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Abstract— In this paper, semantics and characterizations of
signal temporal logic formulas for hybrid dynamical systems
are presented. Hybrid dynamical systems are given in terms
of constrained differential and difference inclusions, which,
respectively, capture the continuous evolution and the instan-
taneous events exhibited by solutions. For such systems, the
always and eventually operator of signal temporal logic are
studied and characterizations in terms of dynamical properties
of hybrid systems are presented – in particular, using invariance
and finite-time attractivity properties. Sufficient conditions that
guarantee the satisfaction of a signal temporal logic formula for
a given system through the satisfaction of an untimed formula
for an appropriately defined new system are introduced. Specif-
ically, it is shown that satisfying an (untimed) temporal logic
formula involving until operators suffices to certify always and
eventually signal temporal logic formulas for hybrid systems.

I. INTRODUCTION

Complex specifications for dynamical and control systems
can be efficiently formulated using temporal logic [1], [2].
In fact, temporal logic permits specifying properties for
solutions (or traces) that relate to reaching or avoiding a
set, both over a finite and an infinite horizon. The variant of
temporal logic proposed in [3] permits to specify properties
of continuous-time signals that are defined over ordinary
time. Such a logic, known as signal temporal logic (STL), is
suitable for the validation of statements involving logic and
temporal operators over finite time horizons.

The original formulation of STL in [3] is inspired by the
work in [4], where metric interval temporal logic (MITL)
is introduced as a “temporal language that constrains the
time difference between events only with finite, yet arbitrary,
precision.” Though originally introduced for continuous-time
signals, the satisfaction and certification of STL specifi-
cations has been considered for discrete time and hybrid
signals. Among the contributions in the literature that are
most related to the work in this paper are the results for the
certification of STL for hybrid systems modeled as hybrid
automata using reachable sets in [5], where reachset temporal
logic (RTL) is introduced. More recently, and also for hybrid
automata, a tool for the quantification of robustness in the
satisfaction of STL formulas that builds from the results
in [6], [7] using falsification and SMT solvers is proposed
in [8], while a symbolic model checking algorithm that
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is “refutationally complete” for general STL properties of
bounded signals is proposed in [9].

In this paper, a temporal logic formulation for the certi-
fication of properties of hybrid signals is proposed. With a
semantics that builds from the early work in [3], we propose
to certify a particular fragment of STL – specifically, always
and eventually STL operators – by recasting the dependency
on (hybrid) time of STL as the problem of certifying an
untimed formula for a properly defined new hybrid system.
The hybrid signals considered in this paper are solutions to
hybrid dynamical systems given in a general framework that,
as a difference to the work in [5], [8], [9], allows for solutions
that may end prematurely (e.g, deadlock), are not bounded
(e.g., exhibit finite escape times), or are Zeno – or, more
extremely, only evolve discretely. More precisely, inspired
by the ideas in [10]–[12], we formulate in Section III the
semantics of STL for a broad class of hybrid dynamical
systems modeled by differential inclusions and difference
inclusions with state constraints, as in [13].

As a difference from the STL formulations in the litera-
ture, the temporal operators proposed in this paper involve
hybrid time domains, which is a time structure that captures
continuous evolution (or flow) over ordinary time and jumps
(when the state changes instantaneously) using a discrete
counter. After formulating the semantics of this (hybrid)
signal temporal logic, in Section IV we characterize STL
formulas involving the always and eventually operators in
terms of forward invariance and finite-time convergence
properties. Specifically, we introduce sufficient conditions
that guarantee the satisfaction of STL formulas through
the satisfaction of LTL formulas involving until operators
(LTL for the same class of hybrid dynamical systems was
formulated in [14]). An important difference between our
results and those in the literature is that, in particular, relative
to [5], our results do not require the computation of the
reachable set and, relative to [8], symbolic abstractions are
not involved. Conveniently, with the approach proposed in
this paper, the sufficient conditions recently proposed in [15]
to guarantee the satisfaction of LTL formulas involving until
operators can be employed to certify STL specifications,
for which the price to pay is finding Lyapunov or barrier
functions. An example illustrates the concepts and results.

II. OUTLINE OF THE PROPOSED APPROACH

In this paper, we present characterizations of STL formulas
using the always and eventually operators for hybrid signals
generated by hybrid dynamical systems. For easy of exposi-
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tion, we outline our approach for continuous-time systems1

ẋ ∈ F (x) x ∈ C ⊂ Rn (1)

which we denote as Hf = (C,F ), and then present the
semantics and results for the more complex case of hybrid
systems. To reason about these formulas, we consider a
new system which implicitly encodes the timing conditions.
For (1), the state of this new system consists of a pair (x, τ),
where x is the state of the original system and τ is a new state
indicating the continuous-time evolution. Then, we define
new atomic propositions over the states of the new system
based on the interval I ⊂ R≥0 := [0,∞) associated with
the specification. As we show in this paper, this approach
reduces the problem of verifying a timed STL property in
the original system to an untimed one for the new system.

Proceeding this way, we outline the proposed approach
to characterize specific STL operators. Formally defined in
Section III for the case of hybrid signals, given an atomic
proposition p and a connected interval I ⊂ R≥0, the always
operator over I is denoted 2Ip. The formula f = 2Ip is
satisfied for a solution ϕ to (1) at t = 0 if p(ϕ(t)) = 1 for
all t ∈ I ∩domϕ. To certify this property, we define the set
of points that satisfy p as

P := {x ∈ C : p(x) = 1} (2)

and the set I ⊂ R≥0 as

I := [Tmin, Tmax], (3)

where Tmin ≥ 0 and Tmax ≥ Tmin. Then, a solution ϕ to (1)
satisfies f = 2Ip at t = 0 if ϕ(t) ∈ P for all t ∈ I∩domϕ.

To characterize the behavior of solutions ϕ to (1) while
t ∈ I, the proposed approach introduces the new system
mentioned above, which is denoted Hf,τ , as follows. The
system Hf,τ has state (x, τ) ∈ Rn × R≥0 and dynamics

Hf,τ : ẋ ∈ F (x), τ̇ = 1 (x, τ) ∈ C×R≥0. (4)

The state component τ acts as a timer. Note that for each
solution ψ = (φ, τ) to Hf,τ with τ(0) = 0, the component φ
is a solution to (1). We notice that to satisfy 2Ip for each
solution ϕ to (1) at t = 0, each solution ψ to Hf,τ starting
from2 Rn × {0} must remain in P × [Tmin, Tmax] for all
t ∈ [Tmin, Tmax]. In fact, due to τ evolving as a timer, if
each solution to Hf,τ starting from Rn × {0} stays in P ×
[Tmin, Tmax] for each t ∈ I, then each solution to (1) stays
in P for each t ∈ I. Hence, the satisfaction of 2Ip for
each solution to (1) at t = 0 is assured by guaranteeing the
following properties for each solution to Hf,τ from Rn×{0}:

• Each solution ψ stays in Rn × [0, Tmin) until reaching
P × [Tmin, Tmax] at some t ∈ domψ (we encode this
property in a proposition denoted pa) – by construction
of Hf,τ , this property holds for free if Tmin ∈ domψ.

1A solution ϕ : domϕ → Rn to (1) is given by a locally absolutely
continuous function t 7→ ϕ(t) satisfying (1) as indicated in the notion of
solution to H in Section III. Note that in this case, since (1) is a continuous-
time system, domϕ ⊂ R≥0 and we only use t as time parameter.

2Later, we include a set of initial states.

• Once a solution ψ reaches P × [Tmin, Tmax], ψ stays in
P × [Tmin, Tmax] (which we capture by proposition pb)
until reaching Rn × (Tmax,∞) (which we capture by
proposition pc) – this property requires establishing that
the component φ of ψ remains in P at least for Tmax−
Tmin seconds after reaching it.

As shown in this paper, these properties can be guaranteed
by certifying an untimed formula for Hf,τ .

Similar observations can be made for the STL eventually
operator, which is denoted 3Ip. The formula f = 3Ip is
satisfied for a solution ϕ to (1) at t = 0 if p(ϕ(t)) = 1 for
some t ∈ I∩domϕ. The next example employs this operator
and further illustrates the proposed approach.

Example 2.1 (robotic manipulation). Consider an end ef-
fector interacting with a surface located at the origin for
position. Denoting its position by x1 and its velocity by x2,
a model capturing the evolution of x := (x1, x2) under the
effect of a proportional-derivative continuous-time controller
is given by

ẋ1 = x2, ẋ2 ∈ F2(x) (5)

where F2 : R2 ⇒ R2 is a set-valued map capturing the
contact force and control action, given by [16, Section 3.2.1
and Prop. 7]

F2(x) :=

 −kpx1 − kdx2 if x1 < 0
−ξ − kdx2, ξ ∈ con{0, bcx2} if x1 = 0
−kpx1 − bcx2 − kdx2 if x1 > 0

where kp and kd are tunable gains, kc > 0 and bc > 0
are, respectively, the elastic and damping coefficients of the
compliant contact model, and con denotes the closed convex
hull operation. It can be shown that, given kc and bc, there
exist choices for kp and kd such that every maximal solution
to (5) converges to zero asymptotically; see [16, Proposition
7]. Consider the atomic proposition defined as

p(x) = 1 if x1 ≤ 0, x2 ≥ 0, p(x) = 0 otherwise. (6)

This proposition captures the requirement of the end effector
making contact with the surface. The associated system Hf,τ

defined in (4) has F defined as F (x) := (x2, F2(x)) for
each x ∈ R2. Given an interval I as in (3), the formula
f = 3Ip specifies the property of the end effector making
contact with the surface in finite time. To certify it, every
solution ψ = (φ, τ) to Hf,τ with τ(0) = 0 has to satisfy
(φ(t), τ(t)) ∈ P × I for some t ∈ domψ ∩ I ( ̸= ∅). This
finite-time convergence property to a point in P × I can
be certified by analyzing Hf,τ . This example is revisited in
Example 4.5, where the model in (5) is augmented by the
addition of jumps capturing collisions with the surface.

III. SIGNAL TEMPORAL LOGIC FOR
HYBRID DYNAMICAL SYSTEMS

In this section, inspired by the ideas in [10]–[12] for
continuous-time and discrete-time systems, we define the
semantics of STL for the broad class of hybrid systems
H=(C,F,D,G) on Rn described as follows [13]:

ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D

(7)
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where x∈Rn is the state variable, F : Rn⇒Rn denotes the
flow map capturing the continuous dynamics on the flow set
C, and G : Rn ⇒ Rn defines the jump map capturing the
discrete dynamics on the jump set D.

A solution ϕ to H is parameterized by (t, j) ∈ R≥0 × N,
where t is the ordinary time variable, j is the discrete
jump variable, R≥0 := [0,∞), and N := {0, 1, . . .}. The
domain of ϕ, denoted domϕ⊂ R≥0 × N, is a hybrid time
domain if for every (T, J) ∈ domϕ, the set domϕ ∩
([0, T ] × {0, 1, . . . , J}) can be written as the union of sets⋃J

j=0([tj , tj+1] × {j}), for a time sequence 0 = t0 ≤ t1 ≤
t2 ≤ . . .≤ tJ+1. The tj’s with j>0 define the time instants
when the state of the hybrid system jumps and j counts
the number of jumps. A solution is given by a hybrid arc.
A function ϕ : domϕ → Rn is a hybrid arc if domϕ is
a hybrid time domain and if for each j ∈ N, the function
t 7→ ϕ(t, j) is locally absolutely continuous on the interval
Ij = {t : (t, j) ∈ domϕ}. A hybrid arc ϕ is a solution to
H=(C,F,D,G) if ϕ(0, 0)∈C∪D; for each j∈N such that
Ij has nonempty interior (the interior of Ij is denoted as int
Ij), ϕ(t, j) ∈ C for each t∈ int Ij and ϕ̇(t, j)∈F (ϕ(t, j))
for almost all t ∈ Ij ; for each (t, j) ∈ domϕ such that
(t, j + 1)∈domϕ, ϕ(t, j)∈D and ϕ(t, j + 1)∈G(ϕ(t, j)).
A solution to H is called maximal if it cannot be further
extended. Finally, it is said to be complete if its domain
is unbounded. Given a set X , SH(X) denotes the set of
maximal solutions to H starting from x ∈ X . See [13] for
more details.

For a given hybrid system H as in (7), we define operators
and specify properties of H with STL formulas. First, we
introduce atomic propositions.

Definition 3.1 (Atomic Proposition). An atomic proposi-
tion p is a statement on the system state x. A proposition
p is treated as a single-valued function of x: given x, p(x)
is either True (1 or ⊤) or False (0 or ⊥).

In the following, the syntax of an STL formula f is defined
recursively as follows:

f ::= p | ¬f | f ∨ g | f UIg, (8)

where p is an atomic proposition, and f and g are STL
formulas. The operators ¬,∨,U are the negation, disjunction,
until operator, respectively – note that we consider both
strong and weak versions of UI , which are denoted Us,I
and Uw,I , respectively. One can also define operators other
than the ones that are used for constructing the grammar.
Given the operators negation and disjunction, the opera-
tors conjunction (∧), implication (⇒), equivalency (⇔) are
defined as f ∧ g = ¬(¬f ∨ ¬g), f ⇒ g = ¬f ∨ g,
f ⇔ g = (f ⇒ g) ∧ (g ⇒ f), respectively. Furthermore,
the operators eventually (3) and always (2) are defined as
3If = ⊤Us,If and 2If = ¬(3I¬f), respectively. The set
I is a subset of R≥0 ×N defining the hybrid time instances
for which the properties stated by the operators should hold,
as defined below.

An STL formula f being satisfied by a solution (t, j) 7→

ϕ(t, j) at some time (t, j) is denoted by

(ϕ, (t, j)) ⊨ f . (9)

Since an STL formula is a sentence consisting of atomic
propositions and operators of STL, we can also consider
an atomic proposition instead of a formula. Let p and q be
atomic propositions. Given a solution ϕ to H, (t, j) ∈ domϕ,
and I ⊂ R≥0 × N, the semantics of STL are defined as3

(ϕ, (t, j)) ⊨ ¬p⇔ ¬((ϕ, (t, j)) ⊨ p), (10a)
(ϕ, (t, j)) ⊨ p ∨ q ⇔ (ϕ, (t, j)) ⊨ p ∨ (ϕ, (t, j)) ⊨ q, (10b)
(ϕ, (t, j)) ⊨ p ∧ q ⇔ (ϕ, (t, j)) ⊨ p ∧ (ϕ, (t, j)) ⊨ q, (10c)
(ϕ, (t, j)) ⊨ 3Ip⇔ ∃(t′, j′)∈domϕ ∩ ({(t, j)}+I)

(10d)
: (ϕ, (t′, j′))⊨p,

(ϕ, (t, j)) ⊨ 2Ip⇔ (ϕ, (t′, j′))⊨p (10e)
∀(t′, j′)∈domϕ ∩ ({(t, j)}+I),

(ϕ, (t, j)) ⊨ pUs,Iq ⇔ (10f)
∃(t′, j′)∈domϕ ∩ ({(t, j)}+I) : (ϕ, (t′, j′))⊨q
∧ ∀(t′′, j′′)∈domϕ ∩ ([t, t′]×{j, j + 1, . . . , j′})

(ϕ, (t′′, j′′)) ⊨ p,

(ϕ, (t, j)) ⊨ pUw,Iq ⇔ (ϕ, (t′, j′))⊨p (10g)
∀(t′, j′)∈domϕ ∩ ({(t, j)}+I),

∨ (ϕ, (t, j)) ⊨ pUs,Iq.

The same semantics of STL are used for formulas. For
example, given an STL formula f , a solution ϕ satisfies
3If at (t, j) ∈ domϕ if the formula f holds at some time
(t′, j′) ∈ domϕ such that (t′, j′) ∈ {(t, j)}+ I.

Note that the STL syntax reduces to that of LTL when it
is “untimed;” i.e., I = R≥0×N. We introduce the following
untimed strong until and weak until operators in LTL that
will be used to certify STL formulas [15].

Definition 3.2 (pUsq). Given atomic propositions p and q,
a solution ϕ to H satisfies the (untimed) formula pUsq at
(t, j) ∈ domϕ if either (ϕ, (t, j)) ⊨ q; or

• there exists (t′, j′) ∈ domϕ such that t′ + j′ ≥ t + j,
(ϕ, (t′, j′)) ⊨ q, and (ϕ, (t′′, j′′)) ⊨ p for all (t′′, j′′) ∈
domϕ ∩ ([t, t′]×{j, j + 1, . . . , j′}).

Definition 3.3 (pUwq). Given atomic propositions p and q,
a solution ϕ to H satisfies the (untimed) formula pUwq at
(t, j) ∈ domϕ if either

• (ϕ, (t′, j′)) ⊨ p for all (t′, j′) ∈ domϕ such that t′ +
j′ ≥ t+ j; or

• ϕ satisfies pUsq at (t, j).

IV. CHARACTERIZATIONS OF STL FORMULAS
2Ip AND 3Ip FOR HYBRID DYNAMICAL SYSTEMS

In this section, we present characterizations of STL for-
mulas 2Ip and 3Ip for hybrid dynamical systems.

3Given sets S1 and S2, S1 + S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.
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A. The STL always operator

For a hybrid system H = (C,F,D,G) as in (7), instead
of using Hf,τ , we define a new hybrid system denoted Hτ =
(Cτ , Fτ , Dτ , Gτ ), with state ζ = (x, τ, k) ∈ Rn × R≥0 × N
and hybrid dynamicsẋτ̇
k̇

 ∈ Fτ (x, τ, k) :=

[
F (x)
1
0

]
ζ∈Cτ := C×R≥0×Nx+τ+

k+

 ∈ Gτ (x, τ, k) :=

[ G(x)
τ

k + 1

]
ζ∈Dτ := D×R≥0×N.

(11)
Note that for each solution4 ψ = (φ, τ, k) to Hτ with
τ(0, 0) = 0 and k(0, 0) = 0, the solution component φ is
a solution to H. To characterize STL formulas for H, we
introduce the set I ⊂ R≥0 × N defined as5

I := [Tmin, Tmax]× {Jmin, Jmin + 1, . . . , Jmax}, (12)

where Tmin, Jmin ≥ 0, Tmax ≥ Tmin, and Jmax ≥ Jmin.
Next, we establish conditions for the certification of 2Ip
and 3Ip for H. To this end, we extend P in (2) to

P := {x ∈ X : p(x) = 1}, X := C ∪D ∪G(D) (13)

where X collects the range of possible values of solutions.
The satisfaction of 2Ip for each solution to H at (t, j) =

(0, 0) is assured by guaranteeing the following properties for
the solutions ψ = (φ, τ, k) to Hτ starting from Xo × {0} ×
{0}, where Xo ⊂ Rn denotes the set of initial conditions:

• Each solution ψ to Hτ stays in X×{(τ, k) ∈ R≥0×N :
τ + k < Tmin + Jmin} until reaching P × I; and

• Once a solution ψ reaches P ×I, ψ stays in P ×I until
reaching X×{(τ, k) ∈ R≥0×N : τ+k > Tmax+Jmax}.

The property in the first item holds for free by construction
of Hτ , as long as there exists (t, j) ∈ domϕ such that t+j ≥
Tmax + Jmax. On the other hand, the property in the second
item requires showing that the component φ of ψ remains
in P over the hybrid time window defined by I.

Now, we define atomic propositions pa, pb, and pc as
follows:

pa(τ, k) :=

{
1 if τ + k < Tmin + Jmin

0 otherwise,

pb(x, τ, k) :=

{
1 if x ∈ P, (τ, k) ∈ I
0 otherwise, (14)

pc(τ, k) :=

{
1 if τ + k > Tmax + Jmax

0 otherwise.

Next, we present a result establishing the satisfaction of
STL always from properties of solutions to Hτ .

Theorem 4.1 (STL always operator). Given H =
(C,F,D,G) as in (7) and an atomic proposition p, let P
be given as in (13). Given I as in (12), let Hτ be as in (11)

4As solutions to H in (7) are denoted by ϕ, we denote by ψ the solutions
to Hτ in (11).

5For compatibility with the STL literature, we define it as a compact set,
but the unbounded set case can be treated similarly.

and atomic propositions pa, pb, and pc be as in (14). Given
a set Xo ⊂ Rn, if the (untimed) formula f̃ = pa Us(pb Uspc)
is satisfied for each solution to Hτ from Xo × {0} × {0}
at (t, j) = (0, 0), then the formula f = 2Ip is satisfied for
each solution to H from Xo at (t, j) = (0, 0).

Proof. Suppose that f̃ = pa Us(pb Uspc) is satisfied for each
solution to Hτ from Xo × {0} × {0} at (t, j) = (0, 0). We
show that each solution ϕ to H from Xo stays in P for
all (t, j) ∈ I ∩ domϕ. Let ψ = (φ, τ, k) be a solution to
Hτ from φ(0, 0) ∈ Xo, τ(0, 0) = 0, and k(0, 0) = 0. The
solution component φ is a solution (denoted ϕ) to H since
the systems H and Hτ implement the same dynamics for
the state x. Furthermore, note that the components τ and k
of ψ satisfy τ(t, j) = t and k(t, j) = j for all (t, j) ∈
domϕ. Moreover, since, by assumption, f̃ = pa Us(pb Uspc)
is satisfied for each solution to Hτ from Xo × {0} × {0} at
(t, j) = (0, 0), by definition of the Us operator, the following
hold:

• At times (t, j) at which (φ, τ, k) does not satisfy
pb Uspc, (φ, τ, k) satisfies pa, which from (14) implies
that τ(t, j) + k(t, j) < Tmin + Jmin;

• At times (t, j) at which (φ, τ, k) satisfies pb Uspc,
(φ, τ, k) satisfies pb until satisfying pc; namely,
(φ(t, j), τ(t, j), k(t, j)) ∈ P ×I at least until τ(t, j)+
k(t, j) > Tmax + Jmax.

Hence, we conclude that each solution ϕ to H with ϕ(0, 0) =
φ(0, 0) ∈ Xo is such that ϕ(t, j) = φ(t, j) satisfies p for all
(t, j) ∈ I ∩ domϕ, which implies that f = 2Ip is satisfied
for every solution ϕ to H at (t, j) = (0, 0).

B. The STL eventually operator

To certify f = 3Ip, as indicated above, we redefine
atomic proposition pb and pc as follows:

pb(τ, k) :=

{
1 if (τ, k) ∈ I
0 otherwise,

pc(x, τ, k) :=

{
1 if x ∈ P, (τ, k) ∈ I
0 otherwise.

(15)

Theorem 4.2 (STL eventually operator). Given H =
(C,F,D,G) as in (7) and an atomic proposition p, let P
be given as in (13). Given I as in (12), let Hτ be as in (11),
and let the atomic proposition pa be as in (14) and the atomic
propositions pb and pc be as in (15). Given a set Xo ⊂ Rn,
if the (untimed) formula f̃ = pa Us(pb Uspc) is satisfied for
each solution to Hτ from Xo × {0} × {0} at (t, j) = (0, 0)
then the formula f = 3Ip is satisfied for each solution to
H from Xo at (t, j) = (0, 0).

Proof. Suppose that f̃ = pa Us(pb Uspc) is satisfied for a
solution (φ, τ, k) to Hτ at (t, j) = (0, 0) with φ(0, 0) ∈ Xo,
τ(0, 0) = 0, and k(0, 0) = 0. We show that, for each solution
ϕ to H, there exists (t, j) ∈ I∩domϕ such that ϕ(t, j) ∈ P .
Let (φ, τ, k) be a solution to Hτ such that τ(0, 0) = 0,
k(0, 0) = 0, and φ(t, j) = ϕ(t, j) for all (t, j) ∈ domϕ.
The solution component φ is a solution ϕ to H since the
systems H and Hτ implement the same dynamics for the
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state x; and we note that τ(t, j) = t and k(t, j) = j for
all (t, j) ∈ domϕ. Since f̃ = pa Us(pb Uspc) is satisfied for
each solution (φ, τ, k) to Hτ at (t, j) = (0, 0) with φ(0, 0) ∈
Xo, τ(0, 0) = 0, and k(0, 0) = 0, by definition of Us,

• At times (t, j) at which (φ, τ, k) does not satisfy
pb Uspc, (φ, τ, k) satisfies pa, which implies that
τ(t, j) + k(t, j) < Tmin + Jmin;

• At times (t, j) at which (φ, τ, k) satisfies pb Uspc,
(φ, τ, k) satisfies pb until satisfying pc; namely,
(φ(t, j), τ(t, j), k(t, j)) ∈ Rn × I until, for some
(t′, j′) ∈ dom(φ, τ, k), (φ(t′, j′), τ(t′, j′), k(t′, j′)) ∈
P × I.

Hence, we conclude that each solution ϕ to H such that
ϕ(t, j) = φ(t, j) satisfies p for all (t, j) ∈ I, which implies
that f = 3Ip is satisfied at (t, j) = (0, 0) for every solution
ϕ to H with ϕ(0, 0) ∈ Xo.

C. Satisfaction of the (untimed) formula f̃ = pa Us(pb Uspc)

With the sufficient conditions established in Theorem 4.1
and Theorem 4.2, we formulate sufficient conditions guar-
anteeing the (untimed) formula f̃ = pa Us(pb Uspc). For
simplicity, we consider the case when Xo = X . To this end,
consider the hybrid system Hτ as in (11) and let a closed
set Q be given. Following [15], we build the auxiliary system
Hw = (Cw, Fw, Dw, Gw) with state ζ = (x, τ, k) and data
given by

Fw(ζ) :=Fτ (ζ) ∀ζ∈Cw :=Cτ\Q

Gw(ζ) :=

{
ζ if ζ ∈ Q

Gτ (ζ) if ζ ∈ Dτ\Q
∀ζ∈Dw :=Dτ ∪Q.

(16)
The intuition behind the construction of system Hw is to
characterize the behavior of the system Hτ outside the set Q.
Indeed, the solutions to Hτ are the solutions to Hw (and vice
versa) up to when they reach (if they do) the set Q. Moreover,
with a closed set P ⊂ Cτ ∪Dτ , we build another auxiliary
system

Hs = (Cs, Fs, Ds, Gs), (17)

where Fs := Fτ with Cs ⊂ domFs, Cs := Cw∩ (P ∪Q)(=
Cw ∩ P ), Gs := Gw with Ds ⊂ domGs, and Ds := Dw ∩
(P ∪ Q). Note that Hs can be interpreted as the restriction
of Hw in (16) to P ∪Q.

Theorem 4.3. Consider Hτ as in (11) with F outer semi-
continuous and locally bounded with nonempty and convex
values on C, and G having nonempty images on D. Given
atomic propositions pa, pb, and pc, let the sets Pa, Pb,
and Pc be as in (13) while replacing p by pa, pb, and pc,
respectively, with x therein replaced by (x, τ, k), be such that
Pa and Pb∪Pc are disjoint. The formula f̃ = pa Us(pb Uspc)
is satisfied for each solution to Hτ starting from X̃o :=
X × {0} × {0} at (t, j) = (0, 0) if
1a) Pa ∪Pb ∪Pc is conditionally invariant6 with respect to

Pa for Hw with Q = Pb ∪ Pc;

6Given sets K ⊂ Rn and Xo ⊂ K, the set K is said to be conditionally
invariant with respect to the set Xo for H if for each solution ϕ ∈ SH(Xo),
ϕ(t, j) ∈ K for all (t, j) ∈ domϕ.

1b) Pb ∪ Pc is eventually conditionally invariant7 with
respect to Pa ∪ Pb ∪ Pc for Hs, or Pb ∪ Pc is finite
time attractive8 with respect to Pa for Hs, both with
P = Pa and Q = Pb ∪ Pc.

and
2a) Pb ∪ Pc is conditionally invariant with respect to Pb

for Hw with Q = Pc;
2b) Pc is eventually conditionally invariant with respect to

Pb∪Pc for Hs, or Pc is finite time attractive with respect
to Pb for Hs with P = Pb and Q = Pc.

Proof. We employ Hw and Hs defined in (16) and (17),
respectively, and results in [15] to establish the claim. Note
that item 1a) and item 1b) imply that pa Us(pb ∨ pc) is
satisfied for each solution to Hτ starting from Rn×{0}×{0}
at (t, j) = (0, 0). First, we apply results in [15] with P and Q
therein given by P = Pa and Q = Pb ∪ Pc.

i) [15, Theorem 3.3] implies that pa Uw(pb ∨ pc) is satis-
fied for each solution to Hτ starting from X×{0}×{0}
at (t, j) = (0, 0) if P ∪Q is conditionally invariant with
respect to P\Q for Hw in (16). The latter property holds
by item 1a) since P ∪Q = Pa∪Pb∪Pc and P \Q = Pa

by construction of P and Q plus Pa and Pb ∪Pc being
disjoint.

ii) Next, we apply [15, Theorem 3.6] to show the follow-
ing: (*) pa Us(pb ∨ pc) is satisfied for each solution to
Hτ starting from X × {0} × {0} at (t, j) = (0, 0).
From item i) above, item 1) in [15, Theorem 3.6] holds.
Item 2) requires the set Q to be eventually conditionally
invariant with respect to P ∪ Q for Hs. Since Q =
Pb ∪ Pc and P ∪ Q = Pa ∪ Pb ∪ Pc, item 2) in [15,
Theorem 3.6] holds by virtue of the first part of item
1b). Instead, if the second part of item 1b) holds, (*)
holds by an application of [15, Theorem 3.10].

Therefore, pa Us(pb∨pc) is satisfied for each solution to Hτ

starting from X × {0} × {0} at (t, j) = (0, 0).
To conclude the proof, we show that pb Uspc is satisfied

when items 2a) and 2b) hold using [15, Theorem 3.6].
Following the steps in items i) and ii) above, but with
P = Pb and Q = Pc in [15, Theorem 3.6], item 2a) implies
that item 1) in [15, Theorem 3.3] holds and, in turn, when
item 2b) holds, [15, Theorem 3.6] implies that pb Uspc is
satisfied for each solution to Hτ starting from Pb ∪ Pc at
(t, j) = (0, 0). Hence, f̃ is satisfied since solutions from X̃o

result in pa Us(pb ∨ pc) being true at a point in Pb ∪Pc.

Remark 4.4. Due to the characterization we provide, any
sufficient condition that guarantees the satisfaction of the
formula f̃ = pa Us(pb Uspc) with the appropriate atomic
propositions pa, pb, and pc guarantees the satisfaction of the

7Given sets O ⊂ C ∪D and A ⊂ Rn, the set A is said to be eventually
conditionally invariant with respect to O for H if for each maximal solution
ϕ ∈ SH(O), there exists (t, j) ∈ domϕ such that ϕ(t′, j′) ∈ A for all
t′ + j′ ≥ t+ j.

8Given sets O ⊂ C ∪ D and A ⊂ Rn such that A is closed, the set
A is said to be finite-time attractive with respect to O for H if for each
solution ϕ ∈ SH(O), TA(ϕ) < ∞, where TA : SH(O) 7→ R≥0 is the
settling-time function providing (when finite) the first hybrid time at which
the solution ϕ reaches the set A.
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formulas 2Ip and 3Ip. For example, the results in terms
of barrier functions or Lyapunov-like functions conditions in
[15, Section 6] can be applied to formulate sufficient condi-
tions for the satisfaction of the formula f̃ = pa Us(pb Uspc).

Example 4.5 (Robotic Manipulation (revisited)). Consider
the robotic manipulation problem in Example 2.1 where the
continuous dynamics of a controlled end effector are given
by (5). When the velocity of the end effector is large, contacts
result in impacts between the end effector and the surface.
Modeling the impacts using the jump map G and the jump
set D in (7), a controlled end effector is given by the hybrid
system with state x = (x1, x2) ∈ R2 and dynamics

H


ẋ ∈

[
x2

F2(x)

]
=: F (x) x ∈ C

x+ =

[
x1

−eRx2

]
=: G(x) x ∈ D

(18)

where C := {x ∈ LV (c) : x1 ≤ 0} ∪ {x ∈ R2 : x1 ≥
0, x2 ≤ x̄2}, D := {x ∈ LV (c) : x1 ≥ 0, x2 ≥ x̄2},
eR ∈ [0, 1] is the restitution coefficient, x̄2 denotes the lower
velocity threshold at which contacts are treated as impacts,
and LV (c) := {x ∈ R2 : V (x) ≤ c} with x 7→ V (x) :=
kp

2 x
2
1 +

1
2x

2
2 and c > 0. It follows from [16, Proposition 1]

that X = C ∪ D ∪ G(D), which is compact, is such that
every solution to (18) from X stays in X; i.e., X is forward
invariant for (18). Note that maximal solutions to this system
exhibit jumps when x̄2 is small enough, namely, when D is
nonempty; see the numerical results in [16, Section 5.1].

Next, consider f = 3Ip with p as in (6) with I in (12)
with 0 = Tmin < Tmax and Jmin = Jmax = 0, enforcing
that p should hold over the first interval of flow within the
ordinary time window [0, Tmax], with Tmax to be defined. To
certify this formula, we apply Theorem 4.2 and Theorem 4.3,
for which we consider Hτ in (11). Note that P in (13) is
given by {x ∈ X : x1 ≤ 0, x2 ≥ 0}. Using pa in (14),
and pb and pc in (15), the sets Pa, Pb, and Pc are given by
Pa = X × [0, Tmin) × {0}, Pb = X × [Tmin, Tmax] × {0},
and Pc = P × [Tmin, Tmax]× {0}, respectively. Item 1a) in
Theorem 4.3 holds since the associated system Hw in (16)
is such that all of its maximal solutions end in Q in finite
time; hence, Pa ∪ Pb ∪ Pc is conditionally invariant with
respect to Pa for Hw Similarly, item 1b) holds since the
maximal solutions to Hs also terminate in Q, leading finite
time attractivity of Pb ∪ Pc with respect to Pa. To satisfy
items 2a) and 2b), given c > 0 and defining the compact
set X as above, Tmax is chosen to be larger than the time
required for the position component of any solution to (6)
to reach zero with nonnegative velocity. With this choice,
and since the compact set X is forward invariant, maximal
solutions to Hw from Pb reach Pc; hence, item 2a) holds.
Showing that item 2b) holds follows similarly. Hence, since
(C,F,D,G) satisfy the assumptions in Theorem 4.3, through
an application of Theorem 4.2, the formula f = 3Ip is
satisfied for each solution to H in (18) from Xo = X at
(t, j) = (0, 0).

V. CONCLUSION

Semantics and characterization for the certification of 2Ip
and 3Ip are presented by exploiting invariance properties
for dynamical systems. Equivalence relationships are es-
tablished between the satisfaction of LTL formulas having
until operators and the satisfaction of STL formulas with
always and until operators. As a result, sufficient conditions
guaranteeing the satisfaction of STL formulas are proposed
by guaranteeing the satisfaction of LTL formulas involving
until operators. Future research pertains to guaranteeing
other STL operators and associated sufficient conditions, by
exploiting the ideas in Remark 4.4 and in [14, Section 6],
and to assuring robustness of STL specifications.
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