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Abstract— This paper proposes a methodology for assessing
the potential risk from cyberattacks in multi-agent systems
(MASs). MASs inherently rely on communication between
agents, rendering them more vulnerable to cyberattacks than
single-agent systems. The impact of cyberattacks could lead
to performance disruption and safety violations. To address
these concerns, we propose a risk assessment method for MASs
using reachability analysis which computes the reachable set
of the MASs via a Lyapunov function and its corresponding
linear matrix inequalities (LMIs). The proposed method can
quantify the potential risk against cyberattacks at agent and
entire system levels by deriving ellipsoidal over-approximated
reachable sets. An illustrative example is provided to validate
the potency of the method, which shows the risk associated
with the formation control of a leader-following MAS in an
adversarial environment with scattered obstacles.

I. INTRODUCTION

Multi-agent systems (MASs) have received significant
attention due to their ability to perform intricate missions
that single-agent systems (SASs) cannot achieve, thanks to
the intercommunication between agents [1]. Each agent of
a MAS has a distributed control input relying on the local
information obtained from its neighbors, which allows the
MAS to be scalable and efficient. These advantages have led
to the emergence of MAS engineering applications, including
multi-robots and unmanned aerial vehicles (UAVs) [1], [2].

However, the heavy reliance of MASs on the commu-
nication protocol between agents introduces vulnerabilities
against cyberattacks [3]–[9]. Specifically, MASs are more
susceptible to cyberattacks than SASs, as they have more
attack vectors exposed to adversaries, including the failures
in feedback control loops [3]–[5] and communication links
[6]. Due to the detrimental impacts of cyberattacks, ensuring
their safety against cyberattacks has emerged as an active
area of research.

Research on the cybersecurity of MASs focuses on two
areas: (1) system resiliency [3]–[7], and (2) attack detection
[8], [9]. In terms of system resiliency, Pirani et al. [3]
proposed a game-theoretic method to enhance the system
resiliency under false-data-injection (FDI) attacks. To accom-
modate stochasticity, a distributed output-feedback controller
was developed to address random attacks [4], [5]. Besides, a
data-driven strategy for MAS formation control was provided
in [6] to handle sophisticated threats with denial-of-service
(DoS) attacks and FDI attacks. A distributed resilient con-
troller was developed in [7] to mitigate network failures by a
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network centroid reconfiguration. Regarding attack detection,
a distributed model-based strategy to detect stealthy attacks
was studied in [8] while a neural network-based strategy was
addressed in [9].

Despite the above studies, quantifying the potential risk of
cyberattacks on MASs still remains a challenge and has yet
to be properly addressed. Previous research primarily focused
on developing reactive mitigation and detection algorithms
which are activated after cyber threats occur. However,
MASs are generally exposed to high-risk environments with
sophisticated cyber threats, where attackers can vary their
attack strategies. Thus, reactive defense strategies may not
be sufficient, making it critical to evaluate the potential risk
of cyber threats beforehand and mitigate their impact proac-
tively [10]–[13]. While a tool for evaluating the potential
risk of cyber threats was developed only for SASs [13], it
is limited in its applicability in that the characteristics of
MASs, like the informational dependency among agents, are
not taken into account. For instance, a cyberattack targeting a
single agent in a MAS may prevent the system from reaching
a consensus. Given the above discussions, expanding this risk
assessment framework to MASs is necessary, albeit more
complex than that in SASs.

In this work, we develop a proactive risk assessment
method for MASs under stealthy cyberattacks. We employ
reachability analysis based on a Lyapunov function and the
corresponding linear matrix inequalities (LMIs). The com-
puted reachable set allows an ellipsoidal over-approximation
of the actual reachable set containing all possible compro-
mised states within a predefined time window. The over-
approximated reachable set can be regarded as a security
metric to show how much potential cyber threats affect a
system. We apply geometric operations, such as the inter-
section and union of ellipsoids, to assess the potential risk
between individual agents and entire systems, allowing the
quantification of the security of MASs.

The rest of this letter is organized as follows: Section II
gives preliminaries, Section III presents the problem formu-
lation, Section IV provides main results, and an illustrative
example is given in Section V. Finally, Section VI concludes
this study.

II. PRELIMINARIES

We denote the set of real numbers and integers by R and
Z, respectively. The superscript + on R and Z stands for
non-negativeness. XT denotes the transpose of matrix X ,
the symbol He{A} stands for A + AT , and R

n×m denotes
all real matrices with dimension n×m. The set containing
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natural numbers {1, 2, · · · , N} is defined as IN . For any
vector x(k) ∈ R

n, we use |x(k)|2 =
√

xT (k)x(k) to
represent the Euclidean norm of a vector. Then, ‖x(k)‖∞ =
supk≥0|x(k)|2 represents the infinity norm of a signal
{x(k)}k∈Z+ . The symbol ∗ stands for a symmetric term
for notation simplicity, In denotes a n-dimensional identity
matrix, 0n×m ∈ R

n×m is a zero matrix, and ⊗ represents
the Kronecker product.

Consider an undirected graph G = (V, E ,A) to represent
communication links, where V = {v1, · · · , vN} is the set
of agents, and N ∈ R is the number of agents. The set
E ⊆ V ×V is the set of links. Ni = {j ∈ V, |(vj , vi) ∈ E} is
the set of neighbors of agent i. The adjacency matrix A =
[aij ] ∈ R

N×N is defined such that aij > 0 if (vj , vi) ∈ E ,
and aij = 0 otherwise. The Laplacian matrix L = [Lij ] ∈
R

N×N is defined as Lii =
∑

j 6=i aij and Lij = −aij for
i 6= j.

III. PROBLEM FORMULATION

Consider the dynamics of a discrete linear time-invariant
(DLTI) multi-agent system (MAS) described as follows:

xi(k + 1) = Axi(k) +Bui(k) + Ewi(k),

yi(k) = Cxi(k) + Fvi(k) + Γδi(k),
(1)

where i is the index of agent i for i ∈ IN , i.e., N denotes
the number of agents, xi(k) ∈ R

n denotes the system state,
ui(k) ∈ R

m is the control input, and yi(k) ∈ R
p is the

measurement output. The matrices A ∈ R
n×n, B ∈ R

n×m,
and C ∈ R

p×n denote the system matrix, the input matrix,
and the output matrix, respectively. The system pairs (A,B)
and (A,C) are assumed to be stabilizable and detectable.
wi(k) ∈ R

w̄ and vi(k) ∈ R
v̄ are norm-bounded process

and sensor noises with perturbation matrices E ∈ R
n×w̄ and

F ∈ R
p×v̄ . δi(k) ∈ R

δ̄ with the matrix Γ ∈ R
p×δ̄ denotes

the cyberattack that can stealthily impact the system. An
undirected graph G represents the communication among the
agents. The following assumptions on the noises and graph
structure of the MAS (1) are held throughout the paper.

Assumption 1: The noises wi(k) and vi(k) for i ∈ IN
satisfy the following norm-bounded conditions: |wi|22 =
wT

i (k)wi(k) ≤ Wi and |vi|22 = vTi (k)vi(k) ≤ Vi, where
Wi ∈ R

+, Vi ∈ R
+, and k ∈ Z

+.
Assumption 2: The graph G is strongly connected. The

element aij of the adjacency matrix A is set as 1, i.e., the
weight for the information flow among all agents is the same.

Remark 1: If the DLTI system (1) is assumed to be
noiseless, the noises wi(k) and vi(k) can be considered as
random attacks on the actuators and sensors, respectively.

Afterward, an observer-based leader-follower control pro-
tocol is presented, which enables the agents, i.e., followers
of the MAS (1), to track the reference trajectory generated
by a leader. The dynamics of the leader is given by:

xl(k + 1) = Axl(k) +Bul(k), (2)

where xl(k) ∈ R
n is the state of the leader, ul(k) ∈ R

m is
its control input, and the system matrices are the same as the
other agent’s matrices. According to a leader-follower MAS

[15], the dynamics (2) can be regarded as a virtual system
that generates the desired trajectory for the agents to follow.

The synchronization error of agent i is defined as qi(k) ,
xi(k)−xl(k), where i ∈ IN . By combining (1) and (2), the
synchronization error dynamics can be obtained as:

qi(k + 1) = Aqi(k) +B (ui(k)− ul(k)) + Ewi(k). (3)

From the distributed control protocol [15], an observer-based
leader-follower control input of agent i can be formulated as:

ui(k) =Kc

∑

j∈Ni

x̂ij(k) + αiKcx̂il(k) + ul(k), (4)

where x̂ij(k) = x̂i(k) − x̂j(k) and x̂il(k) = x̂i(k) − xl(k)
denote the differences between the estimated state of agent i
and its neighbor agent j, and between the estimated state of
agent i and the leader state xl(k), respectively. The control
gain Kc ∈ R

m×n is to be designed. The indicator αi ∈ R is
defined to be 1 if agent i is connected to the leader, and 0
otherwise. Substituting (4) to (3), the stacked synchronization
error dynamics for the MAS (1) is obtained as follows:

q(k + 1) = (IN ⊗A) q(k) +
(

L̄⊗BKc

)

q̂(k)

+ (IN ⊗ E)w(k), (5)

where L̄ = L+Λ, Λ = diag [α1, · · · , αN ] ∈ R
N×N , q(k) =

[qT1 (k), · · · , qTN (k)]T , q̂(k) = [q̂T1 (k), · · · , q̂TN (k)]T , q̂i(k) =
x̂i(k)− xl(k), and w(k) = [wT

1 (k), · · · , wT
N (k)]T .

Lemma 1 ([13]): The matrix L̄ is positive definite, i.e.,
0 < λ1(L̄) < · · · < λN (L̄). For the rest of the paper, the
i-th eigenvalue of L̄ is denoted as λ̄i for notational simplicity.

To consider realistic scenarios, we assume that xi(k) for
i ∈ IN is not directly available. Thus, the control input (4)
utilizes the estimated state from the following state observer:

x̂i(k + 1) = Ax̂i(k) +Bui(k) + Lo (yi(k)− ŷi(k)) ,

ŷi(k) = Cx̂i(k),
(6)

where Lo ∈ R
n×p is the observer gain to be designed, and

ŷi(k) ∈ R
p is the estimated output of agent i. Let us define

the state estimation error of agent i as ei(k) , xi(k)−x̂i(k).
By combining (1) and (6), the stacked state estimation error
dynamics can be represented in the following manner:

e(k + 1) = (IN ⊗ (A− LoC)) e(k) + (IN ⊗ E)w(k)

− (IN ⊗ LoF ) v(k)− (IN ⊗ LoΓ) δ(k), (7)

where we have e(k) = [eT1 (k), · · · , eTN (k)]T , v(k) =
[vT1 (k), · · · , vTN (k)]T , and δ(k) = [δT1 (k), · · · , δTN (k)]T .

Finally, we can obtain an augmented DLTI error dynamics
by combining the dynamics (5) and (7) as follows:

ζ(k + 1) = A1ζ(k) +A2w(k)−A3v(k)−A4δ(k), (8)

where ζ(k) = [qT (k), eT (k)]T , and we have

A1 =

[

IN ⊗A+ L̄⊗BKc −L̄⊗BKc

0nN×nN IN ⊗ (A− LoC)

]

,

A2 =

[

IN ⊗ E
IN ⊗ E

]

,A3 =

[

0nN×v̄N

IN ⊗ LoF

]

,A4 =

[

0nN×δ̄N

IN ⊗ LoΓ

]

.
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Remark 2: In the absence of the stealthy attack δ(k), the
leader-follower consensus of the MAS (1) and (2) will be
achieved by designing proper gains Kc and Lo. However,
the stealthy attack δ(k) can disrupt the consensus and cause
the agents to deviate from their desired states. The deviations
can be considered as a potential risk to both individual agents
and the entire system. Our objective is to develop a risk
assessment method that can quantify the potential risk against
cyberattacks, enabling us to reinforce the safety of the MAS.

IV. MAIN RESULT

This section consists of two major parts: (a) providing de-
sign preliminaries for the controller, estimator, and residual-
based attack detector; and then (b) presenting an LMI-based
risk assessment method for the leader-follower MAS.

A. Design Preliminaries

1) Stabilization in Stealthy-Attack-Free: This subsection
presents the derivation of the controller gain Kc and observer
gain Lo ensuring the stability of the leader-follower MAS
(1) and (2) in the stealthy-attack-free (SAF) case, i.e., when
δ(k) = 0. The lemma below is proposed to design Kc which
can be determined by the LMI-based sufficient condition.

Lemma 2: Consider the MAS dynamics regarding q(k):

q(k + 1) =
(

IN ⊗A+ L̄⊗BKc

)

q(k). (9)

The MAS dynamics (9) under a graph determined by L̄ can
be stabilized if there exist proper matrices X = XT ∈ R

n×n

and Y ∈ R
m×n such that the following LMIs are satisfied:

X > 0,

[

X ∗
XAT + λ̄iY

TBT X

]

> 0, for i ∈ IN , (10)

where λ̄i > 0 is an i-th eigenvalue of the modified Laplacian
matrix L̄ and we can obtain the controller gain Kc = Y X−1.

Proof: Consider a Lyapunov function as: V1(k) =
qT (k)(IN ⊗ P1)q(k), where P1 = PT

1 ∈ R
n×n > 0.

From Lemma 1, the similarity transformation L̄ = TJT−1

is applied, where T ∈ R
N×N , and the diagonal matrix

J = diag[λ̄1, · · · , λ̄N ]. Then, the coordinate transforma-
tion yields ρ1(k) , Mq(k), where M =

(

T−1 ⊗ In
)

,
and ρ1(k) = [ρT11(k), · · · , ρT1N (k)]T . Using the coordinate
transform with Kronecker product properties (see Theorem
1 in [13]), ∆V1(k) , V1(k + 1) − V1(k) < 0 can be
represented as ∆V1(k) =

∑N
i=1 ρ

T
1i(k)Ωiρ1i(k) < 0, where

Ωi =
(

A+ λ̄iBKc

)T
P1

(

A+ λ̄iBKc

)

− P1. By applying
the Schur complement and congruence transformation [15]
with P−1

1 to Ωi, the condition Ωi < 0 is equivalent to the
condition described in (10). Finally, the MAS dynamics (9)
is asymptotically stable if the LMIs in (10) are satisfied.

Based on the results from Lemma 2, our next step is to
design the observer gain Lo via the H∞ approach from [17].
This approach specifies two conditions for Lo stabilizing
the augmented DLTI error dynamics (8): (a) ensuring the
asymptotic stability of (8) when w(k) = 0 and v(k) = 0;
(b) given for some γ ∈ R > 0 and under the zero initial
condition, the dynamics (8) satisfies limk→∞ ψ(k) ≤ γ,
where ψ(k) =

∑k
τ=0 |e(τ)|22/

∑k
τ=0

(

|w(τ)|22 + |v(τ)|22
)

.

Theorem 1: Let the LMIs from Lemma 2 be satisfied. For
some γ ∈ R > 0, the augmented DLTI error dynamics (8)
is stabilizable with the H∞ criterion if there exist matrices
P2 = PT

2 ∈ R
n×n and Z ∈ R

n×p such that the following
LMI-based optimization is satisfied:

min
γ

γ s.t. P2 > 0, Ξ̄i < 0 for i ∈ IN , (12)

where Ξ̄i is provided in (11), and Lo = P−1
2 Z.

Proof: Consider a Lyapunov function: V2(k) =
qT (k)(IN ⊗P1)q(k)+e

T (k)(IN ⊗P2)e(k), where P1 = PT
1

is obtained from Lemma 2, and P2 = PT
2 ∈ R

n×n > 0. To
derive a sufficient condition for the stabilizability with the
H∞ criterion, the following condition should be held [17]:

∆V2(k) + |e(k)|22 − γ
(

|w(k)|22 + |v(k)|22
)

< 0, (13)

where ∆V2(k) , V2(k + 1) − V2(k). Likewise Lemma 2,
we can apply the coordinate transformation as ρ2(k) ,

Me(k), ρ3(k) , Mw(k), ρ4(k) , Mv(k); and ρ2(k) =
[

ρT21(k), · · · , ρT2N (k)
]T

, ρ3(k) =
[

ρT31(k), · · · , ρT3N (k)
]T

,

ρ4(k) =
[

ρT41(k), · · · , ρT4N (k)
]T

. Subsequently, we can
rewrite the condition (13) as

∑N
i=1 z

T
i (k)Ξizi(k) < 0, where

zi(k) =
[

ρT1i(k), ρ
T
2i(k), ρ

T
3i(k), ρ

T
4i(k)

]T
, and detailed de-

scription for Ξi is omitted due to space constraints. To
maintain

∑N
i=1 z

T
i (k)Ξizi(k) < 0, the condition Ξi < 0

for i ∈ IN should be held. With the Schur complement
and congruence transformation on the matrix P2, Ξi < 0
is equivalent to the condition in (12), where Ξ̄i is provided
in (11). If the LMI-based optimization (12) is held, we can
obtain the observer gain Lo that guarantees H∞ criterion.

2) Residual-based Attack Detector Design: A residual-
based attack detector (RAD) for agent i ∈ IN is designed
subsequently. The input of the RAD, ri(k) , yi(k)−ŷi(k) ∈
R

p, is a residual between the compromised output yi(k) and
the estimated output ŷi(k). Then, the dynamics of ri(k) is:

ri(k) = Cei(k) + Evi(k) + Γδi(k). (14)

Remark 3: Given (8) and (14), the noises wi(k) and vi(k)
can perturb the residual ri(k) in the SAF case.

In detail, the RAD employs a distance measure, di(k) =
rTi (k)Πiri(k) ∈ R, which can evaluate the deviation caused
by cyberattacks. The structure of the RAD is given as:

di(k) = rTi (k)Πiri(k), (15)

where Πi = ΠT
i ∈ R

p×p is a design parameter to be decided
in a subsequent section. If di(k) > 1, an alarm is triggered
to notify cyberattacks. Note that the stealthy attacks can hide
their impacts and do not trigger an alarm from the RAD by
keeping di(k) ≤ 1. The positive semi-definite matrix Πi can
be determined as follows: the ellipsoid rTi (k)Πiri(k) = 1
should enclose all residual ri(k) that the noises wi(k) and
vi(k) can induce (see (14) in the SAF case, i.e., δi(k) = 0).

To derive Πi, we first need to obtain the minimal upper
bound of ei(k) in the SAF case when the system reaches a
steady state. To this end, the following lemma is derived:

Lemma 3: Consider the state estimation error dynamics
of agent i in the SAF case: ei(k+ 1) = (A− LoC) ei(k) +
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Ξ̄i =























ATP1A+ λ̄i He
{

ATP1BKc

}

+λ̄2iK
T
c B

TP1BKc − P1 ∗ ∗ ∗ ∗
−λ̄iKT

c B
TP1A− λ̄2iK

T
c B

TP1BKc λ̄2iK
T
c B

TP1BKc − P2 + In ∗ ∗ ∗
ETP1A+ λ̄iE

TP1BKc −λ̄iETP1BKc ETP1E − γIw̄ ∗ ∗
0w̄×n 0w̄×n 0w̄×w̄ −γIw̄ ∗
0n×n P2A− ZC P2E ZF −P2























, (11)

Ewi(k)−LoFvi(k), where A−LoC is Hurwitz. For given
constant α ∈ (0, 1), positive definite matrix P2 = PT

2 ∈
R

n×n and constant matrix Z ∈ R
n×p satisfying Lo =

P−1
2 Z, if there exist positive constants µ1, µ2 ∈ R

+ such
that the following LMI-based optimization is satisfied:

min
µ1,µ2

µ1 + µ2

s.t.









(α− 1)P2 ∗ ∗ ∗
0n×n −αµ1In ∗ ∗
0p×n 0p×n −αµ1Ip ∗

P2A− ZC P2E ZF −P2









≤ 0, (16)

P2 − µ−1
2 In ≥ 0,

then the upper bound of ei(k) holds the following: |ei(k)|2 ≤
cλk ‖ei(0)‖2 +

√
µ1µ2 (‖wi(k)‖∞ + ‖vi(k)‖∞), with some

positive constant c > 0 and design parameter λ ∈ (0, 1).
Proof: The reader may refer to Chapter 7 in [16].

With Lemma 3 and S-procedure, we can obtain optimal Πi

(in terms of the minimal boundary) by solving the following:
Theorem 2: Assume that Lemma 3 is solved. Consider the

upper bound of ei(k) from Lemma 3 and the residual ri(k)
from (14). If there exist positive constants κ1, κ1 ∈ R

+ and
a positive semi-definite matrix Πi = ΠT

i ∈ R
p×p such that

the following LMI-based optimization is satisfied:

min
κ1,κ2,Πi

− log det (Πi)

s.t.





T11 ∗ ∗
T21 T22 ∗

01×v̄ 01×v̄ T33



 ≥ 0,
κ2 > 0,
κ1 > 0,
Πi ≥ 0,

(17)

where T11 = κ1In×n − CTΠiC, T21 = −FTΠiC, T22 =
κ2Iv̄×v̄−FTΠiF , and T33 = 1−κ1µ1µ2 (Wi + Vi)−κ2Vi,
then, the RAD (15) can enclose all possible residuals ri(k) in
the SAF case where wi(k) and vi(k) hold the norm bounded
conditions wT

i (k)wi(k) ≤Wi and vTi (k)vi(k) ≤ Vi.
Proof: Consider the LMI condition: Ψi ≤ 0, where

Ψi := (Cei(k) + Fvi(k))
T
Πi (Cei(k) + Fvi(k)) − 1 −

κ1
(

eTi (k)ei(k)− µ1µ2(Wi + Vi)
)

− κ2
(

vTi (k)vi(k)− Vi
)

.
By using the preliminaries eTi (k)ei(k) ≤ µ1µ2(Wi + Vi),
vTi (k)vi(k) ≤ Vi, and S-procedure, Ψi ≤ 0 is equivalent to
the condition in (17); thus, the proof is completed.
From (14), we can represent the stealthy attack δi(k) as:
δi(k) = Γ+ (ri(k)− Cei(k)− Evi(k)), where Γ+ denotes
the Moore–Penrose inverse of Γ. By using it, the augmented
DLTI error dynamics (8) can be reformulated as follows:

ζ(k + 1) = B1ζ(k) +A2w(k) + B2v(k) + B3r(k), (18)

where r(k) = [rT1 (k), · · · , rTN (k)]T , U = (Ip − ΓΓ+),

B1 =

[

IN ⊗A+ L̄⊗BKc −L̄⊗BKc

0nN×nN IN ⊗ (A− LoUC)

]

,

B2 =

[

0nN×v̄N

−IN ⊗ Lo (F − ΓΓ+F )

]

,B3 =

[

0nN×pN

−IN ⊗ LoΓΓ
+

]

,

Remark 4: We substitute the residual ri(k) for the stealthy
attack δi(k), resulting in the dynamics (18) with the bounded
inputs w(k), v(k) and r(k). The stealthy attack δi(k) in
(14) can lead to the significant estimation error ei(k) while
generating the output yi(k) close to the estimated output
ŷi(k). This implies that the stealthy attack δi(k) can be
executed in a way that evades the detection. Note that the
method does not require a specific sequence of the residual
ri(k) and the estimated output ŷi(k).

B. Risk Assessment via Lyapunov-based Reachability

This subsection presents an LMI-based risk assessment
method for the leader-follower MAS (1) and (2) under
cyberattacks that uses LMIs and Lyapunov function-based
reachability. The following definition and lemma are em-
ployed for deriving the main theorem in this subsection:

Definition 1 (Reachable set [13]): Consider the DLTI
system as: x(k + 1) = Āx(k) +

∑M
i=1 B̄idi(k), where

x(k) ∈ R
n is the system state disturbed by di(k) ∈ R

m

where dTi (k)D̄idi(k) ≤ 1 for i ∈ IM (M is the number
of perturbations); and Ā ∈ R

n×n, and B̄i ∈ R
n×m are the

system and perturbation matrices. The reachable set Rx
k at

time step k, from the initial state x(1), is the set of all states
reachable in k time steps, i.e., Rx

k := {x(k) ∈ R
n|x(k+1) =

Āx(k) +∑M
i=1 B̄idi(k), and dTi (k)D̄idi(k) ≤ 1, ∀i ∈ IM}.

Remark 5: Referring to Definition 1, we can consider the
reachable set Rζ

k for (18), where Rζ
k is the set of all states

ζ(k) impacted by norm-bounded w(k), v(k), and r(k).
Lemma 4 ([13]): For a given a ∈ (0, 1), if there exist a

design parameter ai ∈ (0, 1) for i ∈ IM , and a function V :
R

n → R > 0 satisfying the following inequality: V (x(k +
1)) − aV (x(k)) − ∑M

i=1 (1− ai) d
T
i (k)D̄idi(k) ≤ 0 with

∑M
i=1 ai ≥ a and dTi (k)D̄idi(k) ≤ 1 for i ∈ IM , then,

V (x(k)) ≤ ak−1V (x(1))+
(

(M − a)(1− ak−1)
)

/ (1− a),
and limk→∞ V (x(k)) =

(

(M − a)(1− ak−1)
)

/ (1− a).
The following theorem provides the ellipsoidal over-

approximation of Rζ
k computed from the Lyapunov function.

Theorem 3: Consider the compromised augmented DLTI
system (18), and its reachable set Rζ

k. For a given design
parameter a ∈ (0, 1), if there exist constants a1, a2, a3 ∈ R

+
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and a positive definite matrix P = PT ∈ R
2nN×2nN derived

from the following LMI-based optimization:

min
P,a1,a2,a3

− log det (P)

s.t.





aP ∗ ∗
0(p+2N)×2nN W ∗

PB1 PD P



 ≥ 0, P > 0,

a1, a2, a3 ∈ (0, 1) , a1 + a2 + a3 ≥ a,

(19)

where W = diag [(1− a1)C1, (1− a2)C2, (1− a3)C3] ∈
R

(p+2)N×(p+2)N , C1 = diag
[

W−1
1 /N, · · · ,W−1

N /N
]

∈
R

N×N , C2 = diag
[

V −1
1 /N, · · · , V −1

N /N
]

∈ R
N×N ,

C3 = diag [Π1/N, · · · ,ΠN/N ] ∈ R
pN×pN , and D =

[A2 B2 B3] ∈ R
2nN×(p+2)N ; then, we have Rζ

k ⊆ Yζ
k :=

{ζ(k) ∈ R
2nN |ζT (k)Pζ(k) ≤ Ȳ ζ

k }, where the upper bound
Ȳ ζ
k := ak−1ζT (1)Pζ(k) +

(

(3− a)(1− ak−1)
)

/ (1− a).
Proof: Consider a Lyapunov function as: V (ζ(k)) =

ζT (k)Pζ(k), where P = PT ∈ R
2nN×2nN . By exploit-

ing Lemma 4, suppose that V (ζ(k + 1)) − aV (ζ(k)) −
(1 − a1)w

T (k)C1w(k) − (1 − a2)v
T (k)C2v(k) − (1 −

a3)r
T (k)C3r(k) ≤ 0 is held. Substituting ζ(k) from (18)

into this inequality, we can obtain: pT (k)Q̄p(k) ≥ 0, where
p(k) =

[

ζT (k), wT (k), vT (k), rT (k)
]T

, and we have

Q̄ =

[

aP − BT
1 PB1 ∗

−DTPB1 W −DTPD

]

. (20)

By applying the Schur complement to (20), Q̄ > 0 is equiv-
alent to the condition described in (19). Finally, we obtain
ζT (k)Pζ(k) ≤ Ȳ ζ

k and the compromised state trajectories
of ζ(k) from (18) are encapsulated in the Yζ

k .
Remark 6: Theorem 3 can provide the ellipsoidal over-

approximated reachable set Yζ
k , which contains the reachable

set of q(k) and e(k) for all N agents. To obtain an individual
reachable set for agent i, we can apply ellipsoidal projec-
tion into the matrix P (see Corollary 2 from [13]). Given
ellipsoidal over-approximated reachable sets for individual
agents, we can apply two geometric operations: (a) a union;
(b) an intersection. These operations can measure potential
risks associated with an agent and the entire system. Due to
page constraints, we refer readers to Chapter 3.7 of [16] for
more technical details of the geometric operations.

V. ILLUSTRATIVE EXAMPLE

In this section, the proposed method is applied to a leader-
follower MAS performing the formation control of three
agents (e.g., UAVs) whose system matrices are given as:

A =









1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1









, B =









∆t2

2 0
∆t 0

0 ∆t2

2
0 ∆t









, C = I4,

E = 0.1I4, F = I4, Γ = [0.25, 0.25,−0.53,−0.77]T .

The total simulation time is 30s, and ∆t = 0.5s. xi(k) ,

[pTXi(k), v
T
Xi(k), p

T
Y i(k), v

T
Y i(k)]

T ∈ R
4 is the state of agent

i, where xi(k) contains the position/velocity in the X-axis/Y-
axis direction. In this example. all agents are connected, i.e.,

aij = 1 for i 6= j, and each agent is connected to the virtual
leader, where Λ = IN ∈ R

N×N . Figure. 1 (left) depicts
the trajectories of the agents tracking the leader’s reference
trajectory and maintaining the formation in the attack-free
case. Now, we implement stealthy attacks in 1000 Monte-
Carlo simulations. The attack sequences linearly increase
over 30 seconds by following δi(k) = U([−0.07, 0.07])×k,
where U([a, b]) gives a random number from the uniform
distribution over [a, b] (a, b ∈ R) and k denotes the discrete
time step where k ∈ [0, 60] (k ∈ Z

+). Note that all attack
sequences satisfy the stealthiness condition, i.e., di(k) ≤ 1.
Hence, the potential risk against stealthy cyberattacks should
be quantified to enhance safety proactively using reachable
sets and geometric operations on the sets.

While the MAS can accomplish the mission without safety
violations in the attack-free case as shown in Fig. 1 (mid-
dle), stealthy cyberattacks may lead to collisions between
agents and obstacles as depicted in Fig. 1 (right). In detail,
the orange, green, and purple ellipses denote the projected
ellipsoidal over-approximated reachable sets of each agent,
respectively. These ellipses encapsulate all trajectories from
Monte-Carlo simulations at the given time instances. The
blue and red ellipses show the union and intersections of the
ellipses of individual agents. It is noted that, at t = 21s, the
size of blue ellipse in the stealthy-attack case is 66.95m2,
which is 2.5 times larger than that of the attack-free case.
For both time instances at t = 12.5s and t = 21s, the blue
ellipses in the stealthy-attack case overlap with the obstacles,
which implies that the collective behaviors of the MAS can
violate the safe conditions. This fact can also be validated
by Fig. 2 (right) in that the minimum distances between
obstacles and these blue ellipses become zero, i.e., potential
collisions. In Fig. 2, the solid lines denote the distance
between the union of reachable sets and the obstacles in
the attack-free case, while the dotted lines denote that in
the stealthy attack case. The red ellipses in Fig. 1 (right)
denote the intersections of the projected ellipsoidal over-
approximated reachable sets of the agents. Figure. 2 (left)
shows that, in the stealthy attack case, the sum of the areas
of these red ellipses grows over time, which implies a higher
probability of collisions between agents. The results shown
in Fig. 2 suggest that increasing the inter-agent distance can
prevent collisions between the agents. Yet, this may increase
the chance of safety violations from other perspectives, i.e.,
collisions between the union and the obstacles. Our proposed
method will be extended to the trade-off study to minimize
the risk caused by stealthy cyberattacks.

VI. CONCLUSIONS

In this letter, we developed an LMI-based risk assessment
method for the leader-follower MAS under stealthy cyberat-
tacks. Our proposed method employed reachability analysis
based on a Lyapunov function and computed ellipsoidal over-
approximated reachable sets. We showed how the obtained
reachable sets could be utilized to evaluate the potential risks
at the agent and system levels. Finally, the efficacy of our
method was demonstrated via an illustrative example.
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Fig. 1: Formation control of a leader-follower MAS in the attack-free case (left); the ellipsoidal over-approximated reachable
sets computed at t = 12.5s and t = 21s in the attack-free case (middle); the ellipsoidal over-approximated reachable sets
computed at t = 12.5s and t = 21s in the stealthy-attack case (right).

Fig. 2: Impact of stealthy attacks over time: the summation
of the ellipsoidal intersections (left); the minimum distance
between obstacles and the ellipsoidal union (right).
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