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Abstract— This work addresses the problem of global expo-
nential stability analysis of the origin of continuous-time Con-
tinuous Piecewise Affine (CPWA) systems. The stability analysis
in this paper considers Piecewise Quadratic (PWQ) Lyapunov
Functions (LF) and a ramp-based implicit representation of
PWA systems. Sufficient convex stability conditions are obtained
in the form of a Semidefinite Programming (SDP) problem. Two
major benefits arise from the proposed results: i) the need for
equality constraints to ensure the continuity of the LF across the
boundaries of the sets of the partition is withdrawn; ii) there is
no need to consider separate SDP conditions for each set of the
partition, which simplifies the application of the conditions. The
effectiveness of the proposed method is illustrated in numerical
examples.

I. INTRODUCTION

Piecewise Affine (PWA) systems are obtained by par-
titioning the state space and associating each set of the
partition with an affine dynamic equation. They are useful,
for instance, in modeling nonlinear circuits [14], mechanical
systems [21], and systems subject to input saturation [6].
Moreover, they are equivalent to some other classes of
hybrid systems [7] and can also be used to approximate
some nonlinear dynamics [5]. For continuous-time systems,
one possible model with polyhedral partition is the explicit
representation [15]

ẋ = Fix+ fi ∀x ∈ Γi ⊆ Rn (1a)
Γi = {x ∈ Rn | Θix ⪰ θi}, (1b)

for i ∈ {1, . . . , NΓ}, where NΓ is the total number of sets of
the state space partition. In (1), for each set Γi, Fi ∈ Rn×n

and fi ∈ Rn define an affine dynamics while Θi ∈ Rℓi×n

and θi ∈ Rℓi define the sets of the polyhedral partition, that
is, ∪iΓi = Rn and int(Γi)∩int(Γj) = ∅ ∀i, j ∈ {1, . . . , NΓ},
i ̸= j.

When the explicit representation (1) is used to analyze the
Global Exponential Stability (GES) of the origin of PWA
systems, Piecewise Quadratic (PWQ) Lyapunov Function
(LF) candidates are often considered, as in [8], [9], and
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[11]. Specifically, [9] introduced Linear Matrix Inequality
(LMI) conditions to assess the GES of the origin of PWA
systems. Local results were later proposed by [11]. Moreover,
such conditions can be relaxed using cone-copositivity tests
proposed in [8].

However, using the explicit representation (1) has two
drawbacks. When parameterizing PWQ LF candidates, addi-
tional equality constraints are required to ensure continuity
at the boundaries of the partition sets [8], [9], [11]. More-
over, the stability conditions are written for each set and
must distinguish whether or not the set contains the origin,
resulting in convoluted numerical implementation of these
conditions [9], [11]. To avoid these drawbacks, we consider
the following ramp-based implicit representation, proposed
in [6]

ẋ = Ax+Bϕ(y(x)) (2a)
y(x) = Cx+Dϕ(y(x)) + e, (2b)

with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, D ∈ Rm×m, and
e ∈ Rm, where ϕ : Rm → Rm is the vector-valued ramp
function, defined elementwise in terms of the scalar ramp
function r : R → R for j ∈ {1, . . . ,m} as

ϕ(j)(y(x)) = r(y(j)(x)) =

{
0 if y(j)(x) ≤ 0

y(j)(x) if y(j)(x) > 0.
(3)

The relation between the representations (1) and (2) can be
found in [2], where the stability of uncertain continuous-time
PWA systems was analyzed with quadratic LFs. The stability
analysis of discrete-time PWA systems was reported in [6],
where the proposed methods outperformed methods based
on the representation (1) in numerical examples.

In this paper, we use the ramp-based implicit represen-
tation (2) to formulate LMI conditions for the GES of the
origin of continuous-time Continuous PWA (CPWA) systems
considering PWQ LF candidates. The use of the implicit
representation yields directly the continuity of the LFs, which
follows from the continuity of the ramps and the well-
posedness of an algebraic loop similar to (2b). Moreover,
it also allows the formulation of the stability conditions as a
reduced set of LMIs. Differently from [6], we consider here
the more general case where the partition of the PWQ LF
can differ from the partition of the system dynamics, and we
also introduce copositive matrices in the stability conditions,
instead of elementwise nonnegative ones.

The paper is structured as follows. Section II states the
problem under consideration. In Section III, the properties
of the ramp function are recalled and an SDP test to verify
the positive semidefiniteness of PWQ functions is provided.
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Furthermore, the concept of almost everywhere differen-
tiability presented in [3], [4], [10], [13], [19] is extended
to PWA systems. In Section IV, the main result of this
work is presented, with examples of its application given
in Section V. Finally, Section VI provides final remarks.

Notation: For a matrix M , we denote Sn = {M ∈
Rn×n | M = M⊤}, Dn = {M ∈ Sn | M(i,j) = 0 ∀i ̸= j},
Pn is the set of copositive matrices, i.e., Pn = {M ∈
Sn | v⊤Mv ≥ 0 ∀v ⪰ 0}, He{M} := M + M⊤ and
diag(M1,M2) is the block diagonal matrix composed by M1

and M2. 1m ∈ Rm represents a vector with each element
equal to 1.

II. PROBLEM STATEMENT

Consider a continuous-time system as in (2). Let the
system trajectories be denoted as x(t, x0), for t ≥ 0, where
x(0, x0) = x0. The following assumption is made.

Assumption 1. The origin is an equilibrium, which imposes
Bϕ(y(0)) = 0.

Note that, regarding the explicit representation (1), As-
sumption 1 implies that fi = 0 ∀i such that 0 ∈ Γi (either
in its interior or on its boundary).

The completeness of the trajectories does not follow
directly from the representation (2) since (2b) defines an
algebraic loop which, in some cases, may not be well-posed.
This could render the vector field not defined for some sets
of the state space, thus preventing the solution interval from
being t ∈ R≥0 for some initial condition x0 ∈ Rn. To
ensure the completeness of the trajectories, we consider the
following assumption.

Assumption 2 (Global well-posedness of the algebraic loop).
The algebraic loop (2b) is well-posed, that is, for any x ∈ Rn

the solution y(x) of (2b) exists and is unique.

From the well-posedness of (2b) we have the continuity
of y on x, which is a PWA function, therefore globally
Lipschitz, thus guaranteeing the completeness and continuity
of solutions. Moreover, as a consequence of Assumption 2,
the dynamics of the PWA system (2) are continuous across
the boundaries of the partition, that is, (2) is a Continuous
PWA (CPWA) system. Therefore, no sliding modes can
occur [18], and the solutions of (2) are in the Carathéodory
sense. To test whether Assumption 2 holds, a sufficient
condition is given in the following result from [6], [20].

Proposition 1 (Test for the well-posedness of (2b)). If there
exists a matrix W ∈ Dm such that

W > 0, −2W + He{WD} < 0,

then (2b) is well-posed.

The stability analysis problem considered in this work is
stated as follows:

Problem 1 (Stability Analysis). Given a CPWA system (2),
determine whether the origin is GES, that is, whether there

exist strictly positive real numbers κ and γ such that

∥x(t, x0)∥2 ≤ κ ∥x0∥2 e
−γt ∀t > 0, ∀x0 ∈ Rn.

Observe that the GES of the origin does not require that
the matrix A in (2) to be Hurwitz. To assess the stability
of the origin of system (2) we consider PWQ LF candidates
defined as

V (x) =

[
x

ϕ(η(x))

]⊤ [
P1 P2

P⊤
2 P3

] [
x

ϕ(η(x))

]
, (4a)

η(x) = Cηx+Dηϕ(η(x)) + eη, (4b)

with P1 ∈ Sn, P2 ∈ Rn×q , P3 ∈ Sq , Cη ∈ Rq×n, Dη ∈
Rq×q , and eη ∈ Rq . Note that the partitions of the state space
induced by (2b) and (4b) may differ. When imposing Cη =
C, Dη = D, and eη = e, the partition of the LF candidate
and the system dynamics become the same, as considered
in [6]. Moreover, we assume that the algebraic loop (4b) is
well-posed, which can be verified using Proposition 1. From
the well-posedness of (4b) and the continuity of the ramp
function (3), we have that V in (4) is a continuous function.

III. PRELIMINARIES

In this section, we recall the properties of the vector-valued
ramp function, which leads to conditions for the positive
semidefiniteness of PWQ functions. To address the fact that
the ramp function is not differentiable, we use the results
from [10], [13] showing how to obtain an expression of the
derivative of the ramp function that holds almost everywhere.
The results presented in this section will be instrumental in
obtaining an LMI test for the Lyapunov inequalities with
respect to the system (2) considering PWQ LF candidates.

A. Properties of the ramp function

Let g ∈ Rng and define the vector

χ⊤(g) :=
[
1 ϕ⊤(g) (ϕ(g)− g)⊤

]
.

The following two lemmas characterize the vector-valued
ramp function ϕ defined in (3) (the proofs can be found
in [6, Lemmas 1 and 3]):

Lemma 1. [6] For any T ∈ Dng the following identity holds
∀g ∈ Rng

χ⊤(g)Ψ(T )χ(g) ≡ 0, Ψ(T ) :=

 0 01,ng
01,ng

0ng,1 0ng
T

0ng,1 T 0ng

.
Lemma 2. [6] For any M ∈ P(1+2ng) the following
inequality holds ∀g ∈ Rng

χ⊤(g)Mχ(g) ≥ 0.

B. Nonnegativity of PWQ functions

Let z ∈ Rnz and g ∈ Rng , define the vector

ξ⊤(z, g) :=
[
1 z⊤ ϕ⊤(g) (ϕ(g)− g)⊤

]
,

and consider a PWQ function h : Rnz → R defined as

h(z) = ξ⊤(z, g(z))Hξ(z, g(z)), (5a)
g(z) = Cgz +Dgϕ(g(z)) + eg, (5b)



with H ∈ S1+nz+2ng , Cg ∈ Rng×nz , Dg ∈ Rng×ng , and
eg ∈ Rng . Assume that (5b) is well-posed (see Proposi-
tion 1). Note that V in (4) is a particular case of h in (5).
Based on the properties of the ramp function presented
in Lemmas 1 and 2, the following proposition states a
sufficient condition for the positive semidefiniteness of a
PWQ function.

Proposition 2. If there exist T ∈ Dng and M ∈ P1+2ng

such that

h(z) + χ⊤(g(z))(Ψ(T )−M)χ(g(z)) ≥ 0 ∀z ∈ Rnz , (6)

then h as defined in (5) is a positive semidefinite PWQ
function.

Proof. From the well-posedness of (5b) and Lemmas 1
and 2, (6) implies that h(z) ≥ χ⊤(g(z))Mχ(g(z)) ≥
0 ∀z ∈ Rnz . ■

The set of PWQ functions as in (5) for which (6) holds
for some T ∈ Dng and M ∈ P1+2ng is denoted PWQ+. The
next proposition introduces a numerical test in the form of
a matrix inequality to verify whether h ∈ PWQ+.

Proposition 3. Let h be a PWQ function defined as in (5).
If there exist T ∈ Dng and M ∈ P(1+2ng) such that

Π⊤
ξ (H +Π⊤

χ (Ψ(T )−M)Πχ)Πξ ≥ 0 (7)

with

Πξ=


1 01,nz 01,ng

0nz,1 Inz
0nz,ng

0ng,1 0ng,nz
Ing

−eg −Cg Ing
−Dg

,Π⊤
χ=

 1 01,2ng

0nz,1 0nz,2ng

02ng,1 I2ng

,
then h ∈ PWQ+.

Proof. Let ν⊤(z, g(z)) :=
[
1 z⊤ ϕ⊤(g(z))

]
and ob-

serve the following relations: χ(g(z)) = Πχξ(z, g(z))
and ξ(z, g(z)) = Πξν(z, g(z)). Thus, by pre- and post-
multiplying (7) by ν⊤(z, g(z)) and ν(z, g(z)), respectively,
and considering the aforementioned relations, we obtain (6).
Thus, (7) implies that h ∈ PWQ+. ■

Remark 1. Note that the matrix M in (7) must be copositive.
A simple parameterization of a copositive matrix is to impose
elementwise nonnegativity, as done in [6]. Other less conser-
vative convex conditions for the copositivity of a symmetric
matrix M , based on Sum-of-Squares (SoS) polynomials, are
given in [12, p. 64]. For instance, a symmetric matrix
M ∈ Sm is copositive if the polynomial in p ∈ Rm

Pd(p) :=

 p
2
(1)

...
p2(m)


⊤

M

 p
2
(1)

...
p2(m)

( m∑
i=1

p2(i)

)d

(8)

admits an SoS decomposition for some d ∈ N≥0.

Remark 2. Observe that since (7) has an affine dependence
on H , T , and M , it can be written as an LMI whenever
an LMI parameterization of copositivity is adopted (see
Remark 1).

C. Derivative of the ramp function

Let x(t) be a trajectory of system (2). To compute the
time derivative of V (x(t)) by using the chain rule, we can
formally express

V̇ (x) = 2

[
x

ϕ(η(x))

]⊤ [
P1 P2

P⊤
2 P3

] [
ẋ

ϕ̇(η(x))

]
, (9)

where each term of ϕ̇(η(x)) corresponds to dϕ(i)(η)

dη(i)
η̇(i).

However, since the derivative of the ramp is not defined
whenever η(i)(x) = 0, we may have ϕ̇(η(x)) not defined in
the set S = {x ∈ Rn | η(i)(x) = 0 for some i ∈ {1, . . . , q}}.
To address this issue, we define a vector ζ(x) which is equal
to the time derivative of ϕ almost everywhere (see [10] and
[13]):

Definition 1 (Almost everywhere derivative of ϕ). The vector
ζ(x) ∈ Rq , defined elementwise for i ∈ {1, . . . , q} as

ζ(i)(x) :=

{
0 if η(i)(x) ≤ 0

(Cηẋ+Dηζ(x))(i) if η(i)(x) > 0,
(10)

is equal to the time derivative of ϕ(η(x)) almost everywhere,
that is, in the set Rn\S.

From Definition 1, the following lemma regarding ζ(x)
can be stated.

Lemma 3. For any N1, N2, and N3 ∈ Dq , the following
identities hold ∀x ∈ Rn

ζ⊤(x)N1(Cηẋ+ (Dη − Im)ζ(x)) ≡ 0, (11a)

ϕ⊤(η(x))N2(Cηẋ+ (Dη − Im)ζ(x)) ≡ 0, (11b)
(ϕ(η(x))− η(x))N3ζ(x) ≡ 0. (11c)

Proof. The left-hand side of (11a) can be written as
q∑

i=1

N1(i,i)ζ(i)(x)(Cηẋ+Dηζ(x)− ζ(x))(i).

From the definition of ζ(x) in (10) we have that either
ζ(i)(x) = 0 or ζ(i)(x) = (Cηẋ + Dηζ(x))(i). Thus (11a)
holds. Furthermore, the left-hand side of (11b) can be written
as

q∑
i=1

N2(i,i)ϕ(i)(η(x))(Cηẋ+Dηζ(x)− ζ(x))(i).

From the definition of ζ(x) in (10) we have that either
ϕ(i)(η(x)) = 0 (if η(i)(x) ≤ 0) or ζ(i)(x) = (Cηẋ +
Dηζ(x))(i) (if η(i)(x) > 0). Thus (11b) holds. Finally, the
left-hand side of (11c) can be written as

q∑
i=1

N3(i,i)(ϕ(η(x))− η(x))(i)ζ(i)(x)

and two possible cases arise for each term of the summation:
if η(i)(x) ≤ 0, then ζ(i)(x) = 0; if η(i)(x) > 0, then
(ϕ(η(x))− η(x))(i) = 0. Thus (11c) holds. ■

Remark 3. For particular structures of (4b) other relations,
similar to the ones presented in Lemma 3, can be obtained.



To illustrate, consider the saturation nonlinearity with linear
region [−1, 1]nu

sat(Kx) = Kx+
[
−Inu

Inu

]
ϕ(y(x))

y(x) = Cx+Dϕ(y(x)) + e,
(12)

where C⊤ =
[
K⊤ −K⊤], D = 02nu

, and e = −12nu
,

with K ∈ Rnu×n [6]. The following lemma can be stated
for this case.

Lemma 4. For the saturation nonlinearity (12), if Cη = C,
Dη = D, and eη = e (that is, η(x) = y(x)), then for any
N4 ∈ Dnu the following identity holds ∀x ∈ Rn

ζ⊤(x)

[
0nu

N4

N4 0nu

]
ζ(x) ≡ 0. (13)

Proof. Note that ∀x ∈ Rn, ζ(x) ∈ R2nu and the left-hand
side of (13) can be rewritten as

2

nu∑
i=1

N4(i,i)ζ(i)(x)ζ(i+nu)(x),

from where two possible cases arise for each term of the
summation. If y(i)(x) ≤ 0, then ζ(i)(x) = 0 since η(x) =
y(x). On the other hand, it follows from the saturation
structure that if y(i)(x) > 0 then y(i+nu)(x) < 0, since a
simultaneous positive and negative saturation is impossible.
This implies that ζ(i+nu)(x) = 0 since η(x) = y(x). Thus
(13) holds. ■

IV. GLOBAL STABILITY ANALYSIS

We provide now conditions to assess the GES of the origin
of CPWA systems considering PWQ LF candidates based on
the results of Section III. The following lemma introduces
an expression that is equal to the time derivative of V given
by (4) almost everywhere.

Lemma 5. For any diagonal matrices N1, N2, and N3 ∈ Dq ,
let

V̇ζ(x) := 2

[
x

ϕ(η(x))

]⊤ [
P1 P2

P⊤
2 P3

] [
ẋ

ζ(x)

]
+ 2ζ⊤(x)N1(Cηẋ+ (Dη − Im)ζ(x))

+ 2ϕ⊤(η(x))N2(Cηẋ+ (Dη − Im)ζ(x))

+ 2(ϕ(η(x))− η(x))⊤N3ζ(x).

(14)

Then, V̇ζ(x) = V̇ (x) ∀x ∈ Rn\S.

Proof. According to Lemma 3 the second, third, and fourth
terms of the right-hand side of (14) are identically zero. By
Definition 1 one has that ζ(x) = ϕ̇(η(x)) ∀x ∈ Rn\S .
Therefore V̇ζ(x) = V̇ (x) almost everywhere. ■

By observing that V in (4) is a PWQ function in x while
V̇ζ in (14) is a PWQ function in x and ζ(x), the following
result can be stated.

Theorem 1. If there exist P1 ∈ Sn, P2 ∈ Rn×q , P3 ∈ Sq ,
N1 ∈ Dq , N2 ∈ Dq , N3 ∈ Dq , and positive scalars ϵ1, ϵ2,
and γ such that

h1(x) := V (x)− ϵ1x
⊤x ∈ PWQ+, (15a)

h2(x) := −V (x) + ϵ2x
⊤x ∈ PWQ+, (15b)

h3(x, ζ(x)) := −V̇ζ(x)− 2γV (x) ∈ PWQ+, (15c)

then the origin of the CPWA system (2) is globally exponen-
tially stable with decay rate γ.

Proof. From (15a) and (15b) it follows that

ϵ1 ∥x∥22 ≤ V (x) ≤ ϵ2 ∥x∥22 ,

which ensures that V is positive definite, radially unbounded
and defined for all x ∈ Rn while (15c) implies that

V̇ζ(x) ≤ −2γV (x).

The remainder of the proof is based on [17, pp 97–99].
Thanks to the continuity of the ramp function and the
well-posedness of (2b) and (4b), we have that ẋ in (2)
is continuous in Rn and V in (4) is locally Lipschitz,
which implies that V̇ (x) is defined for almost all t. Since
V̇ζ(x) = V̇ (x) almost everywhere, by (15c) we have that
V̇ (x) ≤ −2γV (x) for almost all t. Combined with the fact
that V is radially unbounded and lower bounded by a class-
K∞ function thanks to (15a) and (15b), we conclude that the
trajectories converge exponentially to the origin with decay
rate γ. ■

As discussed in Remark 2, constraints such as (15) can
be cast as LMIs whenever an LMI relaxation for matrix
copositivity is adopted. Let us first observe that hi in (15),
for i ∈ {1, 2, 3}, are PWQ functions and can be written as
in (5)

hi(zi) = ξ⊤(zi, gi(zi))Hiξ(zi, gi(zi)),

gi(zi) = Cgizi +Dgiϕ(gi(zi)) + egi,

with z1 = z2 = x, z⊤3 =
[
x⊤ ζ⊤(x)

]
,

H1 = diag
(
0,

[
P1 − ϵ1In P2

P⊤
2 P3

]
, 0q

)
,

H2 = diag
(
0,

[
−P1 + ϵ2In −P2

−P⊤
2 −P3

]
, 0q

)
, H3 as in (16),

Cg1 = Cg2 = Cη, Dg1 = Dg2 = Dη, eg1 = eg2 = eη,

Cg3 =

[
C 0m,q

Cη 0q

]
, Dg3 =

[
D 0m,q

0q,m Dη

]
, eg3 =

[
e
eη

]
.

Thus, by using Proposition 3, (15) can be cast as LMIs for
a fixed γ and an LMI relaxation for matrix copositivity (see
Remarks 1 and 2). If we consider elementwise nonnegativity
for matrix copositivity, (15) becomes an LMI with size 3 +
3n + m + 4q and the number of decision variables grows
quadratically with respect to n, m, and q.

V. NUMERICAL EXAMPLES

This section presents two numerical examples to illustrate
the application of the results of Theorem 1. First, an example
regarding a linear system subject to input saturation, which
is a particular case of CPWA system, is considered, and
the results obtained with Theorem 1 are compared with
other methods in the literature. The second example consists



H3 = −He





0 01,n 01,q 01,m 01,q 01,m 01,q
0n,1 P1A+ γP1 P2 P1B γP2 0n,m 0n,q
0q,1 N1CηA N1(Dη − Iq) N1CηB 0q 0q,m 0q
0m,1 0m,n 0m,q 0m 0m,q 0m 0m,q

0q,1 γP⊤
2 + P⊤

2 A+N2CηA P3 +N2(Dη − Iq) P⊤
2 B +N2CηB γP3 0q,m 0q

0m,1 0m,n 0m,q 0m 0m,q 0m 0m,q

0q,1 0q,n N3 0q,m 0q 0q,m 0q




(16)

of a scalar CPWA system, where the potential benefits of
considering a different partition for the LF candidates are
highlighted. For both examples, once a value of γ is fixed
and an LMI relaxation for matrix copositivity is considered,
the resulting LMIs associated with (15) are solved with
MOSEK [1]. A line search based on solving SDP problems
allows the computation of the maximum estimate of the
decay rate γ, which will be used to compare the proposed
conditions with other methods.

A. Numerical Example 1 - Saturation

Consider the following example from [13], consisting
of a third-order single-input continuous-time linear system
controlled by a saturating static state-feedback written in the
ramp-based implicit representation (2) with

A =

−(2 + α) −2 −1
1 0 0
0 1 0

, B =

−1 1
0 0
0 0

,
C =

[
−α 0 0
α 0 0

]
, D = 02, and e =

[
−1
−1

]
,

where 0 ≤ α ≤ 100 is a parameter of the system. The
goal is to estimate the decay rate of the trajectories for a
fixed value of α, which can be carried out by employing
the conditions of Theorem 1 and a line search to maximize
γ. We choose Cη = C, Dη = D, and eη = e (i.e. the
partition of the LF candidate is the same as the partition of
the system dynamics) and we fix ϵ1 = 1 × 10−6, while ϵ2
remains a decision variable. The obtained results are shown
in Figure 1, where the cyan line represents the estimate of
the decay rate as a function of α.

The results obtained can be further improved by consider-
ing Lemma 4 to include the quadratic term in the left-hand
side of (13) in the definition of V̇ζ(x) in (14). Applying again
the conditions of Theorem 1 results in the estimates of the
decay rate shown by the dashed blue line in Figure 1. The
improvement is highlighted by the fact that the GES of the
origin is certified for all values of parameter α considered.
The performance obtained in this numerical example was
also compared with three other methods: a global sector
condition based on quadratic LFs [16, global version of
Proposition 3.6], a method for asymmetric saturation based
on PWQ LFs [10, global version of Theorem 5], and a
method for PWA systems [9, Theorem 1]. The estimates of
γ for [16] and [10] are depicted in Figure 1 by the orange
and red lines, respectively. For [9], the GES of the origin
could not be certified when choosing the matrices defining
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Fig. 1. Performance of different methods for Example 1, [16] (solid
orange), [10] (solid red), Theorem 1 (solid cyan), and Theorem 1 with
Lemma 4 (dashed blue).

the dynamics to be the continuity matrices (see [9, eq. (3)]).
The estimates of the decay rate obtained by the conditions
in [10] are similar to the values obtained from the conditions
of Theorem 1. This illustrates the applicability of the PWA
framework proposed for particular cases of interest, such as
saturation.

B. Numerical Example 2 - Scalar CPWA System

Consider a scalar CPWA system given by

ẋ =


−10x if x ∈ Γ1 = (−∞, 1)

−x− 9 if x ∈ Γ2 = [1, 3)

−10x+ 18 if x ∈ Γ3 = [3, ∞),

(17)

with x ∈ R. This system can be represented in the ramp-
based implicit representation (2) with

A = −10, B⊤ =

[
9
−9

]
, C =

[
1
1

]
, D = 02, and e =

[
−1
−3

]
.

Thanks to the simplicity of this example, it is possible to
demonstrate the following two facts: i) The origin is GES
with decay rate γ = 10; ii) If a quadratic LF is used to
assess the GES of the origin of the system, the maximum
decay rate estimate is γ = 4.

Indeed, if we verify the stability using Theorem 1 and a
quadratic LF candidate (that is, with P2 = 01,2 and P3 = 02
in (4)), we obtain γ = 4 as the estimate of the decay rate.
On the other hand, if we consider a PWQ LF candidate with
the same partition as the system dynamics, that is, Cη = C,
Dη = D, and eη = e, we obtain γ = 5.9993. We refine
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Fig. 2. Estimate of γ as a function of N for different copositivity
relaxations: elementwise nonnegativity (black dots) and SoS decomposi-
tion (8) with d = 1 (red circles). The blue and cyan dashed lines represent,
respectively, the global decay rate and its estimate with a quadratic LF.

the LF partition by adding N equally spaced sub-sets in
the set Γ2 of the state space and then applying Theorem 1
with a line search for estimating the decay rate γ. Figure 2
shows the estimate of the decay rate γ as a function of
the refinement parameter N for two convex relaxations for
matrix copositivity, namely elementwise nonnegativity and
(8) with d = 1. Observe that, by increasing N and con-
sidering elementwise nonnegativity for copositivity (black
dots in Figure 2), we obtain better estimates for γ, although
without achieving γ = 10 for the considered values for
N . On the other hand, a single subdivision in the set Γ2

(N = 1) and an SoS-based relaxation for copositivity ((8)
with d = 1) allows to estimate γ = 9.9996, which is equal to
the actual global decay rate of the origin within the tolerance
of the line search algorithm for γ. This example illustrates
the potential benefits of considering a partition of the LF
candidates different from the one of the system dynamics
and of using SoS relaxations for ensuring the copositivty of
the slack matrix M in the application of Proposition 3.

VI. CONCLUSION

This work addressed the global exponential stability anal-
ysis of the origin of continuous-time Continuous Piecewise
Affine (CPWA) systems using a ramp-based implicit repre-
sentation. Piecewise Quadratic (PWQ) Lyapunov Functions
(LF) were considered to certify the stability of the origin.
Moreover, a convex relaxation for ensuring copositivity of
matrices based on Sum-of-Squares constraints was employed
for the test of positive semidefiniteness of PWQ functions.
The use of the ramp-based implicit representation presents
three main advantages to the stability analysis problem. First,
it inherently considers PWQ LFs that are continuous across
the set boundaries, withdrawing the need for additional
constraints (potentially conservative) to impose continuity.
Second, the growth of the dimensions of the LMI constraints
with respect to the number of sets of the state space partition
is reduced when compared to methods such as [9]. Finally,
it also allows to consider uncertainties in the partition in a
straightforward manner [2]. Future work includes extending

the results to discontinuous PWA systems, where sliding
modes (in the sense of Filippov solutions) may exist.
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