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Abstract— In this letter, our objective is to explore how
two well-known projection dynamics can be used as dynamic
controllers for stabilization of nonlinear systems. Combining the
properties of projection operators, Lyapunov stability theory
and LaSalle’s theorem, we confirm that the projection dynamics
on the feasible set and tangent cone are Krasovskii passive. To
show the effectiveness of the proposed approach, we use the
projection dynamics on the tangent cone for stabilizing boost
converters in a DC microgrid while satisfying predefined input
constraints.

I. INTRODUCTION

Passivity theory is a well-known and useful tool to analyze
and control complex, nonlinear dynamical systems across
multiple domains [1]–[3]. Specifically, if a physical plant
possesses passivity properties, then one of the most effective
control approaches is to design a passive control system
and interconnect it with the plant in a power-preserving
way. Then, the stability of the closed-loop system can be
analyzed relying on Lyapunov theory and invariance prin-
ciple [4]. Several works on the topic focus on studying
the passivity properties of continuous dynamical systems,
whereas a limited number investigates the passivity proper-
ties of discontinuous dynamics [5]. Among the most typical
discontinuous dynamics, projection dynamics are wildly used
in mathematical programming, algorithm design [6], and
controller design [7], [8]. Due to the deep relation between
a projection operator and a variational inequality (VI) [9],
projection dynamics are often used to solve mathematical
programming problems, such as optimization and game
problems [10]. In fact, in [11], the authors show that the
equilibrium of the projection dynamics and the solution of a
VI coincide. Furthermore, they also establish convergence
by employing Lyapunov theory and the properties of the
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projection operator. With the advent of distributed systems,
the focus shifted to combining the projection dynamics with
distributed optimization [12] and control [13]–[15].

In summary, the research on projection dynamics in the
mathematical programming field is exhaustive [16]. How-
ever, its potential to control nonlinear systems has not yet
been fully explored, e.g., the property of Krasovskii passivity
has not been studied in previous works, see [8], [17] for
details on the topic. In this letter, we aim at investigating how
two types of well-known projection dynamics can be used for
controlling nonlinear systems. Particularly, we analyze their
passivity properties. The main contributions are as follows.

• Compared to previous results [7], we analyze the in-
terconnection of a nonlinear continuous-time dynamical
system with projection dynamics.

• In Section III, under some conditions on the Jacobian
of the dynamics, we prove the asymptotic stability of
the closed-loop system relying on monotonicity.

• In Section IV, we consider passive nonlinear systems
and show that the system dynamics projected on the
tangent cone of a polyhedral convex and compact set
are Krasovskii passive. Such a property is fundamental
to establish convergence of the interconnected closed-
loop system via standard passivity arguments.

• We design a new controller for the boost converters of
a direct current (DC) microgrid [18], ensuring that the
control input remains within a predefined set.

II. PRELIMINARIES

To make the letter self-contained, we summarize in this
section the main definitions and basic properties of the
projection operator and monotone maps that we will use
throughout the letter. After that, we state the problems
studied in this letter.

A. Projection operator

Hereafter, define Ω as a nonempty, closed, and convex
subset of R𝑛, Let 𝑠 ∈ R𝑛 and 𝑧 ∈ R𝑛, then the projection of
𝑧 on Ω is defined as 𝑃Ω (𝑧) = argmin𝑠∈Ω ∥𝑧 − 𝑠∥. According
to [9, Th. 1.5.5] and [11, Th. 3.2], the following facts hold
for any two vectors 𝑧, 𝑠 ∈ R𝑛.

Fact 1 (Projection properties)
(a) 𝑃Ω (𝑧) is unique.
(b) For all 𝑠 ∈ Ω, ⟨𝑧 − 𝑃Ω (𝑧) , 𝑠 − 𝑃Ω (𝑧)⟩ ≤ 0.
(c) The projection is non-expansive, i.e.,

∥𝑃Ω (𝑧) − 𝑃Ω (𝑠) ∥ ≤∥𝑧 − 𝑠∥, (1)
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and also co-coercive, i.e.,

∥𝑃Ω (𝑧) − 𝑃Ω (𝑠) ∥2 ≤ ⟨𝑧 − 𝑠, 𝑃Ω (𝑧) − 𝑃Ω (𝑠)⟩ . (2)

(d) The function 𝐷 (𝑧) = 1
2 ∥𝑧 − 𝑃Ω (𝑧) ∥2 is continuously

differentiable in 𝑧 and ∇𝐷 (𝑧) = 𝑧 − 𝑃Ω (𝑧).

Let T (𝑧,Ω) be the tangent cone of Ω at 𝑧 ∈ Ω, as defined
in [9, Pg. 15]. Then, 𝑇Ω (𝑧, 𝐻 (𝑧)) represents the function
projecting the vector-valued function 𝐻 (𝑧) onto T (𝑧,Ω).
Let NΩ (𝑧) denote a normal cone at 𝑧 ∈ Ω by

NΩ (𝑧) ≜ {𝜐 | ⟨𝜐, 𝑠 − 𝑧⟩ ≤ 0,∀𝑠 ∈ Ω} .

Then, the inwards normals to Ω at 𝑧 ∈ Ω can be defined as

N★
Ω (𝑧) ≜ {𝜐 ∈ −NΩ (𝑧) | ∥𝜐∥ = 1} .

The following facts about the tangent cone hold.

Fact 2 (Tangent cone properties)
(a) From [19, Lem. 2.1], it follows that

𝑇Ω (𝑧, 𝐻 (𝑧)) = lim
𝛼→0

𝑃Ω (𝑧 + 𝛼𝐻 (𝑧)) − 𝑧
𝛼

. (3)

(b) From [20, Lem. 2.1], one attains

𝑇Ω (𝑧, 𝐻 (𝑧)) =
{

𝐻 (𝑧) if 𝑧 ∈ int (Ω)

𝐻 (𝑧) + 𝛽 (𝑧) 𝛼 (𝑧) if 𝑧 ∈ bnd (Ω)

where

𝛼 (𝑧) = arg max𝜔∈N★
Ω
(𝑧) ⟨𝐻 (𝑧) ,−𝜔⟩ , (4a)

𝛽 (𝑧) = max {0, ⟨𝐻 (𝑧) ,−𝛼 (𝑧)⟩} . (4b)

B. Monotonicity and variational inequality

We next recall some definitions on monotone operators [9,
Def. 2.3.1]. For all 𝑧, 𝑠 ∈ Ω, a map 𝐻 : R𝑛 → R𝑛 is

• monotone, if ⟨𝐻 (𝑧) − 𝐻 (𝑠) , 𝑧 − 𝑠⟩ ≥ 0,
• strictly monotone, if ⟨𝐻 (𝑧) − 𝐻 (𝑦) , 𝑧 − 𝑠⟩ > 0, 𝑧 ≠ 𝑠,
• 𝜉-monotone with 𝜉 > 1, if there exists 𝑐 ∈ R+ such that

⟨𝐻 (𝑧) − 𝐻 (𝑠) , 𝑧 − 𝑠⟩ ≥ 𝑐∥𝑧 − 𝑠∥ 𝜉 , ∀ 𝑧, 𝑠 ∈ Ω.

If 𝜉 = 2, we say that it is strongly monotone.

Now, we recall the definition of the variational inequality
[9, Def. 1.1.1]. Given a feasible set Ω ⊂ R𝑛 and a map
𝐻 : Ω → R𝑛, VI (𝐻,Ω) amounts to the problem of finding
all 𝑧 ∈ Ω satisfying ⟨𝑠 − 𝑧, 𝐻 (𝑧)⟩ ≥ 0, ∀𝑠 ∈ Ω. The solution
set of VI (𝐻,Ω) is denoted by Sol (𝐻,Ω).

Monotonicity is often used to establish the existence and
uniqueness of the solution set of the VI. We next introduce
some classic results from [9, Th. 2.3.3 and 2.3.5].

Fact 3 (Variational inequality properties)
(a) If 𝐻 is monotone on Ω, then Sol (𝐻,Ω) is convex.
(b) if 𝐻 is 𝜉-monotone on Ω, then Sol (𝐻,Ω) is a singleton.

C. Problem formulation

Consider the nonlinear plant dynamics

¤𝑥 = 𝑓 (𝑥, 𝑢) , 𝑦 = ℎ(𝑥) (5)

where 𝑥 ∈ R𝑛, 𝑢 ∈ R𝑚, and 𝑦 ∈ R𝑝 denote the state, control
input, and output, respectively. The maps 𝑓 : R𝑛×R𝑚 → R𝑛
and ℎ : R𝑛 → R𝑝 are continuously differentiable. Now, we
formulate two control problems, which are solved in Sections
III and IV, respectively.

Pr. 1 Given the dynamical system (5), consider a projection-
based controller associated with a natural map 𝐶 [9, Sec. 1.5]

¤𝑢 = 𝐶 (𝑦, 𝑢) = 𝑃Ω (𝑢 − 𝐹 (𝑦, 𝑢)) − 𝑢, (6)

where 𝐹 : R𝑝 × R𝑚 → R𝑚 is a vector-valued map. Derive
a condition such that a desired equilibrium (𝑥∗, 𝑢∗) of the
closed-loop system is asymptotically stable.

Pr. 2 Given the dynamical system (5) with 𝑚 = 𝑝, estab-
lish Krasovskii passivity properties for the projection-based
dynamic controller [19, Eq. 2.2], [5, Eq. 5]

¤𝑢 = 𝐺 (𝑦, 𝑢) = 𝑇Ω (𝑢,−𝐹 (𝑦, 𝑢)) , (7)

where 𝐺 : R𝑚 × R𝑚 → R𝑚.

In Problems 1 and 2, we investigate different projection-
based controllers, and their relations are explained below.
In Problem 1, we provide a control design method that is
applicable to a general class of plants (5). On the other
hand, sometimes control design is simplified by utilizing the
fundamental properties of plants. A representative method is
passivity-based control, which illustrates that passive plants
can be stabilized by passive feedback controllers. Motivated
by this, we mention in Problem 2 that the controller (7) has
kinds of passivity properties, which can be beneficial for the
stabilization of a plant possessing the corresponding passivity
property. The following remark introduces the relationship
between the above two projection-based controllers.

Remark 1 According to the definition of the convex set, we
can deduce that 𝐶 (𝑦, 𝑢) ∈ T (𝑢,Ω) holds for all 𝑢 ∈ Ω. If Ω
is a polyhedron, then the feasible cone of Ω at arbitrary 𝑢 ∈ Ω

coincides with T (𝑢,Ω) (refer to [9, Lem. 3.3.6]). Hence, if
𝑢 − 𝐹 (𝑦, 𝑢) ∉ T (𝑢,Ω), then 𝑃Ω (𝑢 − 𝐹 (𝑦, 𝑢)) must be on
the boundary of T (𝑢,Ω), which further implies that

𝐺 (𝑦, 𝑢)
∥𝐺 (𝑦, 𝑢) ∥ =

𝐶 (𝑦, 𝑢)
∥𝐶 (𝑦, 𝑢) ∥ . (8)

Moreover, if 𝑢 − 𝐹 (𝑦, 𝑢) ∈ Ω, then the following equality

𝐶 (𝑦, 𝑢) = 𝐺 (𝑦, 𝑢) = −𝐹 (𝑦, 𝑢) (9)

holds. The above equalities (8) and (9) show that the two
controllers (6) and (7) are similar in some specific cases.

III. PROJECTION DYNAMICS ON THE FEASIBLE SET

In this section, we solve Problem 1. To this end, we rely
on the following blanket assumptions, where 𝐴 ≻ 0 (𝐴 ≽ 0)
implies that the symmetric part of the matrix 𝐴 is positive
definite (semi definite).
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Assumption 1 (Initial value and continuity) The initial
value satisfies 𝑢 (𝑡0) ∈ Ω, and the vector-valued function
col ( 𝑓 (𝑥, 𝑢) , 𝐹 (ℎ(𝑥), 𝑢)) is locally Lipschitz continuous on
𝐾Ω ≜ R

𝑛 ×Ω and differentiable for all (𝑥, 𝑢) ∈ 𝐾Ω.

Assumption 2 (Positive semi definiteness of the Jacobian)
The Jacobian matrix of col ( 𝑓 (𝑥, 𝑢) , 𝐹 (𝑦, 𝑢)), denoted by

𝐽 (𝑥, 𝑢) ≜


−𝜕 𝑓 (𝑥, 𝑢)

𝜕𝑥
−𝜕 𝑓 (𝑥, 𝑢)

𝜕𝑢

𝜕𝐹 (𝑦, 𝑢)
𝜕𝑥

����
𝑦=ℎ (𝑥 )

𝜕ℎ(𝑥)
𝜕𝑥

𝜕𝐹 (𝑦, 𝑢)
𝜕𝑢

����
𝑦=ℎ (𝑥 )


satisfies 𝐽 (𝑥, 𝑢) ≽ 0 for all (𝑥, 𝑢) ∈ 𝐾Ω.

Assumption 3 (Positive definiteness of the Jacobian)
The Jacobian matrix 𝐽 (𝑥, 𝑢) ≻ 0 holds for all (𝑥, 𝑢) ∈ 𝐾Ω.

Before proceeding with the closed-loop analysis, we ex-
plain that the set of equilibrium points (𝑥∗, 𝑢∗) of the closed-
loop system (5)-(6) is non-empty, and it coincides with the
following set

𝛷 =

{
(𝑥∗, 𝑢∗) ∈ 𝐾Ω

���� 𝑓 (𝑥∗, 𝑢∗) = 0,
⟨𝐹 (𝑥∗, 𝑢∗) , 𝑢 − 𝑢∗⟩ ≥ 0,∀𝑢 ∈ Ω

}
.

According to Fact 3.a and [9, Prop. 2.3.2], Assumption 2 en-
sures that 𝛷 is non-empty, bounded, and convex. Combining
the fact that Ω is convex with [9, Prop. 1.5.8], we conclude
that 𝛷 coincides with the set of equilibria of the closed-loop
system. Next, we introduce the convergence results of the
closed-loop system (5)-(6).

Theorem 1 (Convergence) If Assumptions 1-2 hold, then
the closed-loop system (5)-(6) is positively invariant in 𝐾Ω

and its trajectory (𝑥(𝑡), 𝑢(𝑡)) approaches to 𝛷 as 𝑡 → ∞.

Proof: We first show that 𝐾Ω is a positively invariant set
for the system (5)-(6). We consider the distance of (𝑥, 𝑢) ∈
R𝑛 × R𝑚 to 𝐾Ω = R𝑛 × Ω. This distance is equivalent to
a distance of 𝑢 ∈ R𝑚 to Ω, which is nothing but 𝐷 (𝑢)
introduced in Fact 1.d. By virtue of Fact 1.d and taking the
time derivative of 𝐷 (𝑢) along (6), it follows that

¤𝐷 (𝑢) = ⟨𝑢 − 𝑃Ω (𝑢) , 𝑃Ω (𝑢 − 𝐹 (𝑦, 𝑢)) − 𝑢⟩ (10)

≤ ⟨𝑢 − 𝑃Ω (𝑢) , 𝑃Ω (𝑢 − 𝐹 (𝑦, 𝑢)) − 𝑃Ω (𝑢)⟩ ≤ 0,

where the last inequality holds by virtue of Fact 1.b and the
fact that 𝑃Ω (𝑢 − 𝐹 (𝑦, 𝑢)) ∈ Ω. Inequality (10) implies that
𝐷 (𝑢 (𝑡)) is non-increasing for all 𝑡 ≥ 𝑡0. Combining this
with Assumption 1, we can conclude that 𝐷 (𝑢 (𝑡0)) = 0 and
𝑢 (𝑡) = 𝑃Ω (𝑢 (𝑡)) holds for all 𝑡 ≥ 𝑡0, which implies that
𝐾Ω is a positively invariant set for the closed-loop system
(5)-(6). Next, construct the following storage function

𝑆𝐼 (𝑥, 𝑢) = − 1
2
∥𝐶 (𝑦, 𝑢) + 𝐹 (𝑦, 𝑢) ∥2 + 1

2
∥ 𝑓 (𝑥, 𝑢) ∥2 (11)

+ 1
2
∥𝐹 (𝑦, 𝑢) ∥2 + 1

2
∥𝑢 − 𝑢∗∥2 + 1

2
∥𝑥 − 𝑥∗∥2,

where (𝑥∗, 𝑢∗) is an arbitrary point in 𝛷. The above analysis
shows that if 𝑢 (𝑡0) ∈ Ω, then 𝑢 (𝑡) ∈ Ω holds for all 𝑡 ≥ 𝑡0.

Based on such a fact, we can deduce that

− ⟨𝐶 (𝑦, 𝑢) , 𝐹 (𝑦, 𝑢)⟩ − 1
2
∥𝐶 (𝑦, 𝑢)∥2

= − ⟨𝐶 (𝑦, 𝑢) , 𝐹 (𝑦, 𝑢) + 𝐶 (𝑦, 𝑢)⟩ + 1
2
∥𝐶 (𝑦, 𝑢)∥2 ≥ 0

(12)

holds for all 𝑡 ≥ 𝑡0, where the last inequality is based
on Fact 1.b. By substituting (12) into (11), it follows that
𝑆𝐼 (𝑥, 𝑢) ≥ 0 holds for (𝑥, 𝑢) ∈ 𝐾Ω. Also, if (𝑥, 𝑢) ∈ 𝐾Ω and
∥𝑥∥ → +∞, we can deduce that 𝑆𝐼 (𝑥, 𝑢) → +∞. Combining
this result with the fact that 𝑆𝐼 (𝑥, 𝑢) is continuous, we
can further deduce that, for arbitrary bounded initial value
(𝑥 (𝑡0) , 𝑢 (𝑡0)) ∈ 𝐾Ω, there always exists an 𝑟 > 0 such that
𝑆𝐼 (𝑥, 𝑢) > 𝑆𝐼 (𝑥 (𝑡0) , 𝑢 (𝑡0)) whenever ∥ col (𝑥, 𝑢) ∥ > 𝑟 . As
a consequence, we can deduce that

Ω𝑐 = {(𝑥, 𝑢) ∈ 𝐾Ω | 𝑆𝐼 (𝑥, 𝑢) ≤ 𝑆𝐼 (𝑥 (𝑡0) , 𝑢 (𝑡0))}

is a compact set for arbitrary bounded (𝑥 (𝑡0) , 𝑢 (𝑡0)) ∈ 𝐾Ω.
Next, we show that ¤𝑆𝐼 (𝑥, 𝑢) ≤ 0 holds for all 𝑡 ≥ 𝑡0. By
employing Fact 1.d and the chain rule, it follows that

¤𝑆𝐼 (𝑥, 𝑢) = − ⟨col ( ¤𝑥, ¤𝑢) , 𝐽 (𝑥, 𝑢) col ( ¤𝑥, ¤𝑢)⟩
+ ⟨𝐶 (𝑦, 𝑢) , 𝐹 (𝑦, 𝑢)⟩ + ⟨𝐶 (𝑦, 𝑢) , 𝑢 − 𝑢∗⟩
+ ∥𝐶 (𝑦, 𝑢) ∥2 + ⟨ 𝑓 (𝑥, 𝑢) , 𝑥 − 𝑥∗⟩ .

(13)

Note that, by combining the fact that 𝑢 (𝑡) ∈ Ω for all 𝑡 ≥ 𝑡0,
the inequality (2), and Assumption 1, it follows that the sum
of the second, third, and fourth elements in (13) satisfies

⟨𝐶 (𝑦, 𝑢) + 𝐹 (𝑦, 𝑢) , 𝐶 (𝑦, 𝑢) + 𝑢 − 𝑢∗⟩ ≤ 0. (14)

Moreover, Assumption 2 guarantees that the first item on the
right-hand side of (13) is negative semi-definite. Combining
this fact with (13)-(14), we can conclude that

¤𝑆𝐼 (𝑥, 𝑢) ≤ − ⟨𝐹 (𝑦, 𝑢) , 𝑢 − 𝑢∗⟩ + ⟨ 𝑓 (𝑥, 𝑢) , 𝑥 − 𝑥∗⟩ . (15)

Recall that Ω is nonempty, closed, and convex, and Assump-
tion 2 guarantees that the inequality ⟨𝐹 (𝑦∗, 𝑢∗) , 𝑢 − 𝑢∗⟩ ≥ 0
holds for all 𝑢 ∈ Ω and (𝑥∗, 𝑢∗) ∈ 𝛷, where 𝑦∗ = ℎ (𝑥∗).
Therefore, we have

¤𝑆𝐼 (𝑥, 𝑢) ≤ − ⟨𝐹 (𝑦, 𝑢) − 𝐹 (𝑦∗, 𝑢∗) , 𝑢 − 𝑢∗⟩
+ ⟨ 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥∗, 𝑢∗) , 𝑥 − 𝑥∗⟩ .

(16)

By virtue of Assumption 2 and using [9, Prop. 2.3.2], we
deduce ¤𝑆𝐼 (𝑥, 𝑢) ≤ 0 for all 𝑡 ≥ 𝑡0. Finally, we show the
convergence. Combing (14)-(16) with Assumption 2, we can
deduce that the first item and the sum of the later four
items in (13) are non-positive, which further implies that
¤𝑆𝐼 (𝑥, 𝑢) = 0 if and only if ¤𝑥 = 0 and ¤𝑢 = 0. Thus, for a
given bounded (𝑥 (𝑡0) , 𝑢 (𝑡0)) ∈ 𝐾Ω, we can always find a
bounded Ω𝑐 such that the trajectory starting at it converges
to 𝛷 ∈ Ω𝑐. Then, we complete the proof by combining the
LaSalle’s theorem introduced in [4, Th. 4.4].

Now, by virtue of Assumption 3, the next theorem shows
that the equilibrium of the system (5)-(6) is unique and
asymptotically stable.

Theorem 2 (Asymptotic stability) If Assumptions 1 and 3
hold, the equilibrium of the closed-loop system (5)-(6) is
unique and asymptotically stable.
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Proof: Combining (11)-(12) and the analysis in the
proof of Theorem 1, it follows that 𝑆𝐼 (𝑥, 𝑢) > 0 holds for
all (𝑥, 𝑢) ∈ 𝐾Ω \𝛷 and 𝑆𝐼 (𝑥, 𝑢) = 0 for (𝑥, 𝑢) ∈ 𝛷. Since
𝐽 (𝑥, 𝑢) ≻ 0 holds for all (𝑥, 𝑢) ∈ 𝐾Ω, then it follows that𝛷 is
a singleton by using Fact 3.b and [9, Prop. 2.3.2]. Following
the analysis in (13)-(16) and using [9, Prop. 2.3.2] again,
we deduce that ¤𝑆𝐼 (𝑥, 𝑢) < 0 holds for all (𝑥, 𝑢) ∈ 𝐾Ω \
𝛷. Employing Lyapunov’s stability theorem [4, Th. 4.1], we
complete the proof.

IV. PROJECTION DYNAMICS ON THE TANGENT CONE

In this section, we solve Problem 2. Namely, we mention
that the projection-based dynamic controller (7) on the
tangent cone of Ω can be either shifted or Krasovskii passive
under suitable assumptions. Consider the projection-based
dynamic controller (7) on the tangent cone of Ω with,

𝐹 (𝑦, 𝑢) = 𝑔 (𝑢) − 𝑦,
where 𝑔 : R𝑚 → R𝑚 is differentiable. We assume that the
following two assumptions hold for the controller dynamics.

Assumption 4 (Non-empty equilibrium set) The equilib-
rium set 𝛷̄ of (7), i.e., the set of (𝑦∗, 𝑢∗) ∈ R𝑚×Ω satisfying
𝑇Ω (𝑢∗,−𝐹 (𝑦∗, 𝑢∗)) = 0 is not empty.

In general, the equilibrium sets 𝛷̄ for this setup is different
from 𝛷 defined in Section III.

Assumption 5 (Monotonicity) The function 𝑔 (𝑢) is mono-
tone for all 𝑢 ∈ Ω.

Remark 2 Assumptions 4 and 5 are weaker than Assump-
tion 2, since they only guarantees that 𝛷̄ is non-empty and
Sol (𝐹 (𝑦∗, ·) ,Ω) is convex. According to in [9, Prop. 2.3.2],
Assumption 5 holds if and only if 𝜕𝑔 (𝑢) /𝜕𝑢 ≽ 0 holds for
all 𝑢 ∈ Ω.

A. Shifted passivity
To make the letter self-consistent, we present the following

proposition, proven in [5, Sec. “Projected-gradient play and
passivity”], that ensures that the projection-based dynamic
controller (7) has the following shifted passivity property [1,
Sec. 4.7].

Proposition 1 (Shifted passivity) If Assumptions 1, 4, and
5 hold for the controller dynamics (7), then 𝑆𝑠 (𝑢) = 1

2 ∥𝑢 −
𝑢∗∥2 satisfies

¤𝑆𝑠 (𝑢) ≤ − ⟨𝑦 − 𝑦∗, 𝑢 − 𝑢∗⟩ (17)

for any (𝑦, 𝑢) ∈ R𝑚 ×Ω and any (𝑦∗, 𝑢∗) ∈ 𝛷̄.

By Proposition 1, the controller dynamics (7) is shifted
passive with respect to the storage function 𝑆𝑠 (𝑧), input −𝑦,
and output 𝑢. Now, we suppose that the system (5) is shifted
passive with respect to the input 𝑢 and output 𝑦, i.e., satisfies
¤𝑉𝑠 (𝑥) ≤ ⟨𝑦 − 𝑦∗, 𝑢 − 𝑢∗⟩ for some storage function 𝑉𝑠 (𝑥).
Then, the closed-loop system satisfies ¤𝑉𝑠 (𝑥) + ¤𝑆𝑠 (𝑢) ≤ 0.
Based on this inequality, one can proceed with the closed-
loop stability analysis by invoking the results of the passive
interconnection analysis, e.g. Lyapunov and LaSalle’s theo-
rems.

B. Krasovskii passivity

When Ω is a polyhedral set, we can also show that the
controller (7) is Krasovskii passive [8, Def. 2.8].

Theorem 3 (Krasovskii passivity) If Ω is a polyhedron,
and Assumptions 1, 4, and 5 hold for the controller dynam-
ics (7), then the following scalar-valued function

𝑆𝑘 (𝑦, 𝑢) =
1
2
∥𝑇Ω (𝑢,−𝐹 (𝑦, 𝑢)) ∥2 (18)

satisfies

¤𝑆𝑘 (𝑦, 𝑢) ≤ − ⟨ ¤𝑦, ¤𝑢⟩ (19)

in the sense of Carathéodory for almost all 𝑡 ≥ 𝑡0, all 𝑢(𝑡0) ∈
Ω, and all continuously differentiable 𝑦 : R→ R𝑚.

Proof: According to the analysis in [19, Pg. 27], if
𝑢 (𝑡0) ∈ Ω holds, then we have 𝑢 (𝑡) ∈ Ω holds for all 𝑡 ≥ 𝑡0
and for all continuously differentiable 𝑦(𝑡) ∈ R𝑚, 𝑡 ≥ 𝑡0.
Next, we analyze all the possible scenarios for the trajectory
of (7). First, if 𝑢(𝑡) ∈ int (Ω), then it follows that

¤𝑆𝑘 (𝑦, 𝑢) = −
〈
𝜕𝑔 (𝑢)
𝜕𝑢

¤𝑢 + ¤𝑦, ¤𝑢
〉
. (20)

Combining Assumption 5 with (20), we obtain (19). Second,
we consider the case that 𝑢(𝑡) located on bnd (Ω) is moving
to int (Ω). In such a case, the right-hand side of (7) is
continuous, and thus (19) follows from the analysis in (20).
Third, if 𝑢(𝑡) is switching from int (Ω) to bnd (Ω), the
storage function 𝑆𝑘 (𝑦, 𝑢) is not differentiable. However,
following the analysis in [21, Lem. 4.2] and combining (1),
we can deduce that 𝑆𝑘 (𝑦, 𝑢) is non-increasing during the
switching. Since Ω is polyhedral, and 𝐹 (𝑦, 𝑢) is continuous,
the number of switching from int (Ω) to bnd (Ω) is finite.
Finally, according to Fact. 2.b, when 𝑢(𝑡) is moving on
bnd (Ω), the dynamic (7) reduces to

¤𝑢 = −𝐴𝑝 (𝑢,Ω)𝐹 (𝑦, 𝑢) , (21)

where 𝐴𝑝 (𝑢,Ω) represents the projection matrix projecting
−𝐹 (𝑦, 𝑢) on bnd (Ω). Using this representation (21), we have

¤𝑆𝑘 (𝑦, 𝑢) ≤ −
〈
𝐴𝑝 (𝑢,Ω)

(
𝜕𝐺 (𝑢)
𝜕𝑢

¤𝑢 + ¤𝑦
)
, ¤𝑢
〉
. (22)

Combining the fact that 𝐴𝑝 (𝑢,Ω) is idempotent with (22)
and using Assumption 5, we complete the proof.

Theorem 3 implies that the controller dynamics (7) is
Krasovskii passive with respect to the storage function
𝑆𝑘 (𝑦, 𝑢), input −¤𝑦, and output ¤𝑢. A similar discussion as
shifted passivity holds for the closed-loop stability analysis.
That is, suppose the system (5) is Krasovskii passive with
respect to the input ¤𝑢 and output ¤𝑦, i.e., satisfies ¤𝑉𝑘 (𝑥, 𝑢) ≤
⟨ ¤𝑦, ¤𝑢⟩ for some storage function 𝑉𝑘 (𝑥, 𝑢). Then, the closed-
loop system satisfies ¤𝑉𝑘 (𝑥, 𝑢) + ¤𝑆𝑘 (𝑦, 𝑢) ≤ 0, and we can
proceed with the stability analysis based on this inequality
and invoke Lyapunov and LaSalle’s theorems. Note that
Krasovskii passivity is a property of ¤𝑢 and ¤𝑦. Thus, instead
of the original output ℎ(𝑥) of the system (5), we can feed
its shifted signal ℎ(𝑥) + 𝑦̄ by arbitrary constant 𝑦̄ into the
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TABLE I
USED VARIABLES AND THEIR PHYSICAL DESCRIPTION.

𝐼 Output current vector 𝑢 Control input vector
𝑉 Load voltage vector 𝑅𝑙 Line resistance matrix
𝑅 Filter resistance matrix 𝐼𝑙 Line current vector
𝐿 Filter inductance matrix 𝑉𝑜 Voltage source vector
𝐶 Shunt capacitor matrix 𝐿𝑙 Line inductance matrix
𝐼𝐿 Load current vector 𝑍𝐿 Load impedance matrix

input 𝑦 of the controller dynamics (7); the closed-loop system
can still be interpreted as the feedback interconnection of a
Krasovskii passive plant and controller. A similar discussion
holds for 𝑢.

V. SIMULATION

In this section, we use the projection dynamics (7) and
Krasovskii passivity to design a controller for a DC mi-
crogrid with 4 nodes in a ring topology, where each node
includes a boost converter supplying a constant impedance
and a constant current load. Let 𝑧 ∈ R𝑛, then we define
[𝑧] ≜ diag(𝑧1, · · · , 𝑧𝑛). The dynamics of the considered
microgrid can be expressed as in [18], i.e.,

𝐿 ¤𝐼 = − (𝑰 − [𝑢]) 𝑉 − 𝑅𝐼 +𝑉𝑜, (23a)

𝐶 ¤𝑉 = (𝑰 − [𝑢]) 𝐼 − 𝐼𝐿 + 𝐵𝐼𝑙 − 𝑍−1
𝐿 𝑉, (23b)

𝐿𝑙 ¤𝐼𝑙 = − 𝑅𝑙 𝐼𝑙 − 𝐵⊤𝑉, (23c)

where the used symbols are explained in Table I. The
network is described by an undirected ring graph with
incidence matrix denoted by 𝐵 ∈ R4×4. For convenience, let
𝑥 ≜ col (𝐼, 𝑉, 𝐼𝑙) and rewrite (23) as the following compact
form

𝑄 ¤𝑥 =


0 [𝑢] 0
− [𝑢] 0 0

0 0 0

︸                ︷︷                ︸
≜𝑌 (𝑢)

𝑥 −

𝑅 𝑰 0
−𝑰 𝑍−1

𝐿
−𝐵

0 𝐵⊤ 𝑅𝑙

︸                ︷︷                ︸
≜𝐴

𝑥 +

𝑉𝑜
−𝐼𝐿
0

︸︷︷︸
≜𝑑

,

(24)

where 𝑄 ≻ 0 is a diagonal matrix that can be easily attained
by inspection of (23). Next, we analyze the passivity property
of (24). Consider the storage function 𝐻𝑘 (𝑥) = 1

2 ∥ ¤𝑥∥
2
𝑄
,

which satisfies

¤𝐻𝑘 (𝑥) = ⟨ ¤𝑥, (𝑌 (𝑢) − 𝐴) ¤𝑥⟩ +
〈
¤𝑥, 𝜕 (𝑌 (𝑢) 𝑥)

𝜕𝑢
¤𝑢
〉
.

Our goal is to design a controller such that (24) converges
to a desired equilibrium and the control input solves the
following optimization problem

min
𝑢∈Ω

1
2
∥𝑢 − 𝑢𝑟 ∥2

𝐸 + 𝜀 [𝐼] [𝑉] 𝑢 s.t. 𝑢 = 𝑢𝑟 , (25)

where 𝑢𝑟 ∈ Ω denotes the reference control input, 𝐸 ≻ 0,
and 𝜀 > 0. Note that (25) has a unique solution 𝑢 = 𝑢𝑟 .

Now, we show the closed-loop system consisting of (24)
and a controller based on (7), i.e.,

¤𝑥 = 𝑄−1 (𝐴𝑥 + 𝑌 (𝑢) 𝑥 + 𝑑) , (26a)
¤𝑢 = 𝑇Ω (𝑢,−𝐸 (𝑢 − 𝑢𝑟 ) − 𝜀 [𝐼] 𝑉 − 𝜆) , (26b)
¤𝜆 = 𝑢 − 𝑢𝑟 , (26c)

TABLE II
THE PARAMETERS OF THE NODE IN THE 4 BUS CASE.

DGU 𝐿𝑖 (mH) 𝐶𝑖 (mF) 𝑅𝑖 (mΩ) 𝑍𝐿,𝑖 (Ω) 𝐼𝐿,𝑖 (A)
1 1.8 2.2 20 16 30
2 2.0 1.9 18 50 15
3 3.0 2.5 16 16 30
4 2.2 1.7 15 20 26

where 𝜆 ∈ R𝑛 is the Lagrange multiplier, and ¤𝑢 and ¤𝜆
are interconnected in a passive way. Next, we construct the
following storage function

𝑉𝑘 (𝑥, 𝑢, 𝜆) = 𝜀𝐻𝑘 (𝑥) +
1
2
∥ ¤𝑢∥2.

Invoking Theorem 3, 𝑉𝑘 (𝑥, 𝑢, 𝜆) satisfies

¤𝑉𝑘 (𝑥, 𝑢, 𝜆) ≤ − ∥ ¤𝑢∥2
𝐸 −

〈
¤𝑢, ¤𝜆

〉
+
〈 ¤𝜆, ¤𝑢〉 − 𝜀∥ ¤𝑉 ∥2

𝑍−1
𝑙

+ 𝜀
〈 ¤𝐼, [𝑉] ¤𝑢〉 − 𝜀 〈 ¤𝑉, [𝐼] ¤𝑢〉

− 𝜀
〈
¤𝑢, [𝑉] ¤𝐼

〉
− 𝜀

〈
¤𝑢, [𝐼] ¤𝑉

〉
,

(27)

where the inequality follows from 𝐴−𝑌 (𝑢) ≻ 0. Let 𝜎min (·)
and 𝜎max (·) denote the smallest and largest eigenvalue of a
matrix, respectively. If

0 < 𝜀 ≤
𝜎min (𝑍−1

𝐿
) 𝜎min (𝐸)

𝜎max ( [𝐼]2)
, (28)

for all 𝑡 ≥ 𝑡0, then ¤𝑉𝑠 (𝑥, 𝑢, 𝜆) ≤ 0 holds for almost all
𝑡 ≥ 𝑡0, since 𝐸 ≻ 0 and 𝑍−1

𝐿
≻ 0. Note that, since

(26b) has a unique equilibrium 𝑢∗ = 𝑢𝑟 , then 𝑥∗ and
𝜆∗ = −𝜀 [𝐼∗] 𝑉∗ are also unique. By combining the above
analysis and the result in [4, Lemma 4.1], we then prove
that (26) converge to the unique equilibrium in the sense
of Carathéodory if 𝜀 satisfies (28) for all 𝑡 ≥ 𝑡0. Next, we
introduce the detailed parameter settings. The parameters
of all the distributed generator units (DGUs) are reported
in Table II. The resistance and inductance of the trans-
mission lines are selected as 𝑅𝑙 = col (70, 50, 80, 60) (mΩ)
and 𝐿𝑙 = col (2.1, 2.0, 3.0, 2.2) (𝜇H), respectively. More-
over, we set the desired voltage and the voltage source
as 𝑉∗ = col (381.5, 382, 382.5, 383) (V) and 𝑉𝑜 =

col (270, 270, 270, 270) (V), respectively, and we select 𝜀 =

10−5. Considering that 𝑅 is negligible in practice, we set
𝑢𝑟 = 1 − [𝑉∗]−1𝑉0 as an approximated value of 𝑢∗, which
is obtained by solving the equality − (𝑰 − [𝑢𝑟 ]) 𝑉∗ + 𝑉𝑜 =

0. Although such a selection may cause a deviation from
the desired value, it avoids to require information on 𝐼∗.
Then, we obtain 𝑢𝑟 = col (0.2923, 2932, 0.2941, 0.2950).
Moreover, we set Ω = [𝑢𝑟 − 10−3 1, 𝑢𝑟 + 10−3 1]. From
Figure 1(a), we observe that the control input 𝑢 is always
within the feasible set Ω. Figure 1(b) shows that ¤𝜆 converges
to 0 after a short transient, which also confirms that the
deviation between the control input and the reference value
converges to 0. Figure 2 shows that the currents and voltages
of all the DGUs converge towards the desired values within
a short time.
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Fig. 1. (a) Control input. (b) The deviation with respect to the reference
control input.

Fig. 2. (a) Microgrid currents. (b) Microgrid voltages.

Fig. 3. (a) Transmission line currents. (b) Deviation between the microgrid
state and the reference state.

Figure 3(a) shows the transmission line currents. Since we
neglect 𝑅 in the computation of 𝑢𝑟 , we observe from Fig-
ure 3(b) a steady-state bias between the microgrid voltages
and the desired value 𝑉∗. Remarkably, such a deviation is
very small compared to 𝑉∗.

It is worth noting that shifted passivity can also be used for
control design. However, such a controller requires informa-
tion on the equilibrium 𝑥∗ including the load parameters 𝐼𝐿
and 𝑍𝐿 that are usually unknown. In contrast, the proposed
Krasovskii passivity-based controller can be implemented
only by knowing the desired voltage. Compared with the
controller in [18], the proposed controller does not require
information on ¤𝑥, which makes it easier to be implemented
and less sensitive to measurement noises.

VI. CONCLUSION

Projection dynamics can be connected to a differen-
tiable dynamical system, ensuring asymptotic stability of
the closed-loop system under certain assumptions on the
associated Jacobian matrix. The projection dynamics on the
tangent cone of a convex set are passive and, in the case
of a polyhedral set, Krasovskii passive. These findings are
valuable for designing controllers for nonlinear systems,

such as power converters, to meet operational constraints.
However, further investigation is needed to understand the
impact of relaxing these assumptions on the convergence of
the closed-loop system
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