρ : Rn →
R≥0| ρ continuous, ρ(0) = 0, ρ(x) > 0 ∀ x ̸= 0}.

II. SETTING & PROBLEM FORMULATION

In this paper we consider control-affine dynamical systems

ẋ = f(x) + g(x)u, x0 = x(0) ∈ Rn (1)

with state x ∈ Rn, input u ∈ Rm, non-trivial drift term
f : Rn → Rn, and g : Rn → Rn×m. We require that f
and g be locally Lipschitz. Additionally, we use the notation
gi : Rn → Rm, i ∈ Nm, to refer to the individual columns of
g, and write g = [g1(x) · · · gm(x)]. Here, and throughout the
paper, by a non-trivial drift term we mean that f(x) cannot be
cancelled via a feedback transformation u = −κ(x)+v such
that f(x) − g(x)κ(x) = 0 for all x ∈ Rn. As stated in the
introduction, the paper discusses a solution to the following
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problem, translating the results in [7] from the linear setting
to the nonlinear setting in (1).

Problem 1: (Semiglobal x̂-avoidance augmentation with
GAS) Given an open set U ⊂ Rn, 0 ∈ U , a set of obstacle
centroids {x̂1, . . . , x̂β} ∈ U \ {0}, β ∈ N, that define
spherical obstacles and a Lipschitz continuous stabilizing
state feedback us(x) = κs(x), for a sufficiently small δ > 0,
design a feedback selection of u that guarantees

(i) (Semiglobal preservation) the feedback u(x) matches
the original stabilizer u(x) = κs(x) for all x ∈ U \
∪β
i=1Bδ(x̂i);

(ii) (Semiglobal x̂-avoidance) all solutions starting outside
the balls ∪β

i=1Bδ(x̂i) never enter a suitable avoidance
neighborhood Bχi(x̂i), having measure greater than
zero, around the centroids x̂i, i ∈ Nβ ;

(iii) (GAS) uniform global asymptotic stability of the origin
relative to U , i.e., the origin is Lyapunov stable for the
dynamics and solutions starting in U (including those
starting at x̂i, i ∈ Nβ), converge uniformly to zero. ⌟

We point out that the results in this paper constitute
theoretical results showing global stabilizability with local
avoidability properties of general control affine systems
where the avoidance neighborhood cannot be specified a
priori. This is in contrast to papers whose controller designs
are based on specific dynamics and specific obstacles and
in contrast to papers that do not address deadlocks and
accordingly can only guarantee local asymptotic stability
or, at best, convergence from any arbitrary initial condition
excluding a set of measure zero. Due to the nonlinear drift
term, it is in general not possible to avoid obstacles of
arbitrary size (see [7, Fig. 1]). For simplicity we focus
on nominal system dynamics in (1) and Problem 1. Using
similar techniques as in the linear setting in [7], the results
can be extended to robust stability and robust avoidance.

To simplify the notation in the following, we use

fs(x) = f(x) + g(x)κs(x) (2)

to denote the right-hand side of the closed-loop system
resulting from a prescribed stabilizing controller, whose
existence is assumed in Problem 1. To solve Problem 1 we
make the following standing assumption.

Assumption 1: Consider the dynamics (1) and obstacle
centroids x̂1, . . . , x̂β ∈ U\{0}, β ∈ N, with U defined as
in Problem 1.
(a) The function V : D → R≥0, D ⊆ Rn, is a continu-

ously differentiable control Lyapunov function (radially
unbounded for D = Rn), U ⊂ D is a sub-level set
of the Lyapunov function, and κs : U → Rm is a
corresponding stabilizing feedback law, i.e., there exists
ρ ∈ P such that

⟨∇V (x), f(x) + g(x)κs(x)⟩ ≤ −ρ(x), ∀ x ∈ U . (3)

(b) For every i ∈ Nβ , there exists v ∈ Rm such that

∇V (x̂i)
⊤g(x̂i)v(x̂i) = 0 and g(x̂i)v(x̂i) ̸= 0 (4)

are satisfied. ⌟

Assumption 1(a) simply states that the feedback law us =
κs(x) stabilizes the origin for system (1), without obstacles.
Assumption 1(b) states that in a neighborhood around each
x̂i, it is possible to select an input perpendicular to the gra-
dient of the Lyapunov function. This degree of freedom will
be used to design an avoidance controller. Assumption 1(b)
holds if, for each x̂i, i ∈ Nβ , there exist k, j ∈ Nm such
that gk(x̂i) and gj(x̂i) are linearly independent. This is for
example satisfied if m ≥ 2 and g(·) is constant.

III. AVOIDANCE CONTROLLER DESIGN

A. Lyapunov decrease property
Consider a Lyapunov function V : D → R≥0 and

the stabilizing feedback law κs : U → Rm according to
Assumption 1(a). To guarantee obstacle avoidance, we will
locally modify the nominal control law u(x) = κs(x) near
each obstacle centroid x̂i, i ∈ Nβ in the following way

u(x) = κs(x) + αp(x)Λ(x̂i), p ∈ {−1, 1} (5)

where Λ(x̂i) ∈ Rm defines an avoidance direction depending
on the obstacle and α1, α−1 : Br(x̂i) → R are continuous
scaling functions defined in a neighborhood of x̂i having
radius r > 0. The scaling can be positive as well as
negative, which is determined by the parameter p ∈ {−1, 1}.
The functions α1, α−1, as well as the direction Λ(x̂i), are
determined in the following sections to guarantee specific
avoidance properties. In the following we use the notation

vip(x) = αp(x)Λ(x̂i), (6)

to capture the avoidance component of the feedback law (5),
based on the centroid i ∈ Nβ and the scaling p ∈ {−1, 1}.

The directions Λ(x̂i) in (6) will be defined in Section III-
B so that the conditions (4) hold for all i ∈ Nβ . Then, along
solutions of (1), (5), for all i ∈ Nβ one has

⟨∇V (x̂i), f(x̂i) + g(x̂i)(κs(x̂i) + vip(x̂i))⟩
= ⟨∇V (x̂i), f(x̂i) + g(x̂i)κs(x̂i)⟩ ≤ −ρ(x̂i),

(7)

with ρ defined in Assumption 1(a). Since, ∇V , f , g and κs

are continuous by assumption, there exist ηi ∈ R>0 such that

⟨∇V (x), f(x) + g(x)(κs(x) + vip(x̂i))⟩
= ⟨∇V (x), f(x) + g(x)κs(x)⟩+ ⟨∇V (x), g(x)vip(x)⟩
= −ρ(x) + αp(x)⟨∇V (x), g(x)Λ(x̂i)⟩ < 0, (8)

is satisfied for all x ∈ Bηi(x̂i). While the size of the ηi-
neighborhood depends on the selection of the function αp,
for every continuous function αp, a corresponding ηi > 0
with the decrease property in (8) exists.

For this reason, we choose to carry out the design of the
avoidance control input vip(x) without accounting for the size
of the avoidance neighborhood. Once αp(x) and Λ(x̂i) have
been determined, the largest admissible value of ηi can be
determined, for example, as the solution of the optimization
problem

ηi = min
x∈Rn

|x− x̂i| − ε,

s.t. − ρ(x) + αp(x)∇V (x)⊤g(x)Λ(x̂i) ≥ 0
(9)

for each x̂i, i ∈ Nβ and for an arbitrarily small ε > 0.



B. Avoidance shell and avoidance direction

The avoidance controller (6) is activated in a shell-shaped
neighborhood around the obstacle. While the shell-shaped
set follows the same definition as in the linear setting
in [6, Sec. IV], the definition of the avoidance controller
deviates from the linear setting. To effectively present the
avoidance controller (6), we briefly recall the definitions of
the shell-shaped avoidance neighborhood introduced in [6],
to make the paper self-contained. Recall that an avoidance
neighborhood with a non-smooth boundary is necessary to
ensure that, despite the smoothness of f , g and u, for each
point on the boundary of the avoidance neighborhood, there
exists an input u ∈ Rm such that ẋ = f(x) + g(x)u does
not point inside the avoidance neighborhood.

Definition 1 (Avoidance shell, [6, Sec. IV]): Consider an
obstacle centroid x̂ ∈ {x̂1, . . . , x̂β} together with parameters:

1) δ ∈ R>0 (size of the shell);
2) µ ∈ (0, 2) (aspect ratio of the shell);
3) b ∈ Rn (orientation of the shell).

Moreover, let

δµ := δ
(

1
µ − µ

4

)
, (10)

Op := B(µδ
2 +δµ)(x̂− pδµb), p ∈ {+1,−1}, (11)

S(δ) := O+1

⋂
O−1. (12)

Then, (12) defines an eye-shaped set centered at x̂, called
avoidance shell in the following. ♠

Note that µ ∈ (0, 2) fixes the aspect ratio of the shell,
whose height corresponds to µδ. The set S(δ) is visualized
in Figure 1, which also shows the role of the shell parameters.

O−1

O1

x̂+ δµb

x̂− δµb

δµ + µδ
2

δ

µδ
2

δµ

S(δ)
x̂

Fig. 1. Visualization of the avoidance shell defined in Definition 1.

Before we proceed with the construction of the avoidance
controller we recall the following result, proven in [7].

Lemma 1: [Avoidance shell set-inclusion; [7, Lemma 1]]
Given an aspect ratio µ ∈ (0, 2) and an orientation b ∈ Rn,
|b| = 1, for each δ > 0, the following inclusions hold for
the shell S(δ) defined in (12):

Bµδ
2
(x̂) ⊂ S(δ) ⊂ Bδ(x̂). (13)

By selecting δ = ηi (where ηi is defined in (9)) in S(δ) ⊂
Bδ(x) allows us to focus on S(δ) ⊂ Bηi(x̂) in the avoidance
controller design.

In the avoidance controller design, we first choose the
orientation bi = b(x̂i) of the avoidance shell based on the
obstacle centroid of interest. First, we define the directions

D(x̂i) :=
∇V (x̂i)
|∇V (x̂i)| , i ∈ Nβ . (14)

Then, for each obstacle centroid x̂i, i ∈ Nβ , it is desirable
to select b(x̂i) as the direction perpendicular to D(x̂i) in
(14) that maximizes the inner product b(x̂i)

⊤g(x̂i)Λ(x̂i), i.e.,
b(x̂i) is the vector orthogonal to D(x̂i) maximally aligned
with the subspace spanned by the columns of g(x̂i). To
guarantee that the avoidance control input defined in (6)
satisfies (4) for each x̂i, i ∈ Nβ , we restrict the choice of
Λ(x̂i) to non-zero vectors satisfying D(x̂i)

⊤g(x̂i)Λ(x̂i) = 0.
For each x̂i, i ∈ Nβ , we define the kernel of D(x̂i)

⊤g(x̂i),
i.e., we define

V⊥(x̂i) = [v1 · · · vp] ∈ Rm×p, (15)

such that D(x̂i)
⊤g(x̂i)V⊥(x̂i) = 0 and where v1, .., vp,

p ∈ N, denote orthonormal basis vectors of the kernel.
Assumption 1(b) guarantees that p ≥ 1. Then we select

Λ(x̂i) = V⊥(x̂i)Λ̄(x̂i), (16)

where the vector Λ̄(x̂i) ∈ Rp defines a linear combination of
the columns of V⊥(x̂i). Based on these definitions, we are
interested in solving the following optimization problem

(b(x̂i), Λ̄(x̂i)) ∈ argmax
b∈Rn,Λ∈Rp

b⊤g(x̂i)V⊥(x̂i)Λ, (17)

s.t. b⊤D(x̂i) = 0, |b| = 1, |Λ| = 1,

for each x̂i, i ∈ Nβ . It follows from the definition of
the optimization problem that (b(x̂i), Λ̄(x̂i)) is optimal if
and only if (−b(x̂i),−Λ̄(x̂i)) is optimal. Even though the
optimization problem (17) is non-convex and solutions are
not unique, it can be solved explicitly.

Lemma 2: Consider the dynamics (1), let Assumption 1
be satisfied and D(x̂i), V⊥(x̂i) be defined as in (14), (15)
respectively. Let λM (x̂i) be a normalized eigenvector of the
symmetric matrix (g(x̂i)V⊥(x̂i))

⊤g(x̂i)V⊥(x̂i) correspond-
ing to the largest eigenvalue, denoted by σM (x̂i). Then it
holds that σM (x̂i) > 0, a solution to (17) is given by

(b(x̂i), Λ̄(x̂i)) =

(
g(x̂i)V⊥(x̂i)λM (x̂i)√

σM (x̂i)
, λM (x̂i)

)
(18)

and D(x̂i)
⊤g(x̂i)V⊥(x̂i)Λ̄(x̂i) = 0 for each x̂i, i ∈ Nβ . ⌟

Proof: For ease of notation, we drop the dependence
on x̂i in the proof. Since in (17), b and gV⊥Λ̄ belong to
the hyperplane orthogonal to D (due to the definition of
V⊥ in (15)), the maximum of the inner product b⊤gV⊥Λ̄ is
attained when b is aligned with gV⊥Λ̄, and thus b = gV⊥Λ̄

|gV⊥Λ̄| .
Substituting this selection of b into the objective function of
(17) gives

(gV⊥Λ̄)⊤gV⊥Λ̄
|gV⊥Λ̄| = |gV⊥Λ̄|. (19)

Since Λ̄, with |Λ̄| = 1, maximizes (19) if and only if it
maximizes |gV⊥Λ̄|2, we now focus on the maximization of
the function

|gV⊥Λ̄|2 = Λ̄⊤V ⊤
⊥ g⊤gV⊥Λ̄. (20)

Let us consider the matrix M := V ⊤
⊥ g⊤gV⊥. Since M

is a symmetric positive semi-definite matrix, substituting
the definition of M into (20) one has the following upper



bound |gV⊥Λ̄|2 = Λ̄⊤M Λ̄ ≤ σM |Λ̄|2 = σM for all Λ̄ ∈ Rm,
where |Λ̄| = 1 and σM denotes the largest eigenvalue
of M , i.e., MλM = V ⊤

⊥ g⊤gV⊥λM = σMλM . Due to
Assumption 1(b), gV⊥ ̸= 0 and thus rank(gV⊥) > 0. Using
the properties of the rank(·) operator, one has rank(M) =
rank(V ⊤

⊥ g⊤gV⊥) = rank((gV⊥)
⊤gV⊥) = rank(gV⊥), which

implies that rank(M)= rank(gV⊥) > 0 for all x̂i, i ∈ Nβ .
Then, σM > 0 and substituting Λ̄ = λM into (20) gives
|gV⊥λM |2 = λ⊤

MV ⊤
⊥ g⊤gV⊥λM = σM , implying that the

maximum of (19), which coincides with the maximum of
(17), is |gV⊥λM | = √

σM . Vector b can therefore be written
as b = gV⊥λM

|gV⊥λM | =
gV⊥λM√

σM
(giving (18)) and D⊤gV⊥Λ̄ = 0

follows from the definition of V⊥ in (15).

C. Avoidance controller

For each obstacle centroid x̂i, i ∈ Nβ , Lemma 2 provides
vectors b(x̂i) and Λ̄(x̂i) defining the orientation of the
avoidance shell in (12) and the direction of the avoidance
controller in (6), (16), respectively. With Λ̄(x̂i) defined as in
Lemma 2, vip(x̂i) defined in (6), (16) satisfies (4).

In this section we focus on the derivation of αp(x) for p ∈
{−1, 1}, which is the missing component in the definition
of vip(x). To this end, let

cp := x̂− pδµb, p ∈ {−1,+1} (21)

denote the centers of the balls Op, p ∈ {−1,+1} in (11)
for a generic obstacle centroid x̂ ∈ {x̂1, . . . , x̂β} and
corresponding b(x̂) defined in (18).

The avoidance controller is defined so that

d
dt |x(t)− cp|2 = 0, p ∈ {−1, 1}, (22)

holds for any x ∈ S(δ), ensuring that the distance between
the state x(t) and the point cp does not decrease when
performing an avoidance maneuver. Imposing (22) will give
us the definition of αp(x̂i) in (6). We now show that by
selecting Λ̄(x̂i) and b(x̂i) according to Lemma 2 there
always exists a sufficiently small neighborhood for each
obstacle centroid inside of which condition (22) holds.

Lemma 3: Consider the dynamics (1), (5). Let Assump-
tion 1 be satisfied, x̂i, i ∈ Nβ be an obstacle centroid,
b(x̂i), σM (x̂i), Λ̄(x̂i) be defined as in Lemma 2, V⊥(x̂i) and
Λ(x̂i) be defined as in (15) and (16). Then, for all µ̄i ∈ (0, 2)
there exists δ̄i ∈ R>0 defining the shell S(δ̄i) such that the
avoidance control input (6) with

αp(x) =
−fs(x)

⊤(x− x̂i + pδµb(x̂i))

(g(x)Λ(x̂i))⊤(x− x̂i + pδµb(x̂i))
, (23)

is well defined and satisfies (22) for all x ∈ S(δ̄i). ⌟
Proof: We start by rewriting (22), substituting (1), the

closed-loop dynamics (2), and the control input selection
ua(x) = κs(x)+αp(x)Λ(x̂i), with Λ(x̂i) defined as in (16),

d
dt |x(t)− cp|2 = ẋ⊤(x− cp) = (f(x) + g(x)ua)

⊤(x− cp)

= fs(x)
⊤(x− x̂i + pδµb(x̂i))

+ αp(x)(g(x)Λ(x̂i))
⊤(x− x̂i + pδµb(x̂i)).

(24)

Imposing (24) to be zero results in the condition on αp (23).
We now show that for each µ̄i ∈ (0, 2) there exists δ̄i > 0
such that the denominator of (23) is non-zero for all x ∈
S(δ̄i). Observe that for x = x̂i the denominator of (23) sim-
plifies to (g(x̂i)Λ(x̂i))

⊤pδµb(x̂i) = pδµ
√
σM (x̂i), which is

unequal to zero for all δ > 0, µ ∈ (0, 2). Moreover, for each
δ > 0, Lipschitz continuity of g implies the existence of
Lg > 0 such that |g(x)Λ(x̂i) − g(x̂i)Λ(x̂i)| ≤ Lg|x − x̂i|
for all x ∈ Bδ(x̂i), which in turn implies g(x)Λ(x̂i) ∈
g(x̂i)Λ(x̂i) + BLgδ for all x ∈ Bδ(x̂i). Let us now prove
that there always exist δ̂, µ̂ > 0 sufficiently small such that
the denominator of (23) is non-zero for all x ∈ S(δ̂), where
S(δ̂) is the avoidance shell defined by δ̂, µ̂ according to (12).
Using the inclusion derived above for g(x)Λ(x̂i) and the fact
that |b(x̂i)| = 1 and |g(x̂i)Λ(x̂i)| =

√
σM (x̂i), one obtains

that the lower bound on the denominator of (23)

|(g(x)Λ(x̂i))
⊤(x− x̂i + pb(x̂i)δµ)|

≥ −|(g(x̂i)Λ(x̂i))
⊤(x− x̂i)| − Lgδ

2

+ |(g(x̂i)Λ(x̂i))
⊤pδµb(x̂i)| − Lgδδµ

≥
√
σM (x)(δµ − δ)− Lgδ

2 − Lgδδµ (25)

holds for all x ∈ Bδ(x̂i). One can verify that, for every µ ∈
(0, 2(

√
2−1)), δµ−δ is positive for every δ > 0. Then, given

µ̂ ∈ (0, 2(
√
2− 1)), it is possible to show that there always

exists a sufficiently small δ̂ > 0 such that (25) is positive.
Define δ̄i := µ̂δ̂

2 . From (13) one has Bδ̄i(x̂i) ⊂ S(δ̂) and
S(δ̄i) ⊂ Bδ̄i(x̂i), which show that for every µ̄i ∈ (0, 2) there
exists a sufficiently small δ̄i > 0 such that the denominator
of (23) is non-zero for all x ∈ S(δ̄i).

Lemma 3 guarantees the existence of δ̄i > 0 such that
αp(x) is well-defined for all x ∈ Bδ̄i(x̂i). Unfortunately,
to be able to use αp(x) in the avoidance controller design,
ηi defined through (9) needs to satisfy ηi ≥ δ̄i, where (9)
depends on the selection of δ̄i and µ̄i. To avoid the need to
compute ηi, we consider the optimization problem

δ̄i,p = min
x∈Rnδ≥0

δ, (26)

s.t. − ρ(x) + αp(x)∇V (x)⊤g(x)Λ(x̂i) ≥ 0 (27)

|x− cp| ≤ δµ + µδ
2 , p(x− x̂i)

⊤bi(x̂i) ≥ 0 (28)

for p ∈ {−1, 1} and a fixed aspect ratio µ ∈ (0, 2). Here, δ̄i,p
defines the largest δ such that the decrease condition (8) is
not satisfied for all x in the half shell x ∈ S(δ)∩ {x ∈ Rn :
pbi(x̂)

⊤(x − x̂i) ≥ 0}. Accordingly, the decrease condition
(8) and the properties of Lemma 3 are satisfied for

δ̄i ∈ (0,min{δ̄i,1, δ̄i,−1}). (29)

Remark 1: Since the half shell in (28) is bounded, an
approximate solution of the optimization problem (26) can
be computed numerically, by discretizing the half shell for
different values of δ and by evaluating (27) over the set of
discretized states.

Remark 2: As in [7] condition (22) can be changed to
d
dt |x(t)− cp|2 > 0, p ∈ {−1, 1}, to obtain robust avoidance
properties. Here, we restrict our attention to the nominal
setting covered through Lemma 3.



IV. HYBRID CONTROLLER DESIGN

In this section we follow the construction presented in
[7, Sec. IV], based on the formalism of hybrid dynamical
systems, to orchestrate the switching between the nominal
control law and the modified control law (5). To keep the
paper self-contained, we briefly recall the definitions given
in [7, Sec. IV] of the inner avoidance shell and upper/lower
parts of the avoidance shell.

Definition 2 ( [6, Sec. IV]): Consider an obstacle cen-
troid x̂ ∈ {x̂1, . . . , x̂β} together with the parameter h ∈
(0, 1), called hysteresis factor, and let

Oh,p := B
h
µδ
2 +δµ

(cp), p ∈ {−1, 1}, (30)

Sh(δ) := Oh,+1 ∩ Oh,−1. (31)

Then, (31) defines a smaller eye-shaped set centered around
x̂i called inner avoidance shell in the following, and

S/p := S(δ)∩{x∈Rn :pb⊤(x− x̂)≥0}, p ∈ {−1, 1} (32)

defines the lower and upper halves of the avoidance shell
with respect to the orientation b. ♠

To account for multiple obstacles, we substitute p ∈
{−1, 1} used in the previous section with the logic variable
q ∈ Zβ and write

cq := x̂|q| − q
|q|δµ|q|b|q|, q ∈ Zβ\{0}. (33)

Moreover, when referring to an obstacle centroid x̂i, i ∈ Nβ ,
we will use the notation ·i, i ∈ Nβ , to refer to quantities
corresponding to the i-th obstacle centroid x̂i, i ∈ Nβ . Using
q we define the overall hybrid state as ξ := [x⊤ q]⊤ ∈ Ξ :=
Rn × Zβ , and write the new feedback law as

u(ξ) :=

{
κs(x), if q = 0,

κs(x) + v
|q|
a (x), if q ∈ Zβ\{0}.

(34)

The jump dynamics, modeling the switching between nom-
inal and modified control law, can be written as

D+i :=
(
Si
hi
(δi) ∩ S/i+1

)
× {0}, i ∈ Nβ

D−i :=
(
Si
hi
(δi) ∩ S/i−1

)
× {0}, i ∈ Nβ

D0 := Rn \ ∪i∈Nβ
Si(δi)× (Zβ \ {0})

q+ ∈ Gq(x, q) :=


i, if (x, q) ∈ D+i \ D−i, i ∈ Nβ

−i, if (x, q) ∈ D−i \ D+i, i ∈ Nβ

{i,−i}, if (x, q) ∈ D+i ∩ D−i, i ∈ Nβ

0, if (x, q) ∈ D0,

(35)

where the flow and jump sets are compactly written as

C := Ξ \ (∪q∈Zβ
Dq), D := ∪q∈Zβ

Dq, (36)

and the overall hybrid dynamical system can be written as

ξ̇ =
[
ẋ
q̇

]
=

[
f(x)+g(x)u(ξ)

0

]
, ξ ∈ C (37)

ξ+ =
[
x+

q+

]
∈
[ x
Gq(x,q)

]
, ξ ∈ D. (38)

When the state ξ = [x⊤ q]⊤ enters the jump set D, the
jump map (35) updates q while keeping x constant. The
variable q is responsible for the selection of the nominal
or modified control law, as it can be seen from (34). When
the x component of the state ξ enters the inner avoidance
shell Si

h(δ), q is set to either i or −i. When x leaves the
avoidance shell Si(δ), q is reset to 0.

We are now ready to state the main result of this paper.
Theorem 1: Let Assumption 1 be satisfied and h ∈ (0, 1),

µi ∈ (0, 2), i ∈ Nβ , be arbitrary. Then, there exist δi > 0,
i ∈ Nβ , such that the hybrid system (36), (37), (38), solves
Problem 1 for χi =

hµiδi
2 . ⌟

Proof: For each obstacle centroid x̂i, i ∈ Nβ , consider
δi defined from (26)-(29). From the inclusion (13) we have
Si(δi) ⊂ Bδi(x̂i), and since the modified control law is only
used inside the avoidance shell Si(δi) of an obstacle, this
proves that the hybrid system satisfies item (i) of Problem 1
by taking δ = maxi∈Nβ

δi.
Let us now focus on item (ii) of Problem 1. Consider an

arbitrary obstacle centroid x̂i, i ∈ Nβ , and let (t, j) 7→ ξ(t, j)
be a solution of (36)-(38) such that ξ(0, 0) /∈ D, which
implies x(0, 0) /∈ ∪β

i=1Bδ(x̂i), with δ defined as above.
Assume that there exists a time (t0, j0) ∈ dom ξ at which the
solution reaches the inner avoidance shell of the obstacle x̂i,
ξ(t0, j0) ∈ Di∪D−i. Then, the solution will jump according
to the jump map (35), with q+ set to either −i or i, and,
according to (34), the control law u(ξ) = κs(x)+via(x) will
be selected to perform the avoidance maneuver. Lemma 3
ensures that the x component of the state ξ never enters the
interior of the avoidance shell Si

hi
(δi) during the avoidance

maneuver, thus implying, using the inclusion (13), that x
never enters the set Bhµiδi

2

(x̂i), proving (ii) of Problem 1.

We focus on item (iii) of Problem 1. Consider the Lya-
punov function defined in Assumption 1(a). Observe that
since x̂i ̸= 0 and ξ ∈ U for all i ∈ Nβ , it is always
possible to scale the parameters δi to ensure that 0 /∈ D
and ∪β

i=1Si(δi) ⊂ U . Then, the set ∪β
i=1Si(δi) is bounded

away from the origin, and there exists a neighborhood of
the origin inside of which the solutions evolve continuously
according to (2). Then, Lyapunov stability of the origin
for (2) implies Lyapunov stability of the origin for (36)–
(38). We proceed by proving global attractivity of the origin
relative to U for (36)–(38). Since V does not depend on
q, we write V (ξ) = V (x). When the solution jumps, one
has V (ξ+) − V (ξ) = 0 for all ξ ∈ D. Moreover, due
to the definition of the jump sets (36), after a jump the
solutions must evolve continuously for some non-zero time.
By choosing δi small enough for all i ∈ Nβ so that δi ≤ δ̄i,
with δ̄i defined as in (29), and ∪β

i=1Si(δi) ⊂ U , we have that
the decrease property in (8) holds for all x ∈ Si(δi), and,
together with the decrease (3) guaranteed by the nominal
control law u(ξ) = κs(ξ), this shows that V̇ < 0 for every
ξ ∈ C∩(U × Zβ) with x ̸= 0. Then, we have that the
Lyapunov function V does not increase when the solutions
of (36)–(38) jump or flow for all ξ ∈ U × Zq . Recalling
that U is defined in Assumption 1 as a sub-level set of V ,



we can conclude that all solutions of (36)-(38) starting from
U ×Zβ remain inside it. Moreover, since the hybrid system
(36)–(38) satisfies the hybrid basic conditions [10, As. 6.5],
we can apply the invariance principle for hybrid systems
[9, Thm. S13] to prove that all solutions converge to the
largest set in which V is constant. Since V always decreases
when solutions flow, and solutions must flow for some non-
zero time between two consecutive jumps, we have that all
solutions converge to the origin, proving global attractivity of
the origin relative to U . From Lyapunov stability and global
attractivity of the origin, relative to U , we can conclude GAS
of the origin relative to U . Finally, since the hybrid system
(36)−(38) satisfies the hybrid basic conditions [10, As. 6.5],
from [10, Thm. 7.21] one has that GAS implies uniform
GAS, thus proving item (iii) of Problem 1.

V. NUMERICAL SIMULATIONS

To illustrate the effectiveness of the proposed avoidance
architecture, we consider the input-affine nonlinear system[

ẋ1
ẋ2
ẋ3

]
= f(x) + g(x)u =

[
x2+x2

1

x2
1+x3

0

]
+
[
0 0
1 0
0 1

]
[ u1
u2

] ,

which is a modified version of the nonlinear system pre-
sented in [13, Sec. 3.3]. We assume that the stabilization task
has to be performed by u2, while u1 is an additional input
that can be used during avoidance. Through backstepping,
the stabilizing controller us = [0 un]

⊤, un = −3x1− 5x2−
3x3−8x1x2−2x1x3−8x2

1x2−8x2
1−10x3

1−2x2
2−6x4

1, and
the Lyapunov function V (x) = 1

2x
2
1 +

1
2 (x2 + x1 + x2

1)
2 +

1
2 (2x1 + 2x2 + x3 + 2x1(x

2
1 + x2) + 3x2

1)
2 are obtained.

To illustrate the properties of our hybrid redesign, in Fig.
2 we show numerical simulations obtained by considering
three obstacle centroids, x̂1 = [0.54,−0.42,−0.6]⊤, x̂2 =
[0.5, 0.3,−0.8]⊤, x̂3 = [0.54,−0.22,−1.2]⊤. The parame-
ters used for the construction of the shells are hi = 0.75,
µi = 1, for i ∈ N3, and δ1 = 0.3, δ2 = 0.5, δ3 = 0.15. In Fig.
2, left, one can see three trajectories, two encountering more
than one obstacle along their path. The dashed line is used
to indicate when the avoidance controller is active. In Fig. 2,
right, one can see the time evolution of V , confirming that
stability of the origin is preserved, and u = [u1 u2]

⊤ along
one of the trajectories shown in the right plot (comparable
plots can be obtained for the other two trajectories).

0 0.5 1 1.5 2 2.5 3
0

1

2

3

0 0.5 1 1.5 2 2.5 3

-10
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0

Fig. 2. (Left) State trajectories (blue) avoiding the interior of
avoidance shells Sh(δi). (Right) Time evolution of the input u and
Lyapunov function V along one trajectory. The colored patches
indicate when the avoidance controller is active.

VI. CONCLUSIONS

This paper proposes a controller design with local avoid-
ance and global asymptotic stability properties. Under mild
assumptions on the control matrix g(·), an avoidance con-
troller is defined to preserve the decrease property of a
Lyapunov function, corresponding to a predefined stabiliz-
ing controller without avoidance properties. The augmented
avoidance controller is defined based on the solution of
a non-convex optimization problem, for which an explicit
optimal solution is derived in the paper. Future work will
focus on investigating the maximum size of the obstacles
for which avoidance and asymptotic stability of the closed
loop system can be guaranteed.
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