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Abstract— This paper presents an efficient approach to
incremental learning and updating of a valid control barrier
function (CBF) so that it renders new explored safe area as its
safe zone. For that purpose, we assume having access to sensor
information (e.g. LiDAR sensor) that enables us to predict if a
given location is immediately unsafe (e.g. close to an obstacle) or
not. Using the sensor information, a set of predicted explorations
over the potential safe regions is generated. The exploration
data is then used to learn a valid CBF with enlarged safe zone.
Toward this goal, we propose two methods: the first one is
less conservative, as it possibly ends up with a larger safe
zone, but it relies on a nonlinear optimization problem. A
more computationally efficient alternative only requires Linear
Programming at the cost of being more conservative.

I. INTRODUCTION

Consider a motion planning scenario using a safe
reinforcement learning (RL) approach in which an agent tries
to safely explore an unknown environment in order to learn
an optimal policy. If a small safe region is provided to the
agent initially (e.g. through expert demonstrations), the goal
would be to safely expand the given initial safe set as much
as possible so that the agent can explore more and more area
and hence learn a better motion planning strategy. This paper
addresses the problem of safely expanding a given initial
safe set through a control barrier function (CBF) synthesis
approach.

Control barrier function (CBF) is a powerful tool for
systems that admit control inputs with the goal of determining
consistent inputs that render a specific set forward invariant
or asymptotically stable with respect to the system’s dynamic
[1]. CBFs have wide range of applications in safety-critical
systems [2] among which one of the interesting ones is
serving as a safety layer coupled with a learning-based control
process so that the safety is guaranteed during the learning
stage [3]–[5]. The main challenge however, is how to translate
safety constraints into a valid CBF, or in other words, how to
synthesise a valid CBF for various safety-critical systems [6].

Learning to synthesise CBF has recently attracted a lot of
attention. A support vector machine approach is presented in
[7] to learn a CBF from LiDAR sensor data, while the validity
of the learned CBF has remained unchecked. As an alternative
approach, a linear CBF is incrementally learned from expert
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demonstrations [8]; however, the correctness of the resulting
CBF is not supported by a formal proof. An optimization
based approach is proposed in [6] to synthesise a provably
valid CBF from expert demonstrations. Robust and hybrid
versions of the approach have also been developed [9]–[11].
However, the approach requires optimization over a function
space. In addition, the final safe set will be restricted only
to the area that is explored by the expert, which itself might
be conservative. Building a Neural CBF is also done using
labeled state-action pairs [12], but this approach can also lead
to undesired or overly conservative behavior in practice [13].

This paper studies the possibility of efficient CBF update
using safe exploration data in order to expand its safe set.
The motivation of the work is in the context of analogy-
based safe RL [14]. This branch of safe RL requires two
types of information: an analogy function that can predict
(probabilistically in general) the next state of an action, and
the ability to recognize when a given state is immediately
unsafe. These two types of information are usually available
for motion planning purposes. The dynamic equation can
play the role of the analogy function, and sensor information
(e.g. LiDAR sensor) can be used to determine states that
are immediately unsafe. The analogy-based RL process starts
with an initial safe set. For each exploration, first the outcome
of a possible action is predicted with the analogy function.
If the predicted outcome is not immediately unsafe, then it
is checked whether there exists a policy to bring the system
back into the known safe set from that new state. If so,
the intended exploration is allowed and the known safe set
is expanded to cover those new states [14]. In the motion
planning context, one way to implement the described step of
returnability check to the safe set is via CBF-based approach.
However, the existing CBF synthesis methods [6], [12] are
usually designed for one-time construction of a valid CBF
using the available data, that is often done through solving a
constrained optimization problem. In other words, the existing
solutions do not consider easy updates of the CBF without the
need to resolve an optimization problem over the whole data
set, each time new data is obtained. Therefore, the existing
works are not compatible with the analogy-based safe RL
scenario described above.

The general idea of expanding a (possibly) conservative
safe set of a CBF has recently received attention [13], [15]. The
work in [15] focuses on disturbed systems whose disturbance
can be estimated by a Gaussian Process (GP). The structure of
the workspace and the positions of all obstacles are assumed
to be known, and the confidence interval of the GP is improved
through safe exploration data; the improved model is used to
expand the safe set. The assumptions related to the known
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workspace hinder the application of this work to RL in which
the workspace is typically considered unknown. The work in
[13] uses Hamilton-Jacobi reachability analysis to expand a
conservative safe set of a CBF; Again, the workspace and all
obstacle positions are assumed to be known, and the method
is reported to be able to handle systems that have maximum
dimensions of 6. It is also reported that the method cannot
locally push the boundary of the safe set, a limitation which
is also mentioned as one of their plans for future work.

This paper tries to address the limitations associated with
the above works. The assumptions of known workspace struc-
ture and obstacle positions are lifted; instead, the expansion of
the safe set is done based on sensed local information, and the
boundaries of the safe set are gradually and locally expanded.
These features make the method appropriate for safe RL
applications. Additionally, our work does not suffer from
the curse of dimensionality and can handle high-dimensional
systems. More specifically, this paper develops an incremental
CBF synthesis approach to be used after each safe exploration.
The process requires updating the CBF in a way that its safe
set covers newly explored safe locations. Two methods are
proposed for this purpose. The first one relies on a nonlinear
optimization problem, while the second one emerges as a
more computationally efficient but less flexible and more
conservative alternative that only needs linear programming.

II. PRELIMINARIES

This section is dedicated to the necessary mathematical
background needed for the subsequent technical discussions.
The section briefly reviews the control system dynamics, CBFs,
and some known results that will be utilized in following
sections.

A. Control System Dynamics

The exposition in this section starts with some minimal
technical terminology and a description of the particular
system dynamics that the proposed method applies to. To that
end, let at time t ≥ 0, x(t) ∈ Rn be the state of the system,
u(t) ∈ U ⊂ Rm be its control input, and let the system’s
dynamics be expressed in the form

ẋ = f(x(t)) + g(x(t))u(t) , (1)

where functions f : Rn → Rn and g : Rn → Rn×m are
locally Lipschitz continuous.

Set C is said to be forward invariant for a given control
law u with respect to (1) if there exists a unique solution x
for (1) such that x(0) ∈ C =⇒ x(t) ∈ C, ∀t ∈ [0,∞].

B. Control Barrier Functions

A CBF enables controller synthesis for dynamic systems
such that if the system starts in a safe set, it will never leave
the safe set, rendering the set forward invariant with respect to
the dynamics of the system. A CBF can characterize the set of
allowable control inputs that guarantee forward invariance of
certain regions for a dynamical system at hand. The required
control input is picked from a set defined in terms of the

CBF, for example by solving an optimization problem in a
sampled-data fashion [1].

For a domain D ⊆ Rn and a set of interest C ⊂ D, a
CBF appears in the form of a scalar differentiable function
b : Rn → R for which

C = {x ∈ D | b(x) ≥ 0} .

Mirroring Lyapunov stability analysis, one considers can-
didate barrier functions, which satisfy some basic structural
requirements, and valid barrier functions, which have been
shown to work as intended relative to the dynamics of the
system at hand:

Definition 1 ([2]). A differentiable scalar function b : D → R,
where D ⊆ Rn is an open set, is a candidate control barrier
function if the set C = {x ∈ D | b(x) ≥ 0} is nonempty.

Definition 2 ([6]). A candidate control barrier function b :
D → R is a valid control barrier function for (1) if there exists
a locally Lipschitz extended class-K function α : R → R
(that is a monotonically increasing function with α(0) = 0)
such that for all x ∈ C it holds that

sup
u∈U

{
∇b(x) ·

(
f(x) + g(x)u

)}
≥ −α

(
b(x)

)
, (2)

where · denotes the dot product of two vectors.

Following Definition 2, a nonempty set of CBF consistent
inputs for a valid CBF b(x) at any x ∈ C is defined as:

KCBF (x) ={
u ∈ U | ∇b(x) ·

(
f(x) + g(x)u

)
+ α

(
b(x)

)
≥ 0

}
. (3)

Next comes the useful result of the CBF methodology:

Lemma 1 ([6]). Let b(x) be a valid CBF for a compact
set C ⊂ D where D is an open set. Then starting from an
x(0) ∈ C and inserting a locally Lipschitz control input
u(x) ∈ KCBF (x) makes C forward invariant with respect to
the control system (1), i.e. x(t) ∈ C, ∀t > 0.
Additionally, starting from an x(0) ∈ Cc∩D (with Cc denoting
the complement of C) and inserting a locally Lipschitz u(x) ∈
KCBF (x) (in case that it exists) makes C asymptotically
stable, i.e. x(t) approaches C as t → ∞.

III. PROBLEM STATEMENT

Assume that a valid CBF b(x) is given for the control
system (1) on the open set D that renders a compact set C ⊂ D
as forward invariant. We consider that b(x) is constructed in
a conservative manner, as its positive level set C only covers
a relatively small portion of the actual safe region of D (see
Fig. 1).

Our goal is to efficiently update b(x) to come up with a new
CBF that is less conservative by rendering a possibly larger
portion of the actual safe region as its safe zone. Toward this
purpose, we assume having access to sensor information (e.g.
LiDAR sensor) that enables us to predict if a given location
x′ is immediately unsafe (e.g. close to an obstacle) or not.
For that, we set a safety threshold parameter r such that we
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evaluate x′ as immediately unsafe if its closest distance to
an obstacle is less than r.

Let γe, e and ϵ (with e ≤ ϵ) be positive constants. Assume
that the following set of predictions are made using the
dynamic equation (1) and the CBF b(x):

(i) Choose a not immediately unsafe x1 /∈ C with distance
e to the boundary of C.

(ii) Starting from x1, insert a control input u(x1) such that

∇b(x1) ·
(
f(x1) + g(x1)u(x1)

)
≥ −α

(
b(x1)

)
+ γe .

(iii) At each timestep, repeat the above step and record the
set of predicted locations xi (provided that they are not
immediately unsafe) and inserted control inputs ui, until
the system returns back to the safe set at xk+1 ∈ C
(this is guaranteed to happen according to Lemma 1).
So for all i = 2, · · · , k we have

∇b(xi) ·
(
f(xi) + g(xi)u(xi)

)
≥ −α

(
b(xi)

)
+ γe .

In addition, the timestep duration is such that ∥xi −
xi+1∥ ≤ ϵ forl all i = 1, 2, · · · , k.

Then, our goal is to address the following problem:

Problem 1. Consider a twice continuously differentiable CBF
b(x) on a domain D, that renders a set C ⊂ D forward
invariant with respect to the control system (1):

C = {x ∈ D | b(x) ≥ 0} ,

KCBF (x) ̸= ∅ ∀x ∈ C .

where D is open and C is compact. Using a set of predictions
{(x1, u1), (x2, u2), · · · , (xk, uk)} that is generated accord-
ing to (i)–(iii), obtain a new valid CBF bnew(x) that renders
not only the previous safe set C but also the new predicted
safe locations xi as its safe set Cnew.

Fig. 1: The safe zone C of the existing valid CBF b(x) covers only
a small portion of the actual safe set inside D. Our goal is to
update the existing CBF to enlarge its safe zone so that it covers
new predicted safe locations.

IV. TECHNICAL APPROACH

In this section, we propose two solutions to Problem 1
described in Section III.

We set the new CBF as follows:

bnew(x) = b(x) +

k∑
i=1

zi(x) , (4)

where each zi(x) has the following form:

zi(x) :=


γsi

r4si

(
r2si − ∥x− xi∥2

)2 ∥x− xi∥ ≤ rsi

0 ∥x− xi∥ > rsi

,

where parameters γsi and rsi will be set subsequently in
a way to guarantee the validity of the new CBF bnew(x).
But, before that, it is worthwhile to mention some features
of the function zi(x) that will be used later. First of all, it
is a continuously differentiable function and thus Lipschitz
continuous. Since zi(x) is a scalar-valued function, any bound
on its gradient norm can be used as its Lipschitz constant.
Here, the smallest of such bound (denotes as Lzi) can be
parametrically found by computing the maximum gradient
norm of zi(x):

Lzi := sup
y1,y2∈Brsi

(xi)

|zi(y1)− zi(y2)|
∥y1 − y2∥

=
8γsi

3
√
3rsi

, (5)

where Brsi
(xi) denotes the rsi -ball around xi, i.e. Brsi

(xi) =
{x ∈ D | ∥x − xi∥ ≤ rsi}. Its gradient ∇zi(x) is also
Lipschitz continuous.

For bnew(x) to be a valid CBF, a number of conditions
on parameters γsi and rsi are required which will be
expressed through Theorem 1. Here, a number of notations are
introduced that will be used in Theorem 1 and the subsequent
analysis.

For i = 1, 2, · · · , k, let Lb(xi) be the local Lipschitz bound
of b(x) within the ϵ-ball around xi (i.e. Bϵ(xi)) that is defined
similar to (5), and,

∆αi := α
(
bnew(xi)

)
− α

(
b(xi)

)
,

γdi
:= γe +∆αi +

k∑
j=1

∇zj(xi) ·
(
f(xi) + g(xi)u(xi)

)
,

for i = 1, 2, · · · , k . (6)

In addition, the following functions are defined with fixed
u(xi):

qi(x) := ∇bnew(x)·
(
f(x)+g(x)u(xi)

)
+α

(
bnew(x)

)
. (7)

Note that qi(x) are Lipschitz continuous functions. Let also
the local Lipschitz bound for each qi(x) be Lqi(xi) within
Brsi

(xi).

Next comes the theorem that guarantees bnew(x) to be a
valid CBF under some conditions.

Theorem 1. If the following conditions holds for i =
1, 2, · · · , k:

2ϵ ≤ rsi ≤ r , (8)
γsi
2

≥ ϵLb(xi)− b(xi) , (9)
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γdi
≥ rsiLqi(xi) , (10)

then, the function bnew(x) as (4) is a valid CBF on Cnew,
where

C ∪
( k⋃
i=1

Bϵ(xi)
)

⊆ Cnew ⊆ C ∪
( k⋃
i=1

Brsi
(xi)

)
. (11)

Proof: We start by showing that bnew(x) ≥ 0 for all
x ∈ C ∪

(⋃k
i=1 Bϵ(xi)

)
. For x ∈ C, the fact is trivial since

b(x) ≥ 0 and zi(x) ≥ 0 for all i. For x ∈ Bϵ(xj), first note
that, due to (8), we have that zj(x) ≥

γsj

2 , then we can write:

bnew(x) = b(x) +

k∑
i=1

zi(x)

≥ b(x) + zj(x)

= b(x)− b(xj) + b(xj) + zj(x)

≥ −Lb(xj)∥x− xj∥+ b(xj) +
γsi
2

≥ −ϵLb(xj) + b(xj) +
γsi
2

(9)
≥ 0 .

In addition, we need to show that the positive level set of
bnew(x) does not contain any x /∈ C ∪

(⋃k
i=1 Brsi

(xi)
)

that could be potentially unsafe. For such x, we have that
zi(x) = 0 for all i = 1, 2, · · · , k, thus bnew(x) = b(x) < 0.

The next step is to show that bnew(x) is a valid CBF, i.e.
showing that for all x ∈ Cnew, KCBF (x) (defined in (3)) is
a nonempty set for bnew(x). Toward this goal, first note that
for the qi(x) function defined as (7), we have:

qi(xi) =
(
∇b(xi) +

k∑
j=1

∇zj(xi)
)
·
(
f(xi) + g(xi)u(xi)

)
+∆αi + α

(
b(xi)

) (6)
≥ γdi

i = 1, · · · , k. (12)

For x ∈ Brsj
(xj), we can write:

qj(x) = qj(xj) + qj(x)− qj(xj)
(12)
≥ γdj

−
∣∣qj(x)− qj(xj)

∣∣
≥ γdj

− Lqj (xj)∥x− xj∥
≥ γdj

− rsjLqj (xj)
(10)
≥ 0 .

The above fact holds for all j = 1, 2, · · · , k, which implies
that bnew is a valid CBF on

⋃k
i=1 Brsi

(xi). For x ∈
C \

⋃k
i=1 Brsi

(xi), we have that bnew(x) = b(x), which
is already known to be a valid CBF. Hence, we showed that
bnew(x) is a valid CBF on Cnew ⊆ C ∪

(⋃k
i=1 Brsi

(xi)
)
,

which completes the proof.

As the first solution to Problem 1, we use Theorem 1
to design the following optimization problem for obtaining
parameters γsi and rsi which are needed to determine

bnew(x):

min

k∑
j=1

γsj +
1

rsj
s.t. for all i = 1, 2, · · · , k

2ϵ ≤ rsi ≤ r , (13a)
γsi
2

≥ ϵLb(xi)− b(xi) , (13b)

γdi
≥ rsiLqi(xi) . (13c)

The reason behind selecting the above objective function for
minimization is to make bnew(x) as smooth as possible and
to cover more potentially safe area as much as possible. While
the optimization problem (13) can be non-convex in general,
it is a manageable problem, especially if the bound (13c) is
excluded and instead verified using the bootstrapping method
described in [6]. There might be cases when the above
optimization problem does not have any solution. In such
cases, one needs to step back and aim for a more conservative
exploration outside C by selecting smaller e and/or larger γe,
and then retry (13) with the new set of predictions.

Alternatively, a more computationally efficient approach
can be developed with the cost of having less flexible design
and being more conservative. For that purpose, rsi is dropped
from the decision variable set of the optimization problem
and fixed to some value consistent with (8). In addition,
α(x) is assumed to be a linear function in its argument,
i.e. α(x) = Lαx. Before stating the alternative solution, the
following definition is made for easier notation:

di := max
x∈Brsi

(xi)
∥f(x) + g(x)u(xi)∥ i = 1, 2, · · · , k .

In addition, similar to the function qi(x) in (7), assume the
following functions with fixed u(xi) for i = 1, 2, · · · , k:

pi(x) := ∇b(x) ·
(
f(x) + g(x)u(xi)

)
+ α

(
b(x)

)
. (14)

Note that since b(x) is assumed to be twice continuously
differentiable, pi(x) is a Lipschitz continuous function. Let
the local Lipschitz bound for each pi(x) be Lpi

(xi) within
Brsi

(xi).
Now, the alternative solution to Problem (1) emerges as

the following linear programming for obtaining γsi :

min

k∑
j=1

γsj s.t. for all i = 1, 2, · · · , k

γsi
2

≥ ϵLb(xi)− b(xi) , (15a)

γe +∆αi ≥ rsi
(
Lpi + Lα

k∑
j=1

Lzj

)
+

k∑
j=1

djLzj .

(15b)

Note that (15b) is a linear inequality in terms of γsi since
α is assumed to be linear function in its argument and Lzj

(defined in (5)) is also linear in terms of γsi .

Proposition 1. Solution of the optimization problem (15)
results in a valid CBF bnew as (4) for Cnew as (11).
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Proof: Showing that bnew(x) ≥ 0 for all x ∈ Cnew is
similar to the first part of the proof of Theorem (1). To show
that bnew(x) is a valid CBF, first note that ∥∇zi(x)∥ ≤ Lzi

and ∆αi = Lα

∑k
j=1 zj(xi) for all i = 1, 2, · · · , k. Then,

For x ∈ Brsj
(xj), we can write:

qj(x) ≥ pj(x) + Lα

k∑
i=1

zi(x)−
k∑

i=1

diLzi

≥ pj(xj) + Lα

k∑
i=1

zi(xj) + pj(x) + Lα

k∑
i=1

zi(x)

− pj(xj)− Lα

k∑
i=1

zi(xj)−
k∑

i=1

diLzi

= pj(xj) + ∆αj + pj(x) + Lα

k∑
i=1

zi(x)

− pj(xj)− Lα

k∑
i=1

zi(xj)−
k∑

i=1

diLzi

≥ pj(xj) + ∆αj −
k∑

i=1

diLzi

−
∣∣pj(x) + Lα

k∑
i=1

zi(x)− pj(xj)− Lα

k∑
i=1

zi(xj)
∣∣

≥ γe +∆αj −
k∑

i=1

diLzi

−
(
Lpj + Lα

k∑
i=1

Lzi

)
∥x− xj∥

≥ γe +∆αj −
k∑

i=1

diLzi − rsj
(
Lpj

+ Lα

k∑
i=1

Lzi

)
(15b)
≥ 0 .

Hence, similar to the proof of Theorem (1), it can be
concluded that bnew(x) is a valid CBF on Cnew.

The above optimization can be solved repeatedly to
gradually push the boundaries of the safe set: Each time
a complete set of predictions (consisting k points according
to (i)–(iii)) is successfully generated and the optimization
problem is solved to attain a new CBF. Then, the new CBF is
used to generate another possible set of predictions for further
expansion of the safe set. The process stops when either no
further safe predicted exploration data can be generated (e.g.,
when the boundaries of the safe zone get too close to obstacles
or when the required control input exceeds the allowed bound)
or when the constraints of (13) or (15) cannot be satisfied.
Re-solving either (13) or (15) to get a new CBF bnew(x) as
in (4) adds a number of zi(x) functions after each predicted
exploration set. The total number of functions could get large
after numerous explorations rendering the safety analysis
difficult. However, at any location in the workspace, only
zi(x) functions whose peak points are within 2r distance are
actually needed to be considered for the safety analysis since

all other zi(x) functions play no role in the safety analysis
as their values - as well as their gradients - vanish at that
location.

V. SIMULATION RESULTS

This section showcases the utilization of the CBF synthesis
approach described in Section IV. We refer to the CBF
synthesis based on the optimization problem (13) as Method 1
and based on (15) as Method 2. Consider a 2D sphere world
where the workspace (i.e. set D) is a circle centered at (0, 0)
with radius of 3. There are two circular obstacles centered at
(1.5, 1.5) and (−1.5,−1.5) respectively with radius of 0.5.
The initial CBF b(x) is given as follows:

b(x) =
1

100

(
1− ∥x− (1,−1)∥2

)
. (16)

The dynamic system is assumed to be point robot, i.e. ẋ = u,
where u is the control input.

Fig. 2 depicts the initial safe set C. As it can be seen, the
above initial CBF is conservative as it renders only a relatively
small portion of the actual safe areas of D as its safe zone
C.

Fig. 2: The initial safe set C of the CBF b(x) (16) covers only a
small portion of actually safe regions of the workspace D.

The approach outlined in Section IV is utilized to expand
the initial safe set as much as possible. For that purpose, sets
of safe predicted exploration data are generated according
to (i)–(iii) (see Section III). Then, the updated CBF with
enlarged safe zone is synthesised based on (13) or (15). The
process is repeated until no further safe set expansion is
possible. To do this, an extended class-K function α(x) =
1

100x is selected and the following parameters are set: r = 0.1,
ϵ = 0.01. In addition, the allowed control input is constrained
as ∥u∥ ≤ 1, and the minimum allowed value for parameter e
is set to 0.005.

We should reiterate that (i)–(iii) are predicted explorations,
and so the expansion of the safe set is only done whenever a
set of predictions with a reasonably small k can be generated.
In fact, a large k for the predictions set at an intended location
suggests that the system is either near unsafe regions or the
available control resources cannot bring the system back to
the current known safe set. So, expansion of the safe set
at that location might not be desired or possible. In such
cases, the system keeps searching for good sets of predictions
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on other locations. For this simulation example, we set the
maximum allowed k for any predictions set as 5.

Fig. 3 shows the updated safe zone after one iteration of the
process described above. For this first iteration, the following
parameters are used: γe = 0.01, e = 0.01. In addition, a fixed
rsi = 0.06 is used for Method 2. As expected, Method 1
expands the safe zone a little larger since it has the flexibility
of choosing the maximum compatible rsi as opposed to
Method 1 that drops rsi from the decision variable set of the
optimization problem and uses a fixed value for it instead.

Fig. 3: The expanded safe zone Cnew after one iteration of Method
1 and Method 2.

Continuation of the above process results in expanding
the safe zone more and more after each iteration. The final
expanded safe zones using Method 1 and 2 are shown in Fig. 4.
Similar to the results of the first iteration, it can be seen that
the final expanded safe zone by Method 1 is a little larger than
Method 2 due to its higher flexibility. However, the reduced
computational effort of Method 2 (that only needs linear
programming in each iteration) can be a fair compromise
given that the difference between the two final safe zones is
relatively small for this simulation study. In particular, on a
system with an Intel Core i7 (2.6GHz) processor and 16GB
of memory using Wolfram Mathematica, the first method
takes 2045.2 seconds, while the second method is done in
487.3 seconds. Hence, the first method takes about 325%
longer time while it enlarges the safe set only by about 5%
more than the second method.

VI. CONCLUSION

It is possible to efficiently re-synthesize a CBF to enlarge
its safe zone based on the safe exploration data. For this
purpose, two approaches are presented in this paper. The
first one provides a more flexible design but relies on a
generally non-convex optimization problem, while the second
one only requires linear programming at the cost of a more
conservative design. The formal proof for the correctness
of both methods as well as a supporting numerical example
are provided and discussed. The main application that can
benefit from this work is reinforcement learning (RL) for
motion planning purposes. The utilization of the presented
approaches in this context will be the focus of our future
work.

Fig. 4: The final expanded safe zone Cnew of the two methods.
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