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Abstract— Differential dynamic programming (DDP) is a
popular technique for solving nonlinear optimal control prob-
lems with locally quadratic approximations. However, existing
DDP methods are not designed for stochastic systems with
unknown disturbance distributions. To address this limitation,
we propose a novel DDP method that approximately solves the
Wasserstein distributionally robust control (WDRC) problem,
where the true disturbance distribution is unknown but a
disturbance sample dataset is given. Our approach aims to
develop a practical and computationally efficient DDP solution.
To achieve this, we use the Kantrovich duality principle to
decompose the value function in a novel way and derive closed-
form expressions of the distributionally robust control and
worst-case distribution policies to be used in each iteration of
our DDP algorithm. This characterization makes our method
tractable and scalable without the need for numerically solv-
ing any minimax optimization problems. The superior out-
of-sample performance and scalability of our algorithm are
demonstrated through kinematic car navigation and coupled
oscillator problems.

I. INTRODUCTION

Nonlinear optimal control problems are difficult to solve
exactly, particularly when the state space dimension is high.
Differential dynamic programming (DDP) alleviates this
issue using locally-quadratic approximations of the system
dynamics and cost function [1]–[6]. It efficiently computes an
approximate solution with superior scalability compared to
the standard dynamic programming (DP) approach. However,
it is generally challenging to apply DDP to systems with
random disturbances without any means to counteract them.

Although various works have extended DDP to handle
stochastic systems, existing methods often rely on either the
ground truth or potentially inaccurate approximate proba-
bility distributions of disturbances. For instance, the DDP
algorithms proposed in [7]–[9] either consider Gaussian
multiplicative noise or model the uncertain system dynamics
as Gaussian processes. Another line of research is devoted
to the minimax formulation of the DDP problem (e.g., [10],
[11]), where the optimal control problem is solved in the
face of the worst-case disturbances. However, these methods
often lead to overly conservative solutions.

To address the limitations of stochastic DDP methods
and handle systems with unknown disturbance distributions,
we propose a novel approach inspired by distributionally
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robust control (DRC). The objective of DRC is to design
control policies that maximize the worst-case performance
over an ambiguity set of distributions. In the context of
DRC, various techniques have been introduced to hedge
against distributional uncertainties, which include moment-
based and statistical distance-based approaches [12]–[19].
While moment-based approaches rely on accurate moment
estimates and may not effectively capture the full distribu-
tional information, distance-based methods consider distri-
butions that are close to a given nominal one. Many recent
works have focused on Wasserstein DRC (WDRC) [20]–
[24], where the ambiguity set is chosen as a statistical ball
with the distance between two distributions measured by
the Wasserstein metric. The Wasserstein ambiguity set of-
fers several advantages, including finite-sample performance
guarantees and the ability to avoid pathological solutions in
distributionally robust optimization (DRO) problems [25]–
[27].

Most of the existing WDRC methods still face challenges
in terms of tractability and scalability. For instance, the DP-
based approach introduced in [20] for solving the WDRC
problem results in a semi-infinite program that needs to be
solved for each grid point on the discretized state-space. To
alleviate the computational issue, both [20] and [24] propose
a relaxation technique with a penalty on the Wasserstein
distance, which leads to an explicit solution in the linear-
quadratic (LQ) setting. While these works primarily focus
on the theoretical analyses of the distributionally robust poli-
cies, our algorithm contributes to a computationally efficient
solution of nonlinear WDRC problems.

In this work, a novel DDP method is developed through
a locally quadratic approximation of the nonlinear WDRC
problem, where the true disturbance distribution is unknown
but a disturbance sample dataset is given. By construc-
tion, the proposed distributionally robust DDP (DR-DDP)
algorithm provides control policies that are robust against
inevitable inaccuracies in empirical distributions of the dis-
turbance. For tractability, we first approximate the WDRC
problem with its penalty version and then apply the Kan-
torovich duality principle. We show that this approxima-
tion provides a suboptimal solution to the original WDRC
problem with a provable performance guarantee. The value
function is then decomposed in a novel way that enables
deriving computationally tractable and efficient backward
and forward passes. This allows us to obtain closed-form
expressions for the distributionally robust control and worst-
case distribution policies in each iteration of the DR-DDP
algorithm. By avoiding the need for numerically solving
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minimax optimization problems, our approach makes the
algorithm not only tractable but also scalable. The scalability
of our DDP method is a remarkable advantage because
the computational complexity of the standard DP algorithm
in [20] for nonlinear WDRC increases exponentially with
the dimension of the state space. The experiment results
on kinematic car navigation and coupled oscillator problems
indicate that our algorithm outperforms existing methods in
terms of out-of-sample performance and provides scalable
solutions for high-dimensional nonlinear optimal control
problems.

II. PRELIMINARIES

In this section, we introduce the WDRC problem used in
our development of the DR-DDP algorithm in Section III.

A. Distributionally Robust Control

Consider the following discrete-time stochastic system:

xt+1 = f(xt, ut, wt), (1)

where xt ∈ Rnx and ut ∈ Rnu are the system states and
control inputs, respectively. Here, wt ∈ Rnw is a random
disturbance with an unknown (true) distribution Qtrue

t ∈
P(Rnw), where P(Rnw) is the family of all Borel proba-
bility measures supported on Rnw . The nonlinear function
f : Rnx × Rnu × Rnw → Rnx is assumed to be twice
continuously differentiable.

In practice, it is restrictive to assume that the true prob-
ability distribution Qtrue

t is known. Instead, we are often
given a sample dataset Dt := {ŵ(1)

t , ŵ
(2)
t , . . . , ŵ

(N)
t } drawn

from the true distribution, which can be used to construct
an empirical estimate about the disturbance distribution as
Qt := 1

N

∑N
i=1 δŵ(i)

t
, where δ

ŵ
(i)
t

denotes the Dirac measure

concentrated at ŵ(i)
t . It is well-known that as N → ∞, the

empirical distribution asymptotically converges to the true
distribution. However, if an inaccurate empirical estimate is
used in the controller design, the resulting control perfor-
mance will deteriorate due to a mismatch between the true
and empirical distributions.

To mitigate the impact of distributional uncertainties, we
adopt a game-theoretic approach and consider a two-player
zero-sum game in which Player I is the controller and Player
II is a hypothetical adversary. Let π := (π0, . . . , πT−1)
denote the control policy, where πt maps the state xt to
a control input ut. The adversary player selects a policy
γ := (γ0, . . . , γT−1), where γt maps the current state to
a probability distribution Pt chosen from an ambiguity set
Dt ⊂ P(Rnw). The ambiguity set is a family of distributions
that possess certain properties to be described.

Throughout this paper, our goal is to design an optimal
finite-horizon controller with the following cost functional:
J(π, γ) := Eπ,γ

[
`f (xT )+

∑T−1
t=0 `(xt, ut)

]
, where ` : Rnx×

Rnu → R and `f : Rnx → R are the twice continuously
differentiable running and terminal costs, respectively, and
T is the time horizon. In our problem, the controller seeks a
policy π∗ minimizing the cost function, while the adversary

aims to find a policy γ∗ to maximize the same cost, which
can be obtained by solving the following DRC problem:

min
π∈Π

max
γ∈ΓD

J(π, γ), (2)

where Π := {π | πt(xt) = ut ∈ Rnu , ∀t} and ΓD := {γ |
γt(xt) = Pt ∈ Dt, ∀t} are the sets of admissible control
and distribution policies, respectively.

B. Wasserstein Ambiguity Set

In problem (2), the adversary player is restricted to se-
lect a distribution from the ambiguity set Dt, which de-
termines the characteristics of the worst-case distribution.
Therefore, it is necessary to design the ambiguity set to
appropriately characterize distributional errors. Motivated by
its advantages mentioned in Section I, we use the Wasser-
stein ambiguity set constructed around the given empirical
distribution. The Wasserstein metric of order p between two
distributions P and Q supported on W ⊆ Rn represents
the minimum cost of redistributing mass from one distri-
bution to another using a small non-uniform perturbation
and is defined as Wp(P,Q) := infτ∈P(W2){(

∫
W2 ‖x −

y‖p dτ(x, y))1/p
∣∣Π1τ = P,Π2τ = Q}, where τ is the trans-

port plan with Πiτ denoting its ith marginal distribution, and
‖·‖ is a norm on Rn which quantifies the transportation cost.

In this work, we consider the Wasserstein metric of order
p = 2 with the transportation cost represented by the standard
Euclidean norm. We design the ambiguity set as follows:
Dt := {Pt ∈ P(Rnw) | W2(Pt,Qt) ≤ θ} where θ > 0
determines the size of Dt. The ambiguity set is a statistical
ball centered at the empirical distribution Qt and contains all
distributions whose Wasserstein distance from the empirical
distribution is no greater than radius θ.

III. DISTRIBUTIONALLY ROBUST DIFFERENTIAL
DYNAMIC PROGRAMMING

In this section, we present our main result, called DR-
DDP, which efficiently finds an approximate solution to
the WDRC problem. Our method exploits the Kantorovich
duality principle to decompose the value function in a novel
way and devise a computationally tractable algorithm.

A. Approximation with Wasserstein Penalty

In [24], the tractability and effectiveness of a penalty
version of the WDRC problem are studied. Motivated by
this work, we begin by replacing the Wasserstein ambiguity
set constraint with a penalty term in the cost function
as follows: Jλ(π, γ) := Eπ,γ

[
`f (xT ) +

∑T−1
t=0 `(xt, ut) −

λW2(Pt,Qt)2
]
, where λ > 0 is the penalty parameter

adjusting the conservativeness of the controller. Then, the
following minimax control problem approximates the origi-
nal WDRC problem (2):

min
π∈Π

max
γ∈Γ

Jλ(π, γ), (3)

where the adversary player selects policies from Γ := {γ :=
(γ0, . . . , γT−1) | γt(xt) = Pt ∈ P(Rnw)}. Note that the
adversary is not restricted to select distributions from the
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ambiguity set. Instead, we penalize large deviations from the
empirical distribution via the penalty term, thus limiting the
freedom of the adversary player.

We demonstrate in the following proposition that the cost
incurred by an arbitrary policy π ∈ Π under the worst-
case distributions within the Wasserstein ambiguity set has a
guaranteed cost property with respect to the worst-case pe-
nalized cost. Hence, the penalty problem (3) is a reasonable
approximation as it provides a suboptimal solution to (2)
with a performance guarantee.

Proposition 1: Given λ > 0, let π ∈ Π be an arbitrary
admissible policy. Then, the cost incurred by π under the
worst-case distribution policy in ΓD is upper-bounded as
follows:

sup
γ∈ΓD

J(π, γ) ≤ λTθ2 + sup
γ∈Γ

Jλ(π, γ). (4)

Its proof can be found in Appendix I of the extended
version [28]. The guaranteed cost property indicates the
role of the penalty parameter λ in adjusting the robustness
of the control policy, thereby providing a guideline on its
selection. Specifically, the penalty parameter can be chosen
to minimize the upper bound in (4) under the given control
policy.1

To formalize our algorithm, we recursively define
the optimal value function for problem (3) as follows:
Vt(x) := infπ∈Π supγ∈Γ Eπ,γ

[
`f (xT ) +

∑T−1
s=t `(xs, us) −

λW2(Ps,Qs)2 | xt = x
]

for t = T − 1, . . . , 0, with the
terminal condition VT (x) = `f (x). Then, the DP principle
yields

Vt(x) = inf
u∈Rnu

sup
P∈P(Rnw )

`(x,u)

+ Ew∼P
[
Vt+1(f(x,u, w))− λW2(P,Qt)2

] (5)

with the optimal cost given by J∗λ :=
infπ∈Π supγ∈Γ Jλ(π, γ) = V0(x0).

The standard procedure for DDP cannot be applied to the
value function (5) as it constitutes an infinite-dimensional op-
timization problem over P(Rnw). For tractability, we employ
a modern DRO technique based on the Kantorovich duality
principle and reformulate the value function as follows.

Proposition 2: Suppose that for each (x,u) ∈ Rnx ×
Rnu , the value function is measurable and that the outer
minimization problem in (5) has an optimal solution. Then,
for any λ > 0, we have that for all x ∈ Rnx

Vt(x) = inf
u∈Rnu

`(x,u) +

Eŵt∼Qt

[
sup

w∈Rnw

Vt+1(f(x,u,w))− λ‖ŵt −w‖2
]
.

(6)

Its proof can be found in Appendix II of the extended
version [28]. While previous works (e.g., [20]) use similar
approaches for theoretically analyzing the WDRC problem,
our focus is on designing a practical and efficient method for

1The value of λ heavily depends on the choice of the Wasserstein
ambiguity set radius θ, which is typically chosen to attain a probabilistic
out-of-sample performance guarantee, given a finite dataset of disturbance
samples (e.g., [25], [27]).

obtaining computationally tractable solutions. For that, we let
Q

(i)
t (x,u,w) := `(x,u)+Vt+1(f(x,u,w))−λ‖ŵ(i)

t −w‖2
denote the state-action-disturbance value function or the
Q-function for each sample index i = 1, . . . , N and let
Q
∗,(i)
t (x,u) = supw∈Rnw Q

(i)
t (x,u,w) denote the corre-

sponding “worst-case” state-action value function. Then,

Vt(x) = inf
u∈Rnu

1

N

N∑
i=1

Q
∗,(i)
t (x,u). (7)

It is worth emphasizing that the Kantorovich duality principle
enables us to obtain this novel decomposition of the value
function, which can be used to design a computationally
tractable DR-DDP solution in the following subsection.

B. Solution via DDP

In each iteration of the original DDP algorithm, a back-
ward pass is performed on the current estimate of the
state and control trajectories, called the nominal trajectories,
followed by a forward pass. In the backward pass, the
cost function and the system dynamics are quadratically
approximated around the nominal trajectories to update the
policy, while in the forward pass, the nominal trajectories are
recomputed by executing the latest policy to the system. We
adopt this technique for our problem and derive the backward
and forward passes for the value function (6). The proposed
DR-DDP method is presented in Algorithm 1.2

1) Backward Pass: In each backward pass, we are given
nominal state, control input, and disturbance trajectories
x̄nom = (x̄0, . . . , x̄T ), ūnom = (ū0, . . . , ūT−1) and
w̄nom = (w̄0, . . . , w̄T−1), respectively. For quadratic ap-
proximations, DDP considers the following deviations of the
system state, control input, and disturbance, i.e., δxt :=
xt − x̄t, δut := ut − ūt, and δwt := wt − w̄t.

We first consider the following second-order approxima-
tion of Vt+1(xt+1):

Vt+1 + V >t+1,xδxt+1 +
1

2
δx>t+1Vt+1,xxδxt+1, (8)

for some (Vt+1, Vt+1,x, Vt+1,xx) ∈ R × Rnx × Rnx×nx to
be determined.3 Let Q̂(i)

t be an approximate Q-function,
defined by replacing Vt+1 in the definition of Q(i)

t with
the approximate value function (8). Then, Q̂(i)

t (xt, ut, wt)
is twice differentiable and its second-order Taylor expansion
is given by

Q
(i)
t + δQ

(i)
t (δxt, δut, δwt), (9)

where δQ
(i)
t (δxt, δut, δwt) = Q>t,xδxt + Q>t,uδut +

Q
(i)
t,w

>
δwt + 1

2∆Qt(δxt, δut, δwt) with

∆Qt(δx, δu, δw) :=

[
δx
δu
δw

]> [Qt,xx Qt,xu Qt,xw

Q>t,xu Qt,uu Qt,uw

Q>t,xw Q>t,uw Qt,ww

][
δx
δu
δw

]
2The complexity of a single iteration of our algorithm is bounded by

O
(
T (n3

x + n3
u + (N + nw)n2

w)
)
, which is polynomial in state, input and

disturbance dimensions and linear in the time horizon and sample size.
3If Vt+1 is twice differentiable, the parameters (Vt+1, Vt+1,x, Vt+1,xx)

can be simply determined using the second-order Taylor expansion.
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and

Q
(i)
t = `(x̄t, ūt) + Vt+1 − λ‖w̄t − ŵ(i)

t ‖2
Qt,xx = `t,xx + f>t,xVt+1,xxft,x + V >t+1,xft,xx
Qt,uu = `t,uu + f>t,uVt+1,xxft,u + V >t+1,xft,uu
Qt,ww = f>t,wVt+1,xxft,w − 2λI + V >t+1,xft,ww

Qt,xu = `t,xu + f>t,xVt+1,xxft,u
Qt,xw = f>t,xVt+1,xxft,w, Qt,uw = f>t,uVt+1,xxft,w
Qt,x = `t,x + f>t,xVt+1,x, Qt,u = `t,u + f>t,uVt+1,x

Q
(i)
t,w = f>t,wVt+1,x − 2λ(w̄t − ŵ(i)

t ).

Here, ft,· and `t,· denote the partial derivatives of f and `
evaluated at (x̄t, ūt, w̄t).

Let ˆ̄wt := Eŵt∼Qt [ŵt] and Σ̂t := Eŵt∼Qt [(ŵt− ˆ̄wt)(ŵt−
ˆ̄wt)
>] denote the empirical mean vector and covariance ma-

trix of disturbance wt, respectively. The above approximation
transforms the problem (7) into a quadratic form similar to
those addressed in [20], [24]. This approximation enables us
to explicitly solve the problem with respect to δut and δwt,
as presented in the following theorem.

Theorem 1: Let Qt,ww ≺ 0 and `t,uu � 0. Suppose the
value function at time t + 1 is approximated as (8). Then,
the outer minimization problem in (7) with Q(i)

t (xt, ut, wt)
replaced by the approximation (9) has the following unique
minimizer:

δu∗t = Ktδxt + kt, (10)

where Kt = −Q̃t(Q>t,xu − Qt,uwQ
−1
t,wwQ

>
t,xw), kt =

−Q̃t(Qt,u − Qt,uwQ
−1
t,wwQ̄t,w) with Q̃t := (Qt,uu −

Qt,uwQ
−1
t,wwQ

>
t,uw)−1 and Q̄t,w := f>t,wVt+1,x − 2λ(w̄t −

ˆ̄wt).
Moreover, for each i = 1, . . . , N , the maximization

problem in (7) with Q(i)
t (xt, ut, wt) replaced by the approx-

imation (9) has the following unique solution:

δw
∗,(i)
t = Htδxt + h

(i)
t , (11)

where Ht = −Q−1
t,ww[Q>t,uwKt + Q>t,xw] and h

(i)
t =

−Q−1
t,ww[Q>t,uwkt +Q

(i)
t,w].

Proof: Let δw(i)
t := w

(i)
t − w̄t. Evaluating the ap-

proximate Q-function (9) for δw(i)
t , we see that it is strictly

concave in δw
(i)
t as Qt,ww ≺ 0. Then, the first-order

optimality condition yields the following unique maximizer:

δw
∗,(i)
t = −Q−1

t,ww(Q>t,xwδxt +Q>t,uwδut +Q
(i)
t,w). (12)

Replacing Q
(i)
t (xt, ut, wt) with the approximation (9), the

objective function in (7) is quadratically approximated as

Q̄t+Q>t,xδxt+Q>t,uδut+Q̄>t,wδw
∗
t +

1

2
∆Qt(δxt, δut, δwt

∗
)

where δw
∗
t := 1

N

∑N
i=1 δw

∗,(i)
t = −Q−1

t,ww(Q>t,xwδxt +
Q>t,uwδut + Q̄t,w) and Q̄t := `t(x̄t, ūt) + Vt+1 − λ‖w̄t −
ˆ̄wt‖2−λTr[Σ̂t]−2λ2Tr[Q−1

t,wwΣ̂t]. To minimize this approx-
imated objective function with respect to δut, the following
first-order optimality condition can be used:

0 =Qt,u +Qt,uuδut +Q>t,xuδxt +Qt,uwδw
∗
t

+
∂δw

∗
t

∂δut

>

(Q̄t,w +Q>t,xwδxt +Q>t,uwδut +Qt,wwδw
∗
t ).

Algorithm 1: DR-DDP algorithm

1 Input: x0, πinit, γinit, T, λ
2 Apply (πinit, γinit) to generate (x̄nom, ūnom, w̄nom)
3 while not converged do

// Backward Pass
4 VT ← `f (x̄T ), VT,x ← `f,x, VT,xx ← `f,xx
5 for t = T − 1 to 0 do
6 Construct (π̄∗t , γ̄

∗
t ) using (13a) and (13b)

7 Update Vt, Vt,x, Vt,xx according to (14)
// Forward Pass

8 Perform line-search to update α
9 for t = 0 to T − 1 do

10 Compute ut = ūt + αkt +Kt(xt − x̄t)

11 Sample wt ∼ 1
N

∑N
i=1 δw̄t+αh

(i)
t +Ht(xt−x̄t)

12 Execute ut and wt to (1) and observe xt+1

13 x̄nom ← x0:T , ūnom ← u0:T−1, w̄nom ← w0:T−1

14 return (π̄∗, γ̄∗)

By the strong convexity of the quadratic approximation,
its minimizer is uniquely given by δu∗t = −Q̃t

(
Qt,u −

Qt,uwQ
−1
t,wwQ̄t,w + [Q>t,xu −Qt,uwQ−1

t,wwQ
>
t,xw]δxt

)
, which

is equivalent to (10). By substituting δu∗t into (12), we obtain
the maximizer defined in (11).

Theorem 1 provides the remarkable advantage that a
DR-DDP policy pair (π̄∗, γ̄∗) is constructed in the follow-
ing closed-form without numerically solving any infinite-
dimensional minimax optimization problems:

π̄∗t (xt) = ūt +Kt(xt − x̄t) + kt (13a)

γ̄∗t (xt) =
1

N

N∑
i=1

δ
(w̄t+h

(i)
t +Ht(xt−x̄t))

. (13b)

As a result of the backward pass, we also obtain the follow-
ing equations for updating the parameters of the approximate
value function (8):

Vt = Q̄t +Q>t,ukt + Q̄>t,wht

+
1

2
k>t Qt,uukt +

1

2
h>t Qt,wwht + k>t Qt,uwht

Vt,x =Qt,x +Qt,xukt +K>t (Qt,u +Qt,uukt +Quwht)

+Qxwht +H>t (Q̄t,w +Qt,wwht +Q>t,uwkt)

Vt,xx =Qt,xx +K>t Qt,uuKt +H>t Qt,wwHt + 2Qt,xuKt

+ 2K>t Qt,uwHt + 2Qt,xwHt,
(14)

where ht := 1
N

∑N
i=1 h

(i)
t .

In the next step, the nominal trajectories have to be recon-
structed using the DR-DDP policy pair (π̄∗, γ̄∗) to update
the quadratically approximated models, which is performed
during the forward pass introduced in what follows.

2) Forward Pass: In the original DDP algorithm, the for-
ward pass is performed by executing the control policy to the
system. However, due to the disturbance term in the system
dynamics and lack of knowledge about its true distribution,
it is not trivial to perform forward rollouts for the ambiguous
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Fig. 1: Trajectories of the kinematic car, controlled by GT-
DDP, box-DDP, NR-DDP, and DR-DDP, in the presence of a
randomly moving obstacle. Star marks represent collisions.

stochastic system (1). Instead, we choose to execute the
control and distribution policy pair (π̄∗, γ̄∗) in the following
manner. First, using (13a) and (13b), we construct a control
input ut = ūt+αkt+Kt(xt− x̄t) and sample a disturbance
realization as wt ∼ 1

N

∑N
i=1 δw̄t+αh

(i)
t +Ht(xt−x̄t)

, where
α ∈ (0, 1) is a line-search parameter.4 Then, both the control
input and the disturbance sample are executed to the system
for t = 0, . . . , T − 1 starting from the initial state x0.

IV. NUMERICAL EXPERIMENTS

In this section, we compare the empirical performance of
our DR-DDP method with three baseline algorithms: GT-
DDP [10], which uses a minimax approach to consider the
worst-case disturbances, box-DDP [2], a deterministic DDP
algorithm that ignores uncertainties in the controller design
but considers box constraints on control inputs, and NR-
DDP, the non-robust version of our DR-DDP algorithm that
utilizes the empirical distribution.5 6

A. Kinematic Car Navigation

In the first experiment, we consider an autonomous nav-
igation task for a kinematic car in an intersection where a
randomly moving obstacle obstructs navigation. Consider the

following system: xt+1 =

[
xcar
t+1

pobs
t+1

]
=

[
fcar(x

car
t , ut)

pobs
t + ∆pobs

t + wt

]
with system state xt ∈ R5 and control input ut ∈ R2. Here,
xcar
t ∈ R3 represents the car’s state evolving according to

the differential-drive kinematics fcar : R3 × R2 → R3 and
consists of the car’s center position p and its heading angle φ.
The control input vector comprises the velocity and steering
angle of the car and has a lower limit of u = [0,−0.6]> and

4Since DDP is a second-order method and potentially takes large steps,
regularization is required to prevent the blow-up of the value. Therefore,
we multiply kt and h(i)t by scaling a parameter α ∈ (0, 1) and perform a
line-search. In particular, the line-search parameter α is iteratively reduced
to improve the performance of the DDP policy pair.

5In our experiments, we choose the penalty parameter λ that minimizes
the cost upper bound in (4) for θ = 0.1 under the DR-DDP policy pair
(π̄∗, γ̄∗). We estimate the upper bound by conducting 1,000 independent
Monte Carlo simulations and computing the Wasserstein distance via a linear
program. The optimal penalty parameter is then found via numerical opti-
mization. This procedure does not require the true disturbance distribution.

6All simulations were performed on a PC with a 3.70
GHz Intel Core i7-8700K processor and 32 GB RAM. The
source code of our DR-DDP implementation is available online:
https://github.com/CORE-SNU/DR-DDP.

an upper limit of u = [10, 0.6]>. The state component pobs
t

represents the position vector of a random circular obstacle
with radius robs = 0.2. It is assumed that in each time
instance, the obstacle has a nominal deterministic motion
represented by ∆pobs

t ∈ R2, which is obstructed with a
positional disturbance vector wt ∈ R2. Each component of
the disturbances follows a uniform distribution U(−0.1, 0.1).
Our DR-DDP algorithm uses only N = 10 samples drawn
from the true distribution. The goal is to safely pass the
intersection by tracking the reference trajectory xref and
avoiding the obstacle in T = 800 steps. For this purpose, we
design a time-varying cost function as `t(x, u) := ‖xcar −
xref
t ‖2Q + ‖u‖2R +Qobs exp[−‖p−pobs‖2/(2r2)], where the

last term is a soft constraint for avoiding the obstacle with
a safe margin of r = 2robs. The weights are chosen as
Q = 10I,R = 0.1I and Qobs = 20. The terminal cost is
similar to the running cost with no control cost. The penalty
parameter is set to λ = 9000 that is found as the minimizer
of the upper bound in (4).

Fig. 1 shows the trajectories of the kinematic car for
a single realization of the disturbances. Only DR-DDP
successfully avoids the obstacle and accomplishes the task,
resulting in the lowest total cost. Even though both box-
DDP and NR-DDP drive the car away from the reference
path, they collide with the obstacle, leading to increased
total costs due to the soft constraint for collision avoidance.
This is because box-DDP completely disregards uncertain-
ties, while NR-DDP relies solely on inaccurate disturbance
information. Meanwhile, GT-DDP incurs extremely high
costs as it fails to drive the car away from the obstacle.
Despite the distinct behaviors exhibited by the two algo-
rithms, the average total computation times for DR-DDP
and GT-DDP are quite similar (less than 25 sec.), indicating
their comparable computational efficiency. To validate our
results, we conducted 1,000 independent simulation runs to
measure the out-of-sample performance of each method.7

The proposed DR-DDP algorithm achieves an out-of-sample
cost as low as 176.713, while box-DDP, NR-DDP, and GT-
DDP demonstrate worse out-of-sample performance costs of
225.335, 211,461, and 198.611, respectively. These findings
demonstrate the effectiveness of our algorithm in addressing
distributional ambiguity in nonlinear stochastic systems.

B. Synchronization of Coupled Oscillators

In the second experiment, we demonstrate the scala-
bility of our algorithm through a synchronization prob-
lem with L coupled noisy oscillators using the following
discrete-time Kuramoto model [29]: η(i)

t+1 = η
(i)
t + ∆t[ωi +

Kut
∑L
j=1 sin(η

(j)
t − η

(i)
t )] + w

(i)
t , i = 1, . . . , L. Here,

xt = [η
(1)
t , . . . , η

(L)
t ]> ∈ RL is the system state, and

ut ∈ R is the control input. For each ith oscillator, η(i)
t

7The out-of-sample performance of the controller is defined as
Ewt∼Qtrue

t [`f (xT ) +
∑T−1

t=0 `(xt, π∗t (xt))], which is evaluated using
10,000 disturbance samples drawn from the true distribution Qtrue

t and
averaged over 200 simulations. It represents the expected total cost under
a new disturbance sample generated according to the true disturbance
distribution Qtrue

t , independent of the sample dataset used in DR-DDP.
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(a) (b)

Fig. 2: (a) Computation time per iteration (in seconds)
and (b) out-of-sample cost depending on the number of
oscillators calculated with 1,000 simulations.

represents its phase, ω(i) ∼ N (0, 0.004) is its natural
frequency, K is the coupling strength, and ∆t = 0.03 sec.

is the discretization step. Assuming disturbances w(i)
t follow

a Gaussian distribution N (0.001, 0.001), and having only
N = 50 samples, our objective is to synchronize oscillators
over T = 100 steps using the cost function `(xt, ut) :=∑L
i,j=1 sin2(η

(j)
t − η

(i)
t ) + 0.0001u2

t . The penalty parameter
λ = 10000 is chosen to minimize the upper bound in (4).

To assess the scalability of our method, we evaluate the
computation time for one iteration of our DR-DDP algorithm
with varying number of oscillators. The computation times
required for our method and the three baselines, along with
the corresponding total costs, are presented in Fig. 2. As
expected, the computation time increases with the num-
ber of oscillators. However, consistent with the theoretical
complexity, the computation time grows as a polynomial
function of the state dimension, showing the superiority of
our method over the DP algorithm. Notably, the computation
time required to perform a single iteration of DR-DDP
is almost identical to the computation times required by
box-DDP, NR-DDP, and GT-DDP. Furthermore, our DR-
DDP algorithm consistently returns the lowest out-of-sample
cost for any number of oscillators considered, successfully
synchronizing the oscillators despite the disturbances.

V. CONCLUSIONS

In this work, we have proposed a practical DR-DDP
algorithm for solving nonlinear stochastic optimal control
problems with unknown disturbance distributions. We re-
formulated the quadratic approximation of value functions
for WDRC using the Kantorovich duality principle and then
solved it in a DDP fashion to obtain closed-form expressions
of the distributionally robust control and distribution policies
in each iteration. Our simulation results demonstrate the
superior out-of-sample performance of the proposed method
compared to existing DDP methods, as well as its notable
scalability to high-dimensional state spaces.
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