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Abstract— A learning-based safety filter is developed for
discrete-time linear time-invariant systems with unknown mod-
els subject to Gaussian noises with unknown covariance. Safety
is characterized using polytopic constraints on the states and
control inputs. The empirically learned model and process noise
covariance with their confidence bounds are used to construct a
robust optimization problem for minimally modifying nominal
control actions to ensure safety with high probability. The
optimization problem relies on tightening the original safety
constraints. The magnitude of the tightening is larger at the
beginning since there is little information to construct reliable
models, but shrinks with time as more data becomes available.

I. INTRODUCTION

It is often desired to ensure safety of a controlled system.
Safety can be defined as maintaining the system’s states
and control inputs inside a well-defined set, referred to
as safety set. For instance, robots must be maneuvered in
complicated previously-unseen environments without colli-
sions, and phases and voltages in power system must be
maintained within pre-defined bands to avoid blackouts.
Controllers often ensure safety using reliable models of the
system and environment. Models are required to extrapolate
the behaviour of the system given the current state and the
designed input sequences. Models are however subject to
unknown uncertainties or might even be entirely unknown.
Irrespective of the accuracy of the model in laboratory
conditions, unknown or varying environmental factors, such
as slippage and wind, can render the model uncertain.
When facing uncertainties, we can consider their worst-case
magnitude to ensure safety robustly. However, robust safety
can result in conservative controllers. Alternatively, we can
utilize real-time data to “learn” representations or models
of the uncertainty. Thus we must ensure safety based on
inaccurate time-varying models that fit the data on the fly.
This is the topic of the current paper.

In this paper, a learning-based safety filter is developed
for systems with unknown discrete-time linear time-invariant
dynamics subject to a zero-mean Gaussian process noise
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Fig. 1. Safety filter F ensures satisfaction of state and control constraints
for linear discrete-time system P with known model subject to zero-mean
Gaussian uncertainty with unknown covariance. The safety filter minimally
modifies the control input from nominal controller C via an optimization
program to guarantee that the states in the next time step remain in the safe
set with high probability.

with unknown covariance. The safety set is characterized
using polytopic constraints on the states and control inputs.
A block diagram of the closed-loop system using the safety
filter is illustrated in Figure 1. The safety filter relies on
two learning-based components: regression for learning the
system model and empirical covariance of the process noise.
The learned model and empirical process noise covariance,
along with their confidence bounds, are used to construct
a robust optimization problem for minimally modifying (in
terms of a distance metric) nominal control actions to ensure
safety with high probability. The nominal control can be gen-
erated by standard controllers, such as proportional-integral-
derivative controllers, or by learning-based controllers, such
as reinforcement learning. Finally, we propose directly op-
timizing the closed-loop performance by solving a model
predictive control problem with tightened constraints instead
of projecting nominal control inputs into the set of control
signals to ensure safety. Similar to the projection-based
safety filter, the magnitude of constraint tightening, which
is dictated by the confidence in the learned models, is larger
at the beginning since there is little information to construct
reliable models, but shrinks with time as more data becomes
available. Note that individual elements of this paper, such
as regularized least-squares learning of the model, empirical
estimation of the covariance matrices of the process noise,
and robust optimization for modifying control inputs, are tra-
ditionally investigated separately in the literature. The main
contributions of this paper are to combine these methods to
develop a rigorous analysis of learning-based safety filters for
unknown systems, and to develop computationally-efficient
safety filters that are missing from the literature.

Safe learning-based control, where the system model and
uncertainties are unknown and must be estimated, has gained
much attention recently [1]–[5]. A popular approach is to
learn models using Gaussian processes [2]–[4]. Also, there
are many definitions for safety in reinforcement learning [6],
but the approach of this paper relates more to reinforcement
learning with constraints [2], [7]–[9]. However, constraints
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in this paper are stage-wise as opposed to constraints on ac-
cumulated penalties over the planning horizon in constrained
reinforcement learning. The above-mentioned studies share
a common assumption that the learning of the models and
uncertainties are done prior to control or that we can alternate
between learning and control with batch learning [1]–[5]. In
contrast, our main interest is to perform learning and control
simultaneously while new state measurements arrive, and to
maintain safety based on time-varying inaccurate models.

There are few studies that consider safety in simultaneous
learning and control. The work of [10] uses confidence
of learned Gaussian processes when modelling non-linear
systems and environments to make decisions regarding safety
based on the number of measurements used for learning.
Although powerful, that work does not provide compu-
tationally efficient methods for ensuring safety, as their
framework relies on Lyapunov functions, which can be
difficult to find or compute for general systems. Another
relevant study is [11], which proposes computationally-
efficient methods for projecting control signals into safe sets
by computing the confidence of learning additive Gaussian
models. However, that work only considers learning stochas-
tic disturbances caused by the environment and assumes
that the underlying model of the system is known. Most
recently, a single-trajectory learning-based feedback scheme
that ensures safety was proposed in [12]. In contrast to
that study, the current paper does not focus on computing
feedback functions but rather emphasizes constraint tighten-
ing for computing control actions using optimization prob-
lems. The approach of this paper results in a less complex
for optimization problem; however, it requires sequentially
solving optimization problems, which can be only done if
only there is dedicated on-board computational capability.
Similarly, learning-based optimal control over an infinite
horizon was considered in [13]. The emphasize in that
paper was also on computing linear feedback policies using
semi-definite programming. Safe learning for stochastic jump
linear systems using semi-definite programming was consid-
ered in [14]. A myopic safety-constrained optimization was
presented for water distribution networks in [15]. However,
in that paper, constraint shrinking in response to learned
model uncertainty was not considered. Learning-based model
predictive control with safety constraints have been proposed
in [16]–[18]. These studies prove recursive feasibility and
stability. However, computational issues, such as relying
on polytopic sets for learning the model (with increasing
numbers of polytopes or vertices with time), development
of robust positively invariant sets, and requiring potentially
high-dimensional parametric feedback functions, can stifle
their implementation in practice.

The rest of the paper is organized as follows. First, the
mathematical problem formulation is presented in Section II.
Section III overviews confidence bounds for regularized
least-squares learning of the system model. The data-driven
safety filter is presented and analyzed in Section IV. In
Section V, we reduce the conservatism of the safety filter
by using the empirical covariance of the process noise in

addition to learning the model parameters. Finally, Sec-
tion VI concludes the paper and presents directions for future
research.

Notation: Sets are denoted by calligraphic letters, such as
A. Matrices are denoted by capital Roman letters, such as A.
The i-th row of A is denoted by Ai. The entry in the i-th row
and the j-th column of matrix A is aij . Scalars and vectors
are denoted by lowercase Roman and Greek letters, such as
x and θ. Similarly, the i-th entry of vector x is denoted by
xi. Let Sn

++ and Sn
+ refer to the sets of symmetric positive

definite and positive semi-definite matrices in Rn×n. In what
follows, A ≻ B and A ⪰ B, respectively, signify that A −
B ∈ Sn

++ and A − B ∈ Sn
+. The smallest and the largest

singular values of matrix Y are, respectively, denoted by
σmin(Y ) and σmax(Y ). Vector ei denotes the column-vector
with all entries zero except the i-th entry, which is equal
to one. For any x ∈ Rn, ∥x∥ denotes its Euclidean norm,
i.e., ∥x∥ = (

∑n
i=1 x

2
i )

1/2. For any A ∈ Rn×m, ∥A∥ denotes
the induced matrix norm ∥A∥ = sup∥x∥=1 ∥Ax∥ and ∥A∥F
denotes the Frobenius norm ∥A∥F = (

∑n
i=1

∑m
j=1 a

2
ij)

1/2.
For any set A ⊆ Rn, rad(A) is its radius, i.e., rad(A) =
supa∈A ∥a∥. For any signal x[·], x[k0 : k1] with k1 ≥ k0
denotes the sequence (x[k0], x[k0+1], . . . , x[k1]). For a, b ∈
Rn, a ≤ b signifies that the inequality holds entry-wise.

II. PROBLEM FORMULATION

Consider a linear time-invariant discrete-time system:

x[k + 1] = Ax[k] +Bu[k] + w[k], (1)

where x[k] ∈ Rn is the state, u[k] ∈ Rm is the control
input, and w[k] ∈ Rn is the process noise. The process noise
is composed of a sequence of independently and identically
distributed (i.i.d.) zero-mean Gaussian random variables with
covariance W ∈ Sn

+. Model parameters A, B, and W are
unknown and must be learned. Safety is encoded by time-
varying polytopic constraints:

x[k] ∈ Xk := {x |H[k]x ≤ h[k]}. (2)

The control action is also constrained by

u[k] ∈ U := {u |Eu ≤ f}. (3)

We make the following standing assumptions on covariance
of the process noise, magnitude of the model parameters,
and radii of the control and state constraint sets.

Assumption 1: There exists known constants:
a: r > 0 such that W ⪯ rI .
b: s > 0 such that ∥[A B ]∥F ≤ s.
c: d > 0 such that rad(Xk) + rad(U) ≤ d.

When controlling a system with unknown model, the
uncertainty of the learned model gets multiplied by the
states and control inputs at the current time to determine
the uncertainty of the state in the next time step; see (5)
and (7) below. Therefore, if the state and the control input
are unbounded, the uncertainty of the state after making a
decision can become large, which can complicate ensuring
safety. Assumption 1.c ensures that the state and the control
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input are bounded so that we can avoid this problem. In
practice, this assumption can be relaxed. At the beginning
when the uncertainty of the learned model is high, we can
keep the states and the control actions restricted to small
sets but, as our confidence in the learned model improves,
we relax this assumption by gradually increasing the radii
of the sets. Subsection IV-B presents another approach that
partially relaxes Assumption 1.c and removes the need for
requiring that the states remain within a bounded set with a
priori known radius for all times.

Problem 1: At k ∈ N ∪ {0}, given state measurements
x[0], . . . , x[k], find a procedure to compute a modified con-
trol input u[k] ∈ U based on a nominal control input ū[k] by
minimizing d(u[k], ū[k]), where d(., .) is a distance metric1,
subject to potentially tightened state and control constraints
to ensure the state in the next time step remains safe, i.e.,
x[k + 1] ∈ Xk+1, with high probability.

III. PRELIMINARY RESULTS

We use (regularized) least-squares to learn the model:

(Â[k], B̂[k])∈argmin
(Ā,B̄)

[
k−1∑
t=0

∥x[t+ 1]−(Āx[t]+B̄u[t])∥2

+ λ(∥Ā∥2F + ∥B̄∥2F )

]
, (4)

where λ > 0 is the regularization weight. Before we gather
enough measurements, i.e., if k < n(n + m), the least-
squares problem (4) admits infinitely-many solutions without
regularization, i.e., if λ = 0. Regularization ensures that the
least-squares problem (4) is strictly convex with a unique
solution even in the absence of enough measurements. This
also enables computing the confidence bounds for the learned
model at all times.

To analyze the safety filter, we need to better understand
the moments of the random variable:

v[k′, k] := (A− Â[k])x[k′] + (B−B̂[k])u[k′],

∀k′ ≥ k ≥ 0. (5)

Note that we can rewrite the system dynamics in (1) as

x[k′ + 1] = Â[k]x[k′] + B̂[k]u[k′] + v[k′, k] + w[k′]. (6)

Therefore, the random variable v[k′, k] captures the error of
forecasting the state at time k′+1, i.e., x[k′+1], by using the
learned model based on the measurements up to time k, i.e.,
(Â[k], B̂[k]). When k′ = k, with slight abuse of notation,
we write

v[k] := v[k, k] = (A− Â[k])x[k] + (B − B̂[k])u[k]. (7)

Proposition 1: If x[k′] ∈ Xk′ and u[k′] ∈ U , then

P {∥v[k′, k]∥ ≤ ζnβk(δ/n)} ≥ 1− δ, ∀k′ ≥ k ≥ 0,

where ζ := d/
√

σmin(V [k]) and

βk(δ) := r
√

2 log
(
det(V [k])1/2/(λn/2δ)

)
+ λ1/2s (8)

1An example of the distance metric is d(x, x′) = ∥x− x′∥.

with V [k] := λI + V̂ [k] and

V̂ [k] :=


x[0]⊤ u[0]⊤

x[1]⊤ u[1]⊤

...
...

x[k−1]⊤ u[k−1]⊤


⊤

x[0]⊤ u[0]⊤

x[1]⊤ u[1]⊤

...
...

x[k−1]⊤ u[k−1]⊤

.
Proof: See [19, Appendix II].

Before presenting the following result, we need to define
persistence of excitation, which is a common assumption in
system identification and adaptive control [20].

Definition 1 (Persistence of Excitation): The system in
(1) is persistently excited if there exists constants γ ≥ α > 0
and an integer T0 > 0 such that, ∀k ∈ N ∪ {0},

αI ⪯


k+T0−1∑

t=k

x[t]x[t]⊤
k+T0−1∑

t=k

x[t]u[t]⊤

k+T0−1∑
t=k

u[t]x[t]⊤
k+T0−1∑

t=k

u[t]u[t]⊤

 ⪯ γI.

Proposition 2: If x[k′], x[k′′] ∈ Xk′ , u[k′], u[k′′] ∈ U , and
the persistence of excitation holds, then

P
{√

∥v[k′, k]∥ ∥v[k′′, k]∥ ≤ ζ ′knβk(δ/n)
}
≥1− δ,

∀k′ ≥ k ≥ 0,

where ζ ′k := d/
√
⌊k/T0⌋α+ λ.

Proof: See [19, Appendix III].
Proposition 3: Assume that n ≥ 2. If x[k′], x[k′′] ∈ Xk′ ,

u[k′], u[k′′] ∈ U , and the persistence of excitation holds, then

E{∥v[k′, k]∥2} ≤ L2(k), ∀k′, k′′ ≥ k ≥ 0

E{∥v[k′, k]∥2∥v[k′′, k]∥2} ≤ L4(k), ∀k′, k′′ ≥ k ≥ 0

where

L2(k) :=
λs2d2n2

⌊k/T0⌋α+ λ

+
((⌊k/T0⌋+ 1)γ + λ)

λ

rd2n
7
2 (rn

1
2 +

√
πλs)

(⌊k/T0⌋α+ λ)
,

L4(k) :=
λ2s4d4n4

(⌊k/T0⌋α+ λ)2

+
((⌊k/T0⌋+1)γ+λ)

λ

8rd4n
11
2 (r3n

3
2 +

√
πλ

3
2 s3)

(⌊k/T0⌋α+λ)2
.

Evidently, L2(k) = O(1) and L4(k) = O(1/k).
Proof: See [19, Appendix IV].

With these preliminary results in hand, we are ready to
investigate the effectiveness of the safety filter.

IV. DATA-DRIVEN SAFETY FILTER

In this paper, we modify a nominal control input ū[k]
at each iteration to ensure safety. Projection of the control
action ū[k] to a safe set can be done by solving:

u[k] ∈ argmin
u∈U

d(u, ū[k]), (9a)

s.t. H[k + 1](Â[k]x[k] + B̂[k]u)

≤ h[k + 1]− ē[k + 1], (9b)

1048



where

ēi[k + 1] =

 dnβk

(
δ

2n

)
√
σmin(V [k])

+

√
2rn

δ

 ∥Hi[k+1]⊤∥, (10)

and δ ∈ (0, 1) is a design parameter determining the
probability of violating the safety constraints, w ∈ Rn is an
uncertainty term linked with the process noise, and v ∈ Rn

is an uncertainty term linked with the (in)accuracy of the
learned model.

Theorem 1: Assume that problem (9) is feasible. Then,
by implementing the control action u[k] extracted from (9),
P{x[k + 1] ∈ Xk+1} ≥ 1− δ.

Proof: See Appendix II.
The constraint-tightening term in (9) is composed of two

independent terms: one is caused by the uncertainty of the
learned model and the other stems from the process noise.
We can show that the constraint-tightening term due to
the uncertainty of the learned model goes to zero under
persistence of excitation.

A. Persistence of Excitation for Safety Filter

Persistence of excitation is a common assumption in
system identification and adaptive control, which ensures that
the error of learning the model converges to zero almost
surely as more samples are gathered. This is done by exciting
the system along all directions.

Proposition 4: Assume that ∥Hi[k + 1]⊤∥ is uniformly
bounded and system (1) is persistently excited. Then,

lim
k→∞

(dn/
√
σmin(V [k]))βk (δ/(2n)) ∥Hi[k + 1]⊤∥ = 0.

Proof: See [19, Appendix VI].
Proposition 4 shows that, assuming persistence of exci-

tation, the effect of the uncertainty caused by learning the
model in the constraint tightening of (10) tends to zero as
more measurements are gathered. Therefore, in the large k
regime, we can solve (9) with ēi[k+ 1] =

√
2rn/δ∥Hi[k+

1]⊤∥. The remaining constraint tightening term in this opti-
mization problem is caused by the process noise. Note that,
because we have not attempted at learning the statistics of the
process noise, we consider the worst-case scenario in light
of Assumption 1.a. After recovering the model parameters,
the techniques of [11] can be used to learn the statistics of
the noise and also shrink this term. This is formalized in
Section V.

B. Conservatism in Constraint Tightening

In (9), the worst-case magnitude of the uncertainty term
v, linked to the inaccuracy of the learned model, scales
quadratically with d, which is an upper bound on the
radii of Xk and U . This is because the model uncertainty
gets multiplied by the state and the control input, and
can result in conservative behaviour when Xk and U are
large sets. Furthermore, according to Assumption 1.c, we
need to assume existence of a bounded set to which x[k]
belongs for all k. These factors can combine to increase

the conservatism of the projection-based approach. By ex-
amining the steps of the proof of Proposition 1, which is
used to prove Theorem 1, we can show that P{∥v[k]∥2 ≤
n2(∥x[k]∥2 + rad(U)2)β2

k(δ/(2n))/σmin(V [k])} ≥ 1− δ/2.
Therefore, we can relax (9) to

u[k]∈ argmin
u∈U

d(u, ū[k]), (11a)

s.t. H[k + 1](Â[k]x[k] + B̂[k]u)

≤h[k + 1]− ê[k + 1], (11b)

where

êi[k + 1] =

(
n
√
∥x[k]∥2 + rad(U)2√

σmin(V [k])
βk

(
δ

2n

)

+

√
2rn

δ

)
∥Hi[k + 1]⊤∥. (12)

Similarly, it can be proved that, by implementing the control
action u[k] extracted from the optimization problem (11),
if feasible, x[k + 1] is safe with probability of at least
1− δ. This clearly yields an improved performance because
∥x[k]∥2+rad(U)2 ≤ (∥x[k]∥+rad(U))2 ≤ d2 for all k due
to Assumption 1.c. Furthermore, we do not need to assume
a priori knowledge of supk≥0 ∥x[k]∥.

C. Combining Controller and Safety Filter

Instead of projecting nominal control inputs into the set of
control signals that ensure the safety of the system, we can
directly optimize the closed-loop performance by solving:

argmin
ū[k :k+T−1]
x̄[k+1:k+T ]

k+T−1∑
t=k

ū[t]⊤Rtū[t]+

k+T∑
t=k+1

(x̄[t]⊤Qtx̄[t]+q⊤t x̄[t]),

(13a)
s.t. ū[k :k+T−1]∈UT (13b)

x̄[t+ 1] = Â[t]x̄[t] + B̂[t]ū[t],

∀t ∈ {k, . . . , k + T − 1}, (13c)
x̄[k] = x[k], (13d)
H[k+1]x̄[k+1]≤h[k+1]−ē[k+1], (13e)
x̄[t] ∈ Xt,∀t ∈ {k + 2, . . . , k + T}, (13f)

where T ∈ N denotes the decision making horizon, UT

denotes the T -fold Cartesian product of the set U , ē[k + 1]
is defined in (10), and Rt ∈ Sm

++, Qt ∈ Sn
+, and qt ∈ Rn

are the parameters of the cost function. This optimization
problem is similar to the one solved in model predictive
control [21], with the exception that the safety constraints
on the state for the next time step, i.e., x[k+1], is tightened
to ensure safety despite modelling uncertainty and process
noise. Note that other safety constraints can be tightened fol-
lowing a similar line of reasoning; however, the conservatism
increases for them as new measurements are not available
or taken into consideration for shrinking the magnitude of
the constraint tightening. Assuming that problem (13) is
feasible and, by implementing the control action u[k] from
the solution u[k : k+H−1] of (13), x[k + 1] is safe with
probability of at least 1− δ.
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One positive aspect of the model predictive control for-
mulation, as opposed to instantaneous or myopic projection
of nominal control actions to ensure safety, is that the
optimization problem is more likely to remain feasible. For
instance, in obstacle avoidance, model predictive control
looks ahead to avoid future states that can cause infeasi-
bility down the track. However, this comes at the cost of
an increased computational burden because of the longer
horizon and increased dimension. An important direction
for future research is to establish recursive feasibility of
the proposed learning-based model predictive control, i.e.,
establishing conditions under which, if (13) is feasible at time
k, it is also feasible at time k + 1. To be able to establish
recursive feasibility, we need to prove that the uncertainty
sets for the model matrices and the covariance matrix are
recursively contained, i.e., access to more measurements does
not increase uncertainty in some directions. Furthermore, we
must search over the set of feedback policies rather than
control inputs. Given these properties in addition to a robust
positively invariant safe set, we can use standard recursive
feasibility arguments from robust model predictive control.
These requirements however can limit the computationally-
friendly nature of the constraint-tightening projection-based
approach in this paper.

V. LEARNING OF PROCESS NOISE COVARIANCE

In this section, the covariance of the process noise is
estimated empirically to reduce the conservatism of working
with only the upper bound in Assumption 1.a. In particular,
we use the empirical covariance of the process noise:

Ŵ [k, k0] =
1

k − k0

k∑
t=k0+1

ŵ[t|k0]ŵ[t|k0]⊤,

where ŵ[k, k0] := x[k + 1] − (Â[k0]x[k] + B̂[k0]u[k]). For
all k > k0 ≥ 0, we ensure safety by projecting the control
action ū[k] using

u[k] ∈ argmin
u∈U

d(u, ū[k]), (14a)

s.t. H[k + 1](Â[k0]x[k] + B̂[k0]u)

≤ h[k + 1]− ẽ[k + 1], (14b)

where

ẽi[k + 1] =
dn√

σmin(V [k])
βk

(
δ

3n

)
∥Hi[k + 1]⊤∥

+

√
3n

δ

∥∥∥Π1/2
k,k0

Hi[k + 1]⊤
∥∥∥ , (15)

and

Π−1
k,k0

:=Ŵ [k − 1, k0]

+

√
3

δ

(
2L4(k0)2+

8rL2(k0)

k − k0
+
2r2n(n+1)

k − k0

)
I.

Theorem 2: Assume that problem (14) is feasible and n ≥
2. Then, by implementing the control action u[k] extracted
from (14), P{x[k + 1] ∈ Xk+1} ≥ 1− δ.

Proof: See [19, Appendix VII].
Remark 1: The need for the assumption n ≥ 2 in Theo-

rem 2 arises from an inequality (i.e., δn/2 ≤ δ for δ ∈ (0, 1)
and n ≥ 2) used to prove Proposition 3. Although this
assumption seems to be technical, we have not been able
to relax it.

Remark 2: By increasing k0, L4(k0) decreases, which can
potentially reduce the constraint tightening term. This is
because, by increasing k0, the accuracy of the learned model
improves. However, by increasing k0, k − k0 gets smaller,
which can potentially increase the constraint tightening. This
trade-off stems from the fact that only k0 measurements are
used to learn the model parameters (Â[k0], B̂[k0]) (so by
increasing k0 the learned model becomes more accurate)
while the remaining k − k0 measurements are used to em-
pirically estimate the covariance of the process noise (so by
increasing k0 the empirical covariance becomes less reliable).
This fundamental trade-off cannot be avoided unless the
entire set of measurements are used to simultaneously learn
the model parameters and estimate the covariance of the
process noise. However, this approach complicates the proofs
significantly and worsens the tightness of the bounds by
generating extra cross-correlation terms. This is a trade-off
that must be considered when choosing k0.

VI. CONCLUSIONS

We considered safe learning-based control for discrete-
time linear time-invariant dynamical systems when the sys-
tem model and the process noise covariance are unknown
but bounded. We used regularized least-squares estimation to
learn the model online and used the empirical covariance of
the noise. We relied on the confidence bounds of the learned
system model and the empirical process noise covariance to
modify the control inputs via a robust optimization problem
with time-varying safety constraints. We reformulated the
problem in a computationally-friendly optimization problem
for ensuring safety based on constraint tightening. Future
work can focus on noisy output measurements and learning
nonlinear systems using Gaussian processes.
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APPENDIX I
USEFUL LEMMA

Lemma 1: For W ⪰ 0 and d ≥ 0, {u | a⊤u + b⊤w ≤
c,∀w : w⊤Ww ≤ d} = {u | a⊤u ≤ c−

√
d∥W−1/2b∥}.

Proof: With the change of variables w̄ = W 1/2w
and b̄ = W−1/2b, we have {u | a⊤u + b⊤w ≤ c,∀w :
w⊤Ww ≤ d} = {u | a⊤u + b̄⊤w̄ ≤ c,∀w̄ : w̄⊤w̄ ≤ d}.
Then, following the approach of [22, Example 1.3.3], we can
obtain {u | a⊤u+b̄⊤w̄ ≤ c,∀w̄ : w̄⊤w̄ ≤ d} = {u |

√
d∥b̄∥ ≤

c− a⊤u}.

APPENDIX II
PROOF OF THEOREM 1

We first show that the projection of the control action ū[k]
to a safe set can be done by solving:

u[k] ∈ argmin
u∈U

d(u, ū[k]), (16a)

s.t. H[k + 1](Â[k]x[k] + B̂[k]u+ v + w)

≤ h[k + 1],

∀w : w⊤w ≤ 2rn

δ
,

∀v : v⊤v ≤ n2d2

σmin(V [k])
β2
k

(
δ

2n

)
, (16b)

Note that x[k + 1] = Âx[k] + B̂u[k] + v[k] + w[k], where
v[k] = (A− Â[k])x[k]+ (B− B̂[k])u[k]. Therefore, proving
the safety of the projected control action in (16) follows from
bounding the noise and perturbation terms v[k] and w[k] with
high probability. Proposition 1 implies that

P
{
∥v[k]∥2 ≤ ζ2n2β2

k

(
δ

2n

)}
=P
{
∥v[k]∥ ≤ ζnβk

(
δ

2n

)}
≥1− δ

2
,

where ζ = d/
√

σmin(V [k]). For the process noise, we have

P{w[k]⊤(rI)−1w[k] ≤ ε} ≥P{w[k]⊤W−1w[k] ≤ ε}

≥1− E{w[k]⊤W−1w[k]}
ε

=1− n

ε
,

where the first inequality follows from Assumption 1.a
and the second inequality follows from an application
of Markov’s inequality for scalar random variables [23,
§ 2.1]. Selecting ε = (2n)/δ gives P{w[k]⊤(rI)−1w[k] ≤
(2n)/δ} ≥ 1− δ/2. Finally, we note that

P
{
w[k]⊤w[k] ≤ 2rn

δ

∧
∥v[k]∥ ≤ ζnβk

(
δ

2n

)}
= 1−P

{
w[k]⊤w[k] >

2rn

δ

∨
∥v[k]∥>ζnβk

(
δ

2n

)}
≥ 1−P

{
w[k]⊤w[k] >

2rn

δ

}
−P

{
∥v[k]∥ > ζnβk

(
δ

2n

)}
= 1−δ,

where the inequality follows from the union bound.
Finally, Lemma 1 can be used to eliminate v in (16) to

obtain

u[k] ∈ argmin
u∈U

d(u, ū[k]),

s.t. H[k+1](Â[k]x[k] + B̂[k]u+ w) ≤ h[k+1]

− e[k+1], ∀w : w⊤w ≤ 2rn

δ
,

where ei[k + 1] = (dn/
√
σmin(V [k]))βk(δ/(2n))∥Hi[k +

1]⊤∥. An additional application of Lemma 1 to eliminate w
concludes the proof.
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