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Abstract— Recently, the concept of p-dominance has been
proposed as a unified framework to study rich behaviors of
nonlinear systems. In this letter, we consider finding a set of lin-
ear dynamic output feedback controllers rendering the closed-
loop systems p-dominant. We first derive an existence condition.
Based on this condition, we then provide a parametrization
of controllers. For Lure’s systems, the proposed method can
be applied only by solving a finite family of linear matrix
inequalities, which is illustrated by achieving multi-stabilization
and stabilization of a limit cycle.

I. INTRODUCTION

Beyond mono-stability, various rich behaviors of nonlinear
dynamical systems are interested in multiple disciplines such
as bi-stability in bacteria [1] and stable limit cycles in circa-
dian rhythms [2]. Typically, these problems have been stud-
ied independently, but there is a recent approach to develop
a unified framework with the notion of p-dominance [3]. In
this paper, our objective is to obtain a parametrization of
linear dynamic output feedback controllers for p-dominance.

Literature Review: The concept of p-dominance is in-
troduced via a differential Lyapunov matrix inequality for
contraction (i.e., 0-dominance); see e.g. [4], [5] for con-
traction analysis. Relaxing the positive definiteness from its
constant solution, it has been shown that if a solution has
p negative eigenvalues, the system has the p-dimensional
dominant behavior [3]. This unified framework for analysis
and/or design of rich behaviors is applied to their robustness
analysis [6] and model reduction for preserving them [7].
State feedback control design is studied in [3], [8], but a
method for output feedback control is not well developed
yet except for contraction [9], [10].

For stabilizing control, the Youla-Kučera parametriza-
tion [11] is a well known approach to parametrize output
feedback controllers. Also, there is an alternative approach
based on LMIs [12]. However, these approaches are not
directly applicable to p-dominance. In particular, the latter
relies on the positive definiteness of solutions to Lyapunov
inequalities while the essence of p-dominance is to relax it.

Contribution: In this paper, we provide a parametrization
of linear dynamic output feedback controllers rendering the
closed-loop systems p-dominant by removing the require-
ment for solutions being positive definite from the afore-
mentioned approach in [12]. First, we derive an existence
condition for an output feedback controller as a natural
extension of stabilizing control design for linear systems
to the p-dominance of nonlinear systems. The proposed
condition is based on a pair of control and filter Lyapunov
type matrix inequalities. In general, the p-dominant behavior
of the closed-loop system depends on this pair. However,

under an additional condition, this is determined by the
number of negative eigenvalues of the control inequality only.

Next, based on the derived existence condition, we present
a parametrization of linear output feedback controllers for
p-dominance. Utilizing the obtained parametrization, we
further study stable control design as an extension of strong
stabilization. Also, we study reduced-order control design.
The proposed method consists of an infinite family of LMIs
due to the state dependency, which can be relaxed into a
finite set of LMIs by taking a similar approach as in [3], [8],
[10]. Moreover, for Lure’s systems, we can apply a different
relaxation based on the sector condition, which is also
demonstrated. That is, solving nonlinear partial differential
equations/inequalities is not required for the proposed control
design method.

Notation: The set of real numbers is denoted by R. The
set of n×n symmetric matrices is denoted by Sn. The n×n
identity matrix is denoted by In. For P ∈ Sn, P ≻ 0 (P ⪰ 0)
means that P is positive (semi) definite. For a matrix B ∈
Rn×m with rank B = r ≤ m, B⊥ ∈ R(n−r)×n denotes a
matrix satisfying B⊥B = 0 and B⊥(B⊥)⊤ ≻ 0. The vector
2-norm or the induced matrix 2-norm is denoted by | · |.

II. PRELIMINARIES

In this paper, our objective is to parametrize the set
of linear controllers rendering the closed-loop systems p-
dominant for nonlinear systems. First, we recall the notion
of p-dominance and properties of p-dominant systems. Then,
we state the considered problem.

A. p-dominance

For a closed nonlinear system ẋ = f(x) with f : Rn →
Rn of class C1, the concept of dominance with rate λ ≥ 0
is defined based on the following inequality with respect to
ε > 0 and P ∈ Sn:

∂⊤f(x)P + P∂f(x) ⪯ −2λP − εIn, ∀x ∈ Rn, (1)

where ∂f(x) := ∂f(x)/∂x. Note that P ∈ Sn is not required
to be positive definite. If it has p negative eigenvalues and
n − p positive eigenvalues, P is said to have the inertia p.
Now, we are ready to mention the concept of p-dominance
and properties of p-dominant systems.

Definition 2.1: [3, Definition 2] The closed nonlinear
system ẋ = f(x) is said to be strictly p-dominant with rate
λ ≥ 0 if there exist ε > 0 and P ∈ Sn with inertia p such
that (1) holds. ◁

Proposition 2.2: [3, Theorem 1] If a closed nonlinear
system is strictly p-dominant with rate λ ≥ 0, its flow on a
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compact limit set is topologically equivalent to a flow on a
compact invariant set of a Lipshitz system in Rp. ◁

According to Proposition 2.2, realizing rich behavior can
be formulated in terms of p-dominance. For instance, multi-
stability and stable limit cycles are related to 1- and 2-
dominance, respectively.

B. Problem Formulation

Consider the following open nonlinear system:{
ẋ = f(x) +Bu
y = Cx

(2)

where f is of class C1, B ∈ Rn×m, and C ∈ Rq×n.
Our objective is to design a controller making the closed-

loop system p-dominant. Since linear controllers are easy-to-
implement, investigating their limits and potentials are im-
portant. Thus, we focus on linear output feedback controllers:[

u
ẋc

]
=

[
Dc Cc

Bc Ac

]
︸ ︷︷ ︸

G

[
y
xc

]
, (3)

where Ac ∈ Rnc×nc (0 ≤ nc ≤ n), Bc ∈ Rnc×q , Cc ∈
Rm×nc , and Dc ∈ Rm×q . That is, we consider the following
control design problem.

Problem 2.3: For a system (2), find a set of linear dy-
namic output feedback controllers (3) to render the closed-
loop systems p-dominant with rate λ ≥ 0. ◁

We are also interested in the computational tractability of
linear control design. For this reason, we consider constant
B and C, which allows us to formulate design problems in
terms of linear matrix inequalities (LMIs). Two different ap-
proaches are explained after Theorem 3.1 and in Section IV
below, the latter of which focuses on Lure’s systems.

Let us define

x̂ =

[
x
xc

]
, f̂(x̂) =

[
f(x)
0

]
, B̂ =

[
B 0
0 Inc

]
, Ĉ =

[
C 0
0 Inc

]
.

(4)

Then, the closed-loop system can be described as

˙̂x = f̂(x̂) + B̂GĈx̂.

Thus, for given λ ≥ 0, Problem 2.3 reduces to finding ε > 0,
P ∈ Sn+nc

with inertia p, and G ∈ R(m+nc)×(q+nc) such
that

(∂f̂(x̂) + B̂GĈ)⊤P + P (∂f̂(x̂) + B̂GĈ)

⪯ −2λP − εIn+nc
, ∀x ∈ Rn (5)

holds. We design controllers based on (5).
A parametrization of stabilizing controllers is a well stud-

ied problem as represented by the Youla-Kučera parametriza-
tion, e.g., [11]. In contrast, literature on control design for
p-dominance is still scarce. This paper is the first attempt to
study dynamic output feedback control design and further
their parametrization. As an advantages of parametrizing
controllers, one can design controllers having additional
performances, which is also investigated by finding stable
controllers as a generalization of strong stabilization.

III. MAIN RESULTS

In this section, we first investigate the existence of a linear
dynamic output feedback controller achieving p-dominance
with rate λ ≥ 0 and then provide its parametrization. Also,
we discuss controller reduction and stable control design
based on the obtained parametrization.

A. Parametrization of Linear Controllers

We first derive a necessary condition for the existences
of P and G satisfying (5). This also becomes a sufficient
condition under a mild assumption, stated below.

Theorem 3.1: Given λ ≥ 0, suppose that there exist
ε > 0, non-singular P ∈ Sn+nc

, and G ∈ R(m+nc)×(q×nc)

satisfying (5). Then, there exist εX , εY > 0 and X,Y ∈ Sn
such that

B⊥(∂f(x)X +X∂⊤f(x)

+ 2λX + εXIn)(B
⊥)⊤ ⪯ 0, ∀x ∈ Rn (6a)

(C⊤)⊥(Y ∂f(x) + ∂⊤f(x)Y

+ 2λY + εY In)((C
⊤)⊥)⊤ ⪯ 0, ∀x ∈ Rn (6b)

hold. The converse is also true if X is non-singular.
Proof: The proof is in Appendix B.

Corollary 3.2: Given λ ≥ 0, suppose that (6) has so-
lutions εX , εY > 0 and X,Y ∈ Sn with non-singular
X . Utilizing P1,2 ∈ Rn×nc and non-singular P2,2 ∈ Snc

satisfying Y −X−1 = P1,2P
−1
2,2P

⊤
1,2, define

P :=

[
Y P1,2

P⊤
1,2 P2,2

]
. (7)

Then, P is non-singular for such arbitrary P1,2 and P2,2, and
there exist ε > 0 and G ∈ R(m+nc)×(q×nc) such that (5)
holds. Moreover, if Y −X−1 ⪰ 0, the inertias of P and X
are the same.

Proof: The proof is in Appendix C.
For fixed λ ≥ 0, (6) is an infinite family of LMIs

with respect to εX , εY > 0 and X,Y ∈ Sn. To make it
feasible, similar convex relaxations as in [3], [8], [10] can
be applied. Let Âi ∈ R(n+nc)×(n+nc), i = 1, . . . , r be
such that for each x̂ ∈ Rn+nc , there exist θi(x̂) satisfying
∂f̂(x̂) =

∑r
i=1 θi(x̂)Âi and

∑r
i=1 θi(x̂) = 1. Then, (6)

holds if

B⊥(AiX +XA⊤
i + 2λX + εXIn)(B

⊥)⊤ ⪯ 0

(C⊤)⊥(Y Ai +A⊤
i Y + 2λY + εY In)((C

⊤)⊥)⊤ ⪯ 0

∀i = 1, . . . , r

are satisfied. This is a finite family of LMIs with respect to
εX , εY > 0 and X,Y ∈ Sn.

According to Corollary 3.2, achieving p-dominance re-
duces to finding a suitable pair of X and Y (also εX and
εY ) such that P in (7) has inertia p, which can require
iteratively solving (6) for different rates λ ≥ 0. This process
can be simplified to finding X with inertia p by imposing
Y − X−1 ⪰ 0 when solving (6b). In general, increasing
λ ≥ 0 corresponds to making p larger.

897



In this letter, we are interested in not only finding a
stabilizing controller but also parametrizing a set of con-
trollers achieving p-dominance with rate λ ≥ 0. Such a
parametrization is presented as follows.

Theorem 3.3: Given λ ≥ 0, suppose that all conditions in
Corollary 3.2 hold, and consider P in (7). Then, for this P ,
all G parametrized below satisfy (5) for some ε > 0:

G = −R−1B̂⊤PQ̂−1Ĉ⊤(ĈQ̂−1Ĉ⊤)−1

+ S1/2L(ĈQ̂−1Ĉ⊤)−1/2 (8)

S := R−1 −R−1B̂⊤PQ̂−1

(Q̂− Ĉ⊤(ĈQ̂−1Ĉ⊤)−1Ĉ)Q̂−1PB̂R−1,

where parameters L ∈ R(nc+m)×(q+nc), 0 ≺ R ∈ Snc+m,
and 0 ≺ Q̂ ∈ Sn are arbitrary as long as |L| < 1 and

− ∂⊤f̂(x̂)P − P∂f̂(x̂)− 2λP

− ε̂In+nc
+ PB̂R−1B̂⊤P ≻ Q̂, ∀x ∈ Rn (9a)

(Ĉ⊤)⊥(Q̂− PB̂R−1B̂⊤P )((Ĉ⊤)⊥)⊤ ≻ 0 (9b)

hold for some ε̂ > 0.
Proof: The proof is in Appendix D.

Note that (9) is linear with respect to ε̂ > 0, R ≻ 0, and
Q̂ ≻ 0. Thus, a similar convex relaxation as for (6) can be
applied to (9) for deriving a finite family of LMIs.

If (6) and (9) hold for all x ∈ Rn, we obtain a parametriza-
tion of controllers rendering global p-dominance. If one
is interested in achieving local p-dominance on a convex
D ⊂ Rn, one only has to consider these conditions on D.

B. Controller Reduction

From Corollary 3.2, the dimension nc of a designed
controller is equivalent to the rank of Y −X−1. Thus, given
nc < n, a reduced-order control design can be formulated
as finding X,Y ∈ Sn such that (6) and rank (XY − In) =
rank (Y −X−1) = nc hold. To make this problem compu-
tationally tractable, we relax reducing rank (XY − In) into
making trace(XY −In) smaller. To this end, we alternatively
update X and Y .

For the initial solution Xk, Yk ∈ Sn with k = 0, suppose
that rank (XkYk − In) > nc. Then, we first update X by
solving the following optimization problem:

min
εk≥0, εXk+1

>0

Xk+1∈Sn

εk (10)

s.t. − εk ≤ trace(Xk+1Yk − In) ≤ εk

(6a) holds for X = Xk+1 and εX = εXk+1

Xk+1 has inertia p.

The last constrain is not convex. However, it is expected that
this holds if the update Xk+1 −Xk is small, e.g., −cIn ⪯
Xk+1 − Xk ⪯ cIn with sufficiently small c > 0. Next, we
update Y based on the following optimization problem:

min
εk≥0, εYk+1

>0

Yk+1∈Sn

εk (11)

s.t. − εk ≤ trace(Xk+1Yk+1 − In) ≤ εk

(6b) holds for Y = Yk+1 and εY = εYk+1

Yk+1 −X−1
k+1 ⪰ 0.

The last constraint is to make the inertias of X and P are
the same; recall Corollary 3.2.

We repeat the updates of Xk and Yk until rank (XkYk −
In) ≤ nc. The optimization problems (10) and (11) are
always feasible because they have trivial solutions εXk+1

=
εXk

, εYk+1
= εYk

, Xk+1 = Xk, and Yk+1 = Yk. However,
when Xk+1 −Xk and Yk+1 − Yk are too marginal, we may
need to terminate the algorithm (fail).

C. Stable Control Design

In Theorem 3.3, we have obtained a parametrization (8)
of linear controllers G rendering the closed-loop systems p-
dominant, where G is linear with respect to L. We derive an
LMI condition for L such that a controller becomes stable.

Proposition 3.4: Given λ ≥ 0, suppose that all conditions
in Corollary 3.2 hold. Consider P in (7) and the correspond-
ing parametrization G in (8) for fixed ε̂ > 0, R ≻ 0, and
Q̂ ≻ 0 satisfying (9). Define G2,2 :=

[
0 Inc

]
G
[
0 Inc

]⊤
.

If P2,2 ≻ 0, and the following set of LMIs:

G⊤
2,2P2,2 + P2,2G2,2 ≺ 0 (12a)[

Inc+m L
L⊤ Ip+nc

]
≻ 0 (12b)

has a solution L ∈ R(nc+m)×(q+nc), then Ac is Hurwitz
while P and G satisfy (5) for some ε > 0.

Proof: From (3), G2,2 = Ac. Thus, (12a) with P2,2 ≻ 0
implies that Ac is Hurwitz. From Theorem 3.3, if L satisfies
|L| < 1, i.e., (12b), P and G satisfy (5) for some ε > 0.

From the construction (7) of P , Y − X−1 ⪰ 0 im-
plies P2,2 ≻ 0. Noting this, we summarize an algorithm
for reduced-order stable linear control design achieving p-
dominance with rate λ ≥ 0 in Algorithm 1 below. The
constructed G in line 23 gives a parametrization of (non-
necessarily stable) linear controllers rendering the closed-
loop systems p-dominant.

IV. FOR LURE’S SYSTEMS

To design a controller based on the proposed approach, we
need to solve an infinite family of LMIs (6), which can be
relaxed into a finite one as mentioned above. In this section,
focusing on Lure’s systems, we consider another relaxation.
In particular, we derive a sufficient LMI condition for (6)
and provide a parametrization of controllers.

Lure’s system is a system described by ẋ = Ax+Bu+Bzg(z)
y = Cx
z = Czx,

(13)

where A ∈ Rn×n, Bz ∈ Rn×n2 , Cz ∈ Rn1×n, and g :
Rn1 → Rn2 is of class C1 such that for some γ > 0,

|∂g(z)| ≤ γ, ∀z ∈ Rn1 (14)

holds. If there are parameter uncertainties, these can be
covered by selecting γ larger.
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Algorithm 1 Control design for p-dominance with rate λ ≥ 0

Require: System (2), p, nc ≤ n
Ensure: n̂c-dimensional (n̂c ≤ nc) stable linear controller (3)

achieving p-dominance with rate λ ≥ 0 or Fail
1: λ = 0
2: while Inertia of X is equivalent to p do
3: Solve (6a) with respect to εX > 0 and X ∈ Sn

4: if Inertia of X is less than p then
5: Increase λ ≥ 0
6: end if
7: if Inertia of X is greater than p then
8: Return Fail
9: end if

10: end while
11: Solve (6b) and Y − X−1 ⪰ 0 with respect to εY > 0 and

Y ∈ Sn

12: k ← 0, X0 ← X , Y0 ← Y
13: while rank (XkYk − In) ≤ nc do
14: Solve (10) with respect to εXk+1 > 0 and Xk+1 ∈ Sn

15: Solve (11) with respect to εYk+1 > 0 and Yk+1 ∈ Sn

16: if Xk+1 −Xk and Yk+1 − Yk are marginal then
17: Return Fail
18: end if
19: k ← k + 1
20: end while
21: n̂c ← rank (XkYk − In), X ← Xk, Y ← Yk

22: Compute P in (7), and solve (9) with respect to ε̂ > 0, 0 ≺
R ∈ Sn̂c+m, and 0 ≺ Q̂ ∈ Sn

23: Construct G in (8) with a tuning parameter |L| < 1
24: if (12) does not have a solution L then
25: Return Fail
26: end if
27: Return G with a solution L to (12)

Utilizing the structure of Lure’s systems, we have the
following sufficient condition for (6).

Proposition 4.1: For Lure’s system (13), if given λ ≥ 0,
there exist εX , εY > 0 and X,Y ∈ Sn such that

B⊥(AX +XA⊤ +XC⊤
z CzX

+ γ2BzB
⊤
z + 2λX + εXIn)(B

⊥)⊤ ⪯ 0 (15a)

(C⊤)⊥(Y A+A⊤Y + C⊤
z Cz + γ2Y BzB

⊤
z Y

+ 2λY + εY In)((C
⊤)⊥)⊤ ⪯ 0 (15b)

hold, then they satisfy (6).
Proof: For Lure’s system, (6a) becomes

B⊥(AX +XA⊤ +Bz∂g(z)CzX

+XC⊤
z ∂⊤g(z)B⊤

z + 2λX + εXIn)(B
⊥)⊤ ⪯ 0,

which can be rearranged as

B⊥

(
AX +XA⊤ + 2λX + εXIn

+
[
Bz XC⊤

z

] [ 0 ∂g(z)
∂⊤g(z) 0

] [
B⊤

z

CzX

])
(B⊥)⊤ ⪯ 0.

By the Schur complement with (14), this holds if (15a) holds.
The proof for Y is similar.

Note that (15) is equivalent to the following set of LMIs
with respect to X,Y ∈ Sn:[

X̄1,1 B⊥XC⊤
z

CzX(B⊥)⊤ −In1

]
⪯ 0 (16a)[

Ȳ1,1 γ(C⊤)⊥Y Bz

γB⊤
z Y ((C⊤)⊥)⊤ −In2

]
⪯ 0 (16b)

X̄1,1 := B⊥(AX +XA⊤ + γ2BzB
⊤
z + 2λX + εXIn)(B

⊥)⊤

Ȳ1,1 := (C⊤)⊥(Y A+A⊤Y + C⊤
z Cz

+ 2λY + εY In)((C
⊤)⊥)⊤.

Thus, for Lure’s systems, the construction of P in (7) can
be relaxed into solving a finite set of LMIs.

Also for a parametrization of linear controllers, we have
the following LMI condition.

Proposition 4.2: Given λ ≥ 0, suppose that all the condi-
tions in Proposition 4.1 hold, and consider P in (7). Then,
for this P , all G parametrized by (8) satisfy (5), where
L ∈ R(nc+m)×(q+nc) and 0 ≺ R ∈ Snc+m are arbitrary
as long as |L| < 1 and

Q̂ := −ÂP − PÂ− Ĉ⊤
z Ĉz − γ2PB̂zB̂

⊤
z P

− 2λP − ε̂In+nc
+ PB̂R−1B̂⊤P ≻ 0 (17)

for some ε̂ > 0, where

Â :=

[
A 0
0 0

]
, B̂z :=

[
Bz

0

]
, Ĉz :=

[
Cz 0

]
.

Proof: The proof is in Appendix E.

V. EXAMPLES

Consider the following Lure’s system:
ẋ =

[
0 1
−3 −5

]
x+

[
0
2

]
sin(z) +

[
0
1

]
u

y =
[
1 0

]
x

z =
[
1 0

]
x

(18)

For this system, γ > 0 in (14) is 1. This system is 0-dominant
when u = 0.

We design two 1-dimensional controllers: one is for 1-
dominance, and the other is for 2-dominance. First, we
consider 1-dominance. Applying a similar algorithm to Al-
gorithm 1 for the Lure’s system, a set of solutions to (16) is
obtained by λ = 1.1, εX = 0.01, εY = 0.01, and

X =

[
−0.600 0

0 7.00

]
, Y =

[
−0.667 0

0 0.143

]
.

Note that the inertia of X is 1, and Y − X−1 ⪰ 0. From
Corollary 3.2, P in (7) has inertia 1 also. Since 1/7 ≈ 0.143,
the rank of Y −X−1 is viewed as 1, and P with inertial 1
is constructed as follows:

P =

−0.667 0 1
0 0.143 0
1 0 0.1000

 .
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Fig. 1. Closed-loop trajectories (left) 1-dominance (right) 2-dominance
with rates λ = 1.1

To obtain a parametrization of controllers, we compute 0 ≺
R ∈ S2 satisfying (17), which is

R =

[
0.0620 −0.190
−0.190 0.962

]
.

Then, a parametrization of controllers achieving 1-
dominance with rate λ = 1.1 is given by G in (8) with
a tuning parameter |L| < 1. From the obtained parametriza-
tion, we select a stable controller. In this case, (12) has a
trivial solution L = 0, and the corresponding G in (8) is

G =

[
−0.997 −7.58
−1.24 −2.54

]
.

From (3), Ac = −2.54 is Hurwitz. Figure 1 (left) shows
the closed-loop trajectories in the x-plane. As expected from
1-dominance with rate λ = 1.1, the closed-loop system is
multi-stable.

Next, we design a controller achieving 2-dominance. To
increase p, we select larger εX = 2.5 than the one for p = 1,
where λ = 1.1 is the same as p = 1. Then, a solution X ∈ S2
to the LMI (16a) is obtained by

X =

[
−0.600 0

0 −0.500

]
.

The inertia of X is 2. Also, the set solutions to (16b) and
Y −X−1 ⪰ 0 is obtained by εY = 0.01 and

Y =

[
−1.62 −0.310
−0.310 −0.110

]
.

Based on X and Y , we construct P in (7) as

P =

 −1.62 −0.310 0.162
−0.310 −0.110 −0.987
0.162 −0.987 0.515


whose inertia is 2. For this P , a matrix 0 ≺ R ∈ S2
satisfying (17) and a controller G with L = 0 are obtained
by

R =

[
0.145 0.0772
0.0772 0.993

]
, G =

[
2.06 7.57
−1.38 −0.250

]
.

Note that Ac = −0.250 is Hurwitz. Figure 1 (right) shows
the closed-loop trajectories in the x-plane. As expected from
2-dominance with rate λ = 1.1, the closed-loop system has
a stable Limit cycle.

VI. CONCLUSION

In this letter, we have proposed a parametrization of
linear dynamic output feedback controllers rendering the
closed-loop systems p-dominant. Utilizing the proposed
parametrization, we have further discussed how to impose the
stability for controller dynamics. Also, we have mentioned
reduced-order control design. Based on the proposed method,
we have designed reduced-order stable controllers for Lure’s
system, which achieve 1- and 2-dominance. Future work
includes applying the proposed method to real-life systems
by addressing problems caused in practical environment.

APPENDIX

A. Lemmas for Matrices

Before proving the theorems, we list existing results.
Lemma 1.1: [13, A.5.5, C.4.1] Consider a symmetric

block matrix P in (7). If P2,2 is non-singular, it can be
decomposed into

P =

[
I P1,2P

−1
2,2

0 I

] [
Y − P1,2P

−1
2,2P

⊤
1,2 0

0 P2,2

]
[
I P1,2P

−1
2,2

0 I

]⊤
. (19)

Moreover, if P is non-singular, the first n×n block element
of P−1 is X := (Y − P1,2P

−1
2,2P

⊤
1,2)

−1. ◁
Lemma 1.2: [12, Lemma 2.1] Let matrices B and H =

H⊤ with compatible dimensions be given. Then, the follow-
ing two statements are equivalent:

(i) there exists R ≻ 0 satisfying H +BRB⊤ ≻ 0;
(ii) B⊥H(B⊥)⊤ ≻ 0 or BB⊤ ≻ 0. ◁
Lemma 1.3: [12, Lemma 2.2] Let matrices K, C, Q =

Q⊤, and R ≻ 0 with compatible dimensions be given. If
CC⊤ ≻ 0, the following two statements are equivalent:

(i) there exists G satisfying (K+GC)⊤R(K+GC) ≺ Q;
(ii) a) Q ≻ 0 and b) (C⊤)⊥(Q−K⊤RK)((C⊤)⊥)⊤ ≻ 0

or C⊤C ≻ 0.
If (ii) holds, all G satisfying (i) are given by

G = −KQ−1C⊤(CQ−1C⊤)−1 + S1/2L(CQ−1C⊤)−1/2

S := R−1 −K(Q−1 −Q−1C⊤(CQ−1C⊤)−1CQ−1)K⊤

where |L| < 1. ◁

B. Proof of Theorem 3.1

As a preliminary step, we rearrange (5). Since (5) contains
ε > 0, (5) holds if and only if there exist ε̂ > 0 and 0 ≺
R ∈ Snc+m such that

(∂f̂(x̂) + B̂GĈ)⊤P + P (∂f̂(x̂) + B̂GĈ)

+ (GĈ)⊤RGĈ ≺ −2λP − ε̂In+nc
,

holds, where note that the inequality is strict. Completing the
square with respect to GĈ yields

(R−1B̂⊤P +GĈ)⊤R(R−1B̂⊤P +GĈ) ≺ Q(x̂), (20)

where

Q(x̂) := −∂⊤f̂(x̂)P − P∂f̂(x̂)
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− 2λP − ε̂In+nc
+ PB̂R−1B̂⊤P. (21)

Note that Q(x̂) depends on x only because f̂(x̂) does so.
According to Lemma 1.3, (20) is equivalent to

Q(x̂) ≻ 0 (22a)

(Ĉ⊤)⊥(Q(x̂)− PB̂R−1B̂⊤P )((Ĉ⊤)⊥)⊤ ≻ 0. (22b)

Note that every transformation is equivalent until here.
Namely, there exist P and G satisfying (5) if and only if
there exist P and R ≻ 0 such that (22) holds for Q(x̂)
in (21). Thus, we show the statements based on (22).

First, we show that (22) implies (6). From (21), pre- and
post-multiplying P−1 to (22a) lead to

− P−1∂⊤f̂(x̂)− ∂f̂(x̂)P−1

− 2λP−1 − ε̂P−2 + B̂R−1B̂⊤ ≻ 0. (23)

Since P is non-singular and symmetric, we have P−2 ≻ 0.
Thus, (23) holds if and only if for some εX > 0,

− P−1∂⊤f̂(x̂)− ∂f̂(x̂)P−1

− 2λP−1 − εXIn+nc + B̂R−1B̂⊤ ≻ 0.

According to Lemma 1.2, this is equivalent to

B̂⊥(−P−1∂⊤f̂(x̂)− ∂f̂(x̂)P−1

− 2λP−1 − εXIn+nc)(B̂
⊥)⊤ ≻ 0. (24)

The definition of B̂ in (4) implies B̂⊥ =
[
B⊥ 0

]
. Also

from the definition of f̂(x̂) in (4), (24) holds if and only if

B⊥(−X∂⊤f(x)− ∂f(x)X − 2λX − εXIn)(B
⊥)⊤ ≻ 0,

holds, where X denotes the first n×n block diagonal element
of P−1. Since B⊥(B⊥)⊤ ≻ 0 and εX > 0, this is equivalent
to the non-strict inequality (6a).

Similarly, the definition of Ĉ in (4) implies (Ĉ⊤)⊥ =[
(C⊤)⊥ 0

]
. Then, from (21), (22b) is equivalent to

(C⊤)⊥(−∂⊤f(x)Y − Y ∂f(x)

− 2λY − ε̂In)((C
⊤)⊥)⊤ ≻ 0,

where Y = P1,1. Again, this is equivalent to the non-strict
inequality (6b).

Next, we prove the converse under the non-singularity of
X . Define nc = rank (Y −X−1). Then, there exist P1,2 ∈
Rn×nc and non-singular P2,2 ∈ Snc such that Y −X−1 =
P1,2P

−1
2,2P

⊤
1,2 holds. Using these matrices, we construct P

as in (7). Since P2,2 is non-singular, P can be decomposed
as in (19), where P1,1 − P1,2P

−1
2,2P

⊤
1,2 = X−1. The non-

singularity of X and P2,2 imply that of P ; when nc = 0,
P = Y = X−1 is non-singular.

From Lemma 1.1, the first n × n block element of P−1

is X . Therefore, if X satisfies (6a), P−1 does (24). Namely,
there exists R ≻ 0 satisfying (23), i.e., (22a). Similarly, if Y
satisfies (6b), P does (22b). In summary, for the constructed
P , there exists R ≻ 0 satisfying (22).

C. Proof of Corollary 3.2
The first statement follows from the proof of Theo-

rem 3.1 above. We show the second statement. From the
constructions of P1,2 and P2,2, Y − X−1 ⪰ 0 implies
P2,2 ≻ 0. Furthermore, from the decomposition (19) of P ,
if P2,2 ≻ 0 then the inertia of P is equivalent to that of
P1,1 − P1,2P

−1
2,2P

⊤
1,2 = X−1. Note that the inertias of X−1

and X are the same.

D. Proof of Theorem 3.3
From Lemma 1.3 with Q̂ ≻ 0 and (9b), all G in (8) satisfy

(R−1B̂⊤P +GĈ)⊤R(R−1B̂⊤P +GĈ) ≺ Q̂. (25)

From (9a) and (21), we have Q̂ ⪯ Q(x) and thus (20). From
the proof of Theorem 3.1, all G satisfy (5).

E. Proof of Proposition 4.2
As in the proof of Theorem 3.1, it is possible to show that

the constructed P satisfies Q̂ ≻ 0 and

(Ĉ⊤)⊥(Q̂− PB̂R−1B̂⊤P )((Ĉ⊤)⊥)⊤ ≻ 0.

for some R ≻ 0, λ ≥ 0, and ε > 0, where Q̂ is defined
in (17). Also, similarly to the proof of Theorem 3.3, it is
possible to show that all G in (8) with Q̂ in (17) satisfy (25).
Again from the proof of Theorem 3.1, (25) implies

(Â+ B̂GĈ)⊤P − P (Â+ B̂GĈ) + Ĉ⊤
z Ĉz + γ2PB̂zB̂

⊤
z P

+ 2λP + ε̂In+nc
⪯ 0

As in the proof of Proposition 4.1, one can show that this
implies (5) for the Lure’s system (13).
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