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Abstract— We consider the problem of designing agents able
to compute optimal decisions by composing data from multiple
sources to tackle tasks involving: (i) tracking a desired behavior
while minimizing an agent-specific cost; (ii) satisfying safety
constraints. After formulating the control problem, we show
that this is convex under a suitable assumption and find the
optimal solution. The effectiveness of the results, which are
turned in an algorithm, is illustrated on a connected cars
application via in-silico and in-vivo experiments with real
vehicles and drivers. All the experiments confirm our theoretical
predictions and the deployment of the algorithm on a real
vehicle shows its suitability for in-car operation.

I. INTRODUCTION

We often make decisions by composing knowledge gath-
ered from others [1] and a challenge transversal to control
and learning is to devise mechanisms allowing autonomous
decision-makers to emulate these abilities. Systems based on
sharing data [2] are examples where agents need to make
decisions based on some form of crowdsourcing [3]. Similar
mechanisms can also be useful for the data-driven control
paradigm when e.g., one needs to re-use policies synthesized
on plants for which data are available to solve a control task
on a new plant, for which data are scarcely available [3]–[5].

Motivated by this, we consider the problem of designing
decision-making mechanisms that enable autonomous agents
to compute optimal decisions by composing information
from third parties to solve tasks that involve: (i) tracking a
desired behavior while minimizing an agent-specific cost; (ii)
satisfying safety constraints. Our results enable computation
of the optimal behavior and are turned into an algorithm. This
is experimentally validated on a connected car application.

Related works: we briefly survey a number of works
related to the results and methodological framework of
this paper. The design of context-aware switches between
multiple datasets for autonomous agents has been recently
considered in [3], [4], where the design problem, formalized
as a data-driven control (DDC) problem, did not take into
account safety requirements. Results in DDC include [6]–[8],
which take a behavioral systems perspective, [9], which finds
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data-driven formulas towards a model-free theory of geomet-
ric control. We also recall e.g., [10]–[12] for results inspired
from MPC, [5] that considers data-driven control policies
transfer and [13] that tackles he problem of computing data-
driven minimum-energy control for linear systems. In our
control problem (see Section III) we formalize the tracking
of a given behavior via Kullback-Leibler (KL) divergence
minimization and we refer to e.g., [14], [15] for examples
across learning and control that involve minimizing this
functional. The study of mechanisms enabling agents to re-
use data, also arises in the design of prediction algorithms
from experts [16] and of learning algorithms from multiple
simulators [17]. In a yet broader context, studies in neu-
roscience [18] hint that our neocortex might implement a
mechanism composing the output of the cortical columns and
this might be the basis of our ability to re-use knowledge.

Contributions: we consider the problem of designing
agents that dynamically combine data from heterogeneous
sources to fulfill tasks that involve tracking a target behavior
while optimizing a cost and satisfying safety requirements
expressed as box constraints. By leveraging a probabilis-
tic framework, we formulate a data-driven optimal control
problem and, for this problem, we: (i) prove convexity
under a suitable condition; (ii) find the optimal solution;
(iii) turn our results into an algorithm, using it to design an
intelligent parking system for connected vehicles. Validations
are performed both in-silico and on real cars. As such,
the purpose of this paper is twofold: (i) we introduce, and
rigorously characterize our algorithm; (ii) propose a stand-
alone implementation of our results, suitable for in-vivo
experiments on real cars. In-vivo validations were performed
via an hardware-in-the-loop platform allowing to embed
real cars/drivers in the experiments. Using the platform,
we deploy our algorithm on a real vehicle showing its
suitability for in-car operation. All experiments confirm the
effectiveness of our approach (documented code/data for our
simulations at https://tinyurl.com/3ep4pknh).

While our results are inspired by the ones in [3], [4], our
paper extends these in several ways. First, the results in [3],
[4] cannot consider box constraints and hence cannot tackle
the control problem of this paper. Second, even when there
are no box constraints, the results in [3], [4] only solve an
approximate version of the problem considered here. That
is, the results from [3], [4] only find an approximate, non-
optimal, solution of the problem (the results of this paper
instead provide the optimal solution). Indeed, the solutions
from [3], [4] cannot get a better cost than the one obtained
with the results of this paper. Third, the algorithm of this
paper is deployed, and validated, on a real car and this was
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not done in [3], [4]. The in-vivo implementation is novel.
Notation: sets are in calligraphic and vectors in bold.

Given the measurable space (X ,Fx), with X ⊆ Rd (X ⊆
Zd) and Fx being a σ-algebra on X , a random variable
on (X ,Fx) is denoted by X and its realization by x. The
probability density (resp. mass) function or pdf (pmf ) of a
continuous (discrete) X is denoted by p(x). The convex
subset of such probability functions (pfs) is D. The ex-
pectation of a function h(·) of the continuous variable X
is Ep[h(X)] :=

∫
h(x)p(x)dx, where the integral (in the

sense of Lebesgue) is over the support of p(x), which we
denote by S(p). The joint pf of X1, X2 is p(x1,x2) and the
conditional pf of X1 given X2 is p (x1 | x2). Countable sets
are denoted by {wk}k1:kn , where wk is the generic element
of the set and k1 : kn is the closed set of consecutive
integers between k1 and kn. The KL divergence between
p(x) and q(x), with p absolutely continuous w.r.t. q, is
DKL (p || q) :=

∫
S(p) p ln (p/q) dx: it is non-negative and 0

if and only if p(x) = q(x). In expressions for the expectation
and KL divergence, the integral is replaced by the sum
for discrete variables. Finally: (i) we let 1A(x) denote the
indicator function equal to 1 if x ∈ A ⊆ X and 0 otherwise;
(ii) set exclusion is denoted by \.

II. THE SETUP

The agent seeks to craft its behavior by combining a
number of sources to fulfill a task that involves tracking a
target/desired behavior while maximizing an agent-specific
reward over the time horizon T := 0 : T , T > 0. The agent’s
state at time step k ∈ T is xk ∈ X and the target behavior
that the agent seeks to track is p0:T := p0(x0)

∏
k∈1:T p(xk |

xk−1). As in [3], [4], we design the behavior of the agent by
designing its joint pf π0:T := π(x0, . . . ,xT ) and we have:

π0:T = π0(x0)
∏
k∈1:T

π(xk | xk−1). (1)

That is, the behavior of the agent can be designed via the
pfs π(xk | xk−1), i.e., the transition probabilities. To do
so, the agent has access to S sources and we denote by
π(i)(xk | xk−1), with support S(π) ⊆ X , the behavior made
available by source i, i ∈ S := 1 : S, at k − 1. We also let
rk(xk) be the agent’s reward for being in state xk at k.

Assumption 1: ∀i ∈ S and ∀xk−1 ∈ X , there exists some
M < +∞, such that π(i)(xk | xk−1) ≤M , ∀xk ∈ S(π).

Remark 1: Assumption 1 is a mild assumption and for-
malizes the fact that the π(i)(xk | xk−1)’s are bounded on
their support. It is always satisfied for e.g., discrete variables.

III. FORMULATION OF THE CONTROL PROBLEM

Let α(1)
k , . . . , α

(S)
k be weights and αk be their stack. Then,

the control problem we consider can be formalized as:

Problem 1: find the sequence {α∗k}1:T solving

min
{αk}1:T

DKL (π0:T || p0:T )−
T∑
k=1

Eπ(xk−1) [r̃k(Xk−1)]

s.t. Eπ(xk|xk−1) [1Xk
(xk)] ≥ 1− εk, ∀k,

π(xk | xk−1) =
∑
i∈S

α
(i)
k π(i)(xk | xk−1), ∀k,∑

i∈S
α
(i)
k = 1, α

(i)
k ∈ [0, 1], ∀k.

In Problem 1, r̃k(xk−1) := Eπ(xk|xk−1) [rk(Xk)] and we
note that Eπ(xk−1) [r̃k(Xk−1)] = Eπ(xk) [rk(Xk)] is the
expected reward for the agent when the behavior in (1)
is followed. The problem is a finite-horizon optimal con-
trol problem with the αk’s as decision variables. As we
shall see, these are generated as feedback from the agent
state (Section IV). We say that {π∗ (xk | xk−1)}1:T , with
π∗ (xk | xk−1) =

∑
i∈S α

(i),∗
k π(i)(xk | xk−1), is the optimal

behavior for the agent, obtained by linearly combining the
sources via the α∗k’s. In the problem, the cost formalizes
the fact that the agent seeks to maximize its reward, while
tracking (in the KL divergence sense) the target behavior
by minimizing the discrepancy between π0:T and p0:T . This
term can also be thought as a divergence regularizer and,
when p0:T is uniform, it becomes an entropic regularizer. The
second and third constraints formalize the fact that, at each
k, π∗ (xk | xk−1) ∈ D is a convex combination of the pfs
from the sources. The first constraint is a box constraint and
models the fact that the probability that the agent behavior is,
at each k, inside some (e.g., safety) measurable set Xk ⊆ X
is greater than some εk ≥ 0. We now make the following

Assumption 2: the optimal cost of Problem 1 is bounded.
Remark 2: the cost in Problem 1 can be recast as

DKL (π0:T || p̃0:T ), where p̃0:T ∝ p0:T exp
(∑T

k=1 rk(xk)
)

.
This means that Assumption 2 is satisfied whenever there
exists some π̃0:T that is feasible for Problem 1 and that is
absolutely continuous w.r.t. p̃0:T . See also Remark 4.

IV. MAIN RESULTS

We propose an algorithm to tackle Problem 1 by splitting
it in sub-problems that can be solved recursively. The algo-
rithm takes as input T , the target behavior, the reward, the
behaviors of the sources and the box constraints of Problem 1

Algorithm 1 Pseudo-code

1: Input: time horizon T , target behavior p0:T , reward
rk(·), sources π(i)(xk | xk−1), box constraints (optional)

2: Output: optimal agent behavior {π∗ (xk | xk−1)}1:T
3: r̂T (xT )← 0
4: for k = T : 1 do
5: r̄k(xk)← rk(xk)− r̂k(xk)
6: α∗k(xk−1)← minimizer of the problem in (2);
7: π∗(xk | xk−1)←

∑
i∈S α

(i),∗
k (xk−1)π(i)(xk | xk−1)

8: r̂k−1(xk−1)← ck(π∗(xk | xk−1))
9: end for
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(if any). Given the inputs, it returns the optimal behavior for
the agent. The key steps of the algorithm are given as pseudo-
code in Algorithm 1. An agent that follows Algorithm 1
computes {αk}1:N via backward recursion (lines 4− 9). At
each k, the αk’s are obtained as the minimizers of

min
αk

ck(π(xk | xk−1))

s.t. Eπ(xk|xk−1) [1Xk
(xk)] ≥ 1− εk

π(xk | xk−1) =
∑
i∈S

α
(i)
k π(i)(xk | xk−1)∑

i∈S
α
(i)
k = 1, α

(i)
k ∈ [0, 1],

(2)

where

ck(π(xk | xk−1)) := DKL (π(xk | xk−1) || p(xk | xk−1))

− Eπ(xk|xk−1) [r̄k(Xk)] ,
(3)

with r̄k(·) iteratively built within the recursion (lines 5, 8).
The weights are used (line 7) to compute π∗(xk | xk−1).

Remark 3: results are stated for continuous variables
(proofs for discrete variables omitted for brevity). Note that
integrals/summations in the cost are over S(π).

Remark 4: following Remark 2, the optimal cost of the
problem in (2) is bounded if there exists some feasible π̃(xk |
xk−1) that is absolutely continuous w.r.t. p̃(xk | xk−1) ∝
p(xk | xk−1) exp (r̄k(xk)). From the design viewpoint, this
can satisfied if it holds for at least one π(i)(xk | xk−1).

A. Properties of Algorithm 1

Before characterizing convexity of the problems recur-
sively solved in Algorithm 1 (in Proposition 1) and its
optimality (in Proposition 2) we give the following

Lemma 1: the problem in (2) is feasible if and only if
there exists at least one source, say π(j)(xk | xk−1), such
that Eπ(j)(xk|xk−1) [1Xk

(xk)] ≥ 1− εk.
Proof: the if part clearly holds. For the only if

part we prove that if problem (2) is infeasible then
maxj Eπ(j)(xk|xk−1) [1Xk

(xk)] < 1 − εk. If the problem
is infeasible, then for all feasible αk’s, it must hold that∫
Xk

∑
j∈S α

(j)
k π(j)(xk | xk−1)dxk < 1 − εk. In particular,

this holds for the feasible solutions having one element of
αk equal to 1 and all the other elements equal to 0. Hence,
in this case, Eπ(j)(xk|xk−1) [1Xk

(Xk)] < 1− εk, ∀j ∈ S.
Convexity: we are now ready to prove the following
Proposition 1: let Assumption 1 hold. Then, the problem

in (2) is convex.
Proof: clearly, the constraints are all convex in the

decision variables. Now, we show that the cost is also convex
in these variables and we do so by explicitly computing,
for each xk−1, its Hessian, say H(xk−1). Specifically, after
embedding the second constraint of the problem in (2) in the
cost and differentiating with respect to the decision variables

we get, for each j ∈ S:

∂ck

∂α
(j)
k

:=
∂

∂α
(j)
k

∫
S(π)

∑
i∈S

α
(i)
k π(i)(xk | xk−1)·

·

(
log

(∑
i∈S α

(i)
k π(i)(xk | xk−1)

p(xk | xk−1)

)
− r̄k(xk)

)
dxk

=

∫
S(π)

∂

∂α
(j)
k

∑
i∈S

α
(i)
k π(i)(xk | xk−1)·

·

(
log

(∑
i∈S α

(i)
k π(i)(xk | xk−1)

p(xk | xk−1)

)
− r̄k(xk)

)
dxk

=

∫
S(π)

π(j)(xk | xk−1)

(
log

(∑
i∈S

α
(i)
k π(i)(xk | xk−1)

)

− log (p(xk | xk−1))− r̄k(xk) + 1

)
dxk.

The above chain of identities was obtained by swap-
ping integration and differentiation, leveraging the fact
that the cost is smooth in the decision variables. Simi-
larly, we get ∂2ck

∂α
(j)2

k

=
∫
S(π)

π(j)(xk|xk−1)
2∑

i∈S α
(i)
k π(i)(xk|xk−1)

dxk =:

hjj(xk−1), and, for each m 6= j, m ∈ S, ∂2ck
∂α

(j)
k ∂α

(m)
k

=∫
S(π)

π(j)(xk|xk−1)π
(m)(xk|xk−1)∑

i∈S α
(i)
k π(i)(xk|xk−1)

dxk =: hjm(xk−1). Also,

following Assumption 1, ∀j,m ∈ S we have that∫
S(π)

∣∣∣∣π(j)(xk|xk−1)π
(m)(xk|xk−1)∑

i∈S α
(i)
k π(i)(xk|xk−1)

∣∣∣∣ dxk is bounded in the fea-

sibility domain. That is, the above integrals are well de-
fined and thus we can conclude the proof by computing
vTH(xk−1)v for some non-zero v ∈ RS :

vTH(xk−1)v =
∑
j,m

vjvmhjm(xk−1)

=

∫
S(π)

∑
j,m

vjvmajm(xk,xk−1)dxk,

where the ajm’s are the elements of the matrix

A(xk,xk−1) := π̄(xk,xk−1)

 π(1)(xk | xk−1)
...

π(S)(xk | xk−1)

 ·
·
[
π(1)(xk | xk−1) . . . π(S)(xk | xk−1)

]
,

with π̄(xk,xk−1) := 1/
(∑

i∈S α
(i)
k π(i)(xk | xk−1)

)
. The

above expression is indeed positive semi-definite for each
xk, xk−1 and we can draw the desired conclusion.

Optimality: we can now prove the following
Proposition 2: let Assumption 1 and Assumption 2 hold.

Then, Algorithm 1 gives an optimal solution for Problem 1.
Proof: the chain rule for the KL divergence and the

linearity of expectation imply that the cost can be written as

DKL (π0:T−1 || p0:T−1)−
T−1∑
k=1

Eπ(xk−1) [r̃k(Xk−1)]

+ Eπ(xT−1) [cT (π(xT | xT−1))] ,

(4)
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where cT (π(xT | xT−1)) is defined as in (3) with r̄T (xT )
given by Algorithm 1 – see lines 3 and 5 and note that,
at time step T , r̄T (xT ) = rT (xT ). To obtain the above
expression, the fact that cT (π(xT | xT−1)) only depends on
xT−1 was also used. Hence, Problem 1 can be split into the
sum of two sub-problems: a first problem over k ∈ 0 : T −1
and the second for k = T . For this last time step, the problem
can be solved independently on the others and is given by:

min
αT

Eπ(xT−1)[cT (π(xT | xT−1))]

s.t. Eπ(xT |xT−1) [1XT
(xT )] ≥ 1− εT ,

π(xT | xT−1) =
∑
i∈S

α
(i)
T π(i)(xT | xT−1),∑

i∈S
α
(i)
T = 1, α

(i)
T ∈ [0, 1].

(5)

Using linearity of the expectation and the fact that the
decision variable is independent on π(xT−1), we have that
the minimizer of the problem in (5) is the same as the
problem in (2) with k = T . Following Proposition 1, such a
problem is convex and we denote its optimizer as α∗T (xT−1)
– see line 6 of Algorithm 1 – and the optimal cost of the
problem, which is bounded by Assumption 2, is cT (π∗(xT |
xT−1)), where:

π∗(xT | xT−1) =
∑
i∈S

α
(i),∗
T (xT−1)π(i)(xT | xT−1).

This gives r̂T−1(xT−1) in Algorithm 1 (lines 7 − 8),
thus yielding the steps for the backward recursion of the
Algorithm 1 at time step T . Now, the minimum value of the
problem in (5) is given by Eπ(xT−1) [r̂T−1(XT−1)]. Hence,
the cost of Problem 1 becomes DKL (π0:T−1 || p0:T−1) −∑T−1
k=1 Eπ(xk−1) [r̃k(Xk−1)] + Eπ(xT−1) [r̂T−1(XT−1)].

Then, following the same reasoning used to obtain
(4) and by noticing that Eπ(xT−1) [r̂T−1(XT−1)] =
Eπ(xT−2)

[
Eπ(xT−1|xT−2) [r̂T−1(XT−1)]

]
, we get:

DKL (π0:T−2 || p0:T−2)−
T−2∑
k=1

Eπ(xk−1) [r̃k(Xk−1)]

+ Eπ(xT−2) [cT−1(π(xT−1 | xT−2))] ,

where cT−1(π(xT−1 | xT−2)) is again given in (3) with
r̄T−1(xT−1) again defined as in Algorithm 1. By iterating
the arguments above, we find that at each time step Problem
1 can always be split as the sum of two sub-problems, where
the last sub-problem can be solved independently on the
previous ones. Moreover, the minimizer of this last sub-
problem is always the solution of a problem of the form

min
αk

DKL (π(xk | xk−1) || p(xk | xk−1))− Eπ(xk|xk−1) [r̄k(Xk)]

s.t. Eπ(xk|xk−1) [1Xk
(xk)] ≥ 1− εk,

π(xk | xk−1) =
∑
i∈S

α
(i)
k π(i)(xk | xk−1),∑

i∈S
α
(i)
k = 1, α

(i)
k ∈ [0, 1],

(6)

where r̄k(xk) := rk(xk) − r̂k(xk), with r̂k(xk) :=
ck+1(π∗(xk+1 | xk)) and π∗(xk | xk−1) =∑
i∈S α

(i),∗
k (xk−1)π(i)(xk | xk−1). This yields the desired

conclusions.
Remark 5: in [3], an approximate solution is found for

Problem 1 when it has no box constraints. In [4] it is shown
that the approximate solution is optimal for a problem with
the same cost as Problem 1 but with the feasibility domain
being a strict subset of the domain of Problem 1. Hence, the
solutions from [3], [4] cannot achieve a better cost than the
ones obtained via Algorithm 1 (as the results from [3], [4]
search the solutions in a subset of the feasibility domain).

V. DESIGNING AN INTELLIGENT PARKING SYSTEM

We use Algorithm 1 to design an intelligent parking sys-
tem for connected cars and validate the results both in-silico
and in-vivo. For the latter set of experiments, Algorithm 1
is deployed on a real car and validation is performed via
an hardware-in-the-loop (HiL) platform inspired from [19].
Documented code, maps and parameters for the simulations
are given at https://tinyurl.com/3ep4pknh.

A. Validation Scenarios and Experimental Set-up

We consider the problem of routing vehicles in a given
area to find parking. Our scenario is a morning rush at the
University of Salerno campus (see Figure 1). Specifically,
cars arrive on campus from the highway and users seek to
reach one of the parking locations: Biblioteca and Terminal.

In this context, vehicles are agents equipped with
Algorithm 1. The set of road links on campus is X and time
steps are associated to the time instants when the vehicle
changes road link. The state of the agent, xk, is the road link
occupied by the vehicle at time step k. Given this set-up, at
each k Algorithm 1 outputs the turning probability for the
car given the current link, π∗(xk | xk−1). The next direction
for the car is then sampled from this pf. Agents have access
to a set of sources, each providing different routes. As
discussed in [20], sources might be navigation services,
routes collected from other cars participating to some
sharing service. Agents wish to track their target/desired
behavior (driving them to the preferred parking – Terminal
in our experiments) and the reward depends on the road
conditions. Links adjacent to a parking lot are assigned

Fig. 1: campus map. The magnified areas show the obstructed road
link (in blue) and links used within the validations. Colors online.

5389



a constant reward of: (i) 3.8 if the parking has available
spaces; (ii) 0 otherwise. Unparked cars already on full
parking lots are assigned a target behavior leading them
to another parking. The reward for the other links is 0
and becomes −20 when there is an obstruction. In our
experiments, the reward was selected heuristically so that
it would be: (i) sufficiently penalizing for links affected by
obstruction; (ii) encouraging cars to drive towards parking
lots with available spaces. In the first scenario (Scenario
1) there are no box constraints: this is done to benchmark
Algorithm 1 with [3], [4]. To this aim, we use the campus
map from [20] in which [3], [4] were thoroughly validated
via simulations. Then, we show that by introducing box
constraints Algorithm 1 can effectively regulate access of
vehicles through selected road links. This is Scenario 2 and
we considered three situations: (A) the road towards the
Biblioteca parking lot is forbidden. To account for this, we
set in Algorithm 1 Xk = X \ l2, where the link l2 is shown
in Figure 1, and εk = 0.027; (B) the set Xk as before but
now εk = 0.5; (C) the road towards the Terminal parking lot
is forbidden and in this case we set Xk = X \ l1, εk = 0.027
(see Figure 1 for link l1). For this last scenario, Algorithm
1 is validated both in-silico and in-vivo. Next, we describe
the simulation and HiL experimental set-ups.

Simulation set-up: simulations were performed in SUMO
[21]; see also [20] for a description of the pipeline to import
maps and traffic demands. In our simulations, each parking
lot can accommodate up to 50 cars and we generated the
traffic demand of 100 cars arriving on campus at 5-second
intervals. All the cars seek to park, saturating the parking
capacity. We also simulated a road obstruction on the main
link (in blue in Fig. 1) from the highway exit to the campus
entrance. This was done by restricting, in SUMO, the speed
of the link to less than one kilometer per hour. Information
on the simulated car is contained in the file agent.npyand
the pfs of the sources (see below) are in behaviors.npy.

HiL set-up: the platform embeds a real vehicle into a
SUMO simulation. By doing so, performance of the algo-
rithm on a real car can be assessed under arbitrary synthetic
traffic conditions. The high-level architecture of the platform
is shown in Figure 2. The platform creates an avatar of
the real car in the SUMO simulation. Namely, as shown
in Figure 2, the position of the real car is embedded in
SUMO by using a smartphone to collect GPS coordinates.
These coordinates are then sent via bluetooth to a computer
on-board the car. The connection is established via an off-
the-shelf app, which writes the coordinates in a rfcomm
file. By using the pySerial library, an interface was
developed to read data in Python. Here, a script was designed
leveraging pynmeaGPS to translate the data in NMEA format
for longitude/latitude coordinates. With this data format, a
Python script was created to place the avatar of the car
in the position given by the coordinates. Visual and audio
feedback are also provided on the car by a GUI highlighting
the trajectory on the map and a text-to-speech device.

B. In-car Implementation of the Algorithm

For all experiments, Algorithm 1 was implemented in
Python as a stand-alone class so that each car equipped with
it could act as a stand-alone agent. The class has methods
accepting the inputs of Algorithm 1 and outputting the behav-
ior computed by the algorithm. The optimization problems
within the algorithm were solved via the Python library
scipy.optimize. The class also implements methods to
compute the cost and to support receding horizon imple-
mentations of Algorithm 1. In our experiments, we used this
implementation: the width of the receding horizon window
was T = 5 and every time the car entered in a new link/state
computations were triggered. The pfs from the sources in
our experiments were such that, at each k, feasibility of the
problem was ensured (see Lemma 1). Following [20], we also
implemented an utility function that restricts calculations of
the agent to the road links that can be reached in T time steps
(rather than the whole map). With this feature, in the HiL
experiments the algorithm took on average approximately
half a second to output a behavior, less than the typical time
to drive through a road link. Finally, the pfs of the sources
were obtained via SUMO routing functions and we added
noise to the routes. For each link, S(π) is the set of outgoing
links and note that Assumption 1 is fulfilled (as variables are
discrete). See our github.

C. Experimental Results

Simulation results: first, we benchmarked the performance
of Algorithm 1 against these from the algorithm in [3], [4],
termed as crowdsourcing algorithm in what follows. To this
aim, we considered Scenario 1 and performed two sets of 10
simulations. In the first set of experiments, Algorithm 1 was
used to determine the behavior of cars on campus (note that
Assumption 2 is fulfilled). In the second set of simulations,
the cars instead used the crodwourcing algorithm. Across the
simulations, we recorded the number of cars that the algo-
rithms were able to park. The results are illustrated in Figure
3 (top panel). The figure shows that the crowdsourcing algo-
rithm was not able to park all the cars within the simulation.
This was instead achieved by Algorithm 1, outperforming
the algorithm from [3], [4]. We also computed the average
time-to-parking (ATTP) spent by a car looking for a parking
space after entering the simulation. Across the simulations,
the ATTP for the algorithm in [3] was of 224.74 ± 19.67,
while for Algorithm 1 it was of 151.32 ± 30.59 (mean ±
standard deviation). That is, Algorithm 1 yielded an average
improvement of 32.7% in the ATTP. Then, we simulated
the three cases of Scenario 2 to verify that Algorithm 1

Fig. 2: HiL functional architecture.
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can effectively regulate access through specific links. The
constraints for the three cases of Scenario 2 were given as
an input to the algorithm and in Figure 3 (bottom panel) the
optimal solution π∗(xk | xk−1 = lr) is shown. The figure
shows that the optimal solution indeed fulfills the constraints.

HiL results: we deployed Algorithm 1 on a real vehicle
using the HiL platform and validated its effectiveness in
Scenario 2 (C): the target behavior of the agent would make
the real car reach the Terminal parking but this route is
forbidden. In the experiment, once the car entered in the
campus, this was re-routed towards the Biblioteca parking.
The re-routing was an effect of Algorithm 1 computing the
rightmost pf in Figure 3 (bottom panel). A video of the
experiment is available on our github, and shows that the
algorithm is suitable for real car operation: it would run
smoothly during the drive, providing feedback to the driver.
Figure 4 shows the car’s route during the experiment.

VI. CONCLUSIONS

We considered the problem of designing agents able to
compute optimal decisions by re-using data from multiple
sources to solve tasks involving: (i) tracking a desired be-
havior while minimizing an agent-specific cost; (ii) satisfying
certain safety constraints. After formulating the control prob-

Fig. 3: Top: unparked cars over time for crowdsourcing and
Algorithm 1. Solid lines are means across the simulations, shaded
areas are confidence intervals (one standard deviation). Bottom:
π∗(xk | xk−1 = lr) for the three cases of Scenario 2. The pfs
satisfy the constraints. Link definitions in Figure 1.

Fig. 4: Route of the real vehicle. The continuous line shows the GPS
position during the HiL experiment (map from OpenStreetMaps).

lem, we showed that this is convex under a mild condition
and computed the optimal solution. We turned the results
in an algorithm and used it to design an intelligent parking
system. We evaluated the algorithm via in-silico and in-vivo
experiments with real cars, confirming its effectiveness and
suitability for in-car operation. Besides considering the use of
other divergences and deploying our results in more complex
urban scenarios that would use data from pedestrians and
sensors on-board vehicles, our future research will involve
investigating stability of receding horizon implementations
of our results and devising mechanisms for the composition
of policies for the tasks with actuation constraints in [22].
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