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Abstract— We consider a 1D semilinear reaction-diffusion
system with controlled heat flux at one of the boundaries. We
design a finite-dimensional state-feedback controller guarantee-
ing that a given quadratic cost does not exceed a prescribed
value for all nonlinearities with a predefined Lipschitz constant.
To this end, we perform modal decomposition and truncate the
highly damped (residue) modes. To deal with the nonlinearity
that couples the residue and dominating modes, we combine the
direct Lyapunov approach with the S-procedure and Parseval’s
identity. The truncation may lead to spillover: the ignored
modes can deteriorate the overall system performance. Our
main contribution is spillover avoidance via the L2 separation
of the residue. Namely, we calculate the L2 input-to-state gains
for the residue modes and add them to the control weight
in the quadratic cost used to design a controller for the
dominating modes. A numerical example demonstrates that
the proposed idea drastically improves both the admissible
Lipschitz constants and guaranteed cost bound compared to
the recently introduced direct Lyapunov method.

I. INTRODUCTION

Modal decomposition is a popular method of designing
finite-dimensional controllers for partial differential equa-
tions (PDEs). Its idea is to design a controller for the domi-
nating modes ignoring the highly damped residue modes [1],
[2], [3], [4], [5]. A common problem with modal decom-
position is spillover: the ignored modes can deteriorate the
overall system performance [6], [7], [8]. Spillover can be
studied qualitatively, where stability is guaranteed for a
large enough number of considered modes, or quantitatively,
where one specifies the exact number of required modes
and provides performance guarantees. Qualitative results
have been obtained using residual mode filters [9], [10],
[11], spectral properties of linear operators [12], [13], [14],
small-gain ideas [15], [16], and Lyapunov functionals [17],
[18], [19]. Though some of these results can be used to
estimate the required number of modes, the decay rate, or
input-to-state gains, the resulting estimates may be quite
conservative. Accurate quantitative results require a more
careful residue analysis and were obtained using Lyapunov
functionals in [8], [20], [21], [22], [23], [24]. The key step in
the quantitative Lyapunov-based analysis is to use Young’s
inequality to split the cross terms between the control input
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and the residue modes (see Section V). This paper shows
how to avoid restrictive Young’s inequality and perform a
more accurate analysis of the residue modes leading to a
drastic performance improvement.

Our results are inspired by [25], where a finite-dimensional
H∞ controller was designed for the Euler–Bernoulli beam.
The key idea is to consider the control signal as a disturbance
in the truncated modes with the corresponding L2 input-to-
state gains. These gains are added to the control weight in
the cost for the dominating modes and the optimal controller
for the modified cost is designed. Since the modified cost
accounts for the destabilizing effect of the control signal in
the residue, spillover is avoided. This approach is inherently
more accurate than those based on Young’s inequality [8],
[20], [21], [22], [23], [24]. To demonstrate this, we use
it to design a finite-dimensional state-feedback boundary
controller guaranteeing that a given quadratic cost does
not exceed a prescribed value for all nonlinearities with a
predefined Lipschitz constant. The proposed design method
is simple: it only requires to solve a modified algebraic
Riccati equation. A numerical example demonstrates that
the L2 separation method increases the admissible Lipschitz
constant and reduces the upper bound on the cost by 90%
compared to [23], where Young’s inequality was used.

Notations: N0 = N∪ {0}, | · | is the Euclidean norm, ∥ · ∥
and ⟨·, ·⟩ are the norm and scalar product in L2. If P is a
symmetric matrix, P < 0 means that it is negative definite
with the symmetric elements sometimes denoted by “∗”.

II. THE SEMILINEAR HEAT EQUATION
We consider the semilinear heat equation

zt = zxx + qz + f(·, t, z(·, t)), (1a)
zx(0, t) = 0, zx(π, t) = u(t) (1b)

with state z : [0, π]× [0,∞) → R, control input u : [0,∞) →
R, and reaction coefficient q > 0. A continuous f : R3 → R
satisfies f(x, t, 0) ≡ 0 and the Lipschitz condition

∃σ > 0: |f(x, t, z1)− f(x, t, z2)| ≤ σ|z1 − z2|. (2)

Note that if the coefficient in front of zxx is not 1, or the
spatial domain is not [0, π], the equation can be transformed
to the form (1) using the change of variables z̃(x, t) =
z(ax − x0, bt) with suitable a, b, and x0. Furthermore,
the reaction term, qz, can be included in f increasing the
Lipschitz constant σ. We keep it separated to obtain more
accurate conditions.

Our objective is to design a finite-dimensional state-
feedback control law that, for a given r > 0, guarantees

J =
∫∞
0

[
∥z(·, t)∥2 + ru2(t)

]
dt ≤ α∥z(·, 0)∥2 (3)
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with some α > 0 (as small as possible) for system (1) with
any z(·, 0) ∈ L2(0, π) and any f satisfying (2). Note that (3)
implies the asymptotic stability of (1) in the L2 norm (see
Remark 3). The key step in designing and analysing such a
controller is the modal decomposition presented next.

III. MODAL DECOMPOSITION OF THE
SEMILINEAR HEAT EQUATION

The eigenvalues and eigenfunctions of the operator

Aφ = −φ′′, D(A) = {φ ∈ H2(0, π) | φ′(0) = 0 = φ′(π)},

are
λn = n2, n ∈ N0,

φn(x) =

{
1/
√
π, n = 0,√

2/π cosnx, n ∈ N.

The eigenfunctions form an orthonormal basis of L2(0, π).
Therefore, the state can be presented as the Fourier series

z(x, t)
L2

=
∑∞

n=0 zn(t)φn(x), zn(t) := ⟨z(·, t), φn⟩.

The Fourier coefficients, zn, satisfy

żn(t)=⟨zt(·, t), φn⟩
(1a)
= ⟨zxx(·, t), φn⟩+ q⟨z(·, t), φn⟩+ ⟨f(·, t, z(·, t)), φn⟩.

Since φn ∈ D(A) and φ′′
n = −λnφn, integrating by parts

twice, we obtain

⟨zxx(·, t), φn⟩

= zx(·, t)φn|π0 − z(·, t)φ′
n|

π
0 +

∫ π

0
z(x, t)φ′′

n(x) dx
(1b)
= φn(π)u(t)− λnzn(t).

Therefore,

żn(t) = (q − λn)zn(t) + fn(t) + bnu(t), n ∈ N0,

where

fn(t) = ⟨f (·, t, z(·, t)) , φn⟩, n ∈ N0,

bn =

{
1/
√
π, n = 0,

(−1)n
√
2/π, n ∈ N.

For any νf ≥ 0, Parseval’s theorem and (2) imply

0 ≤ νf
[
σ2
∑∞

n=0 z
2
n −

∑∞
n=0 f

2
n

]
. (4)

We will design a finite-dimensional state-feedback controller
using the first N + 1 modes (n = 0, 1, . . . , N ). We take N
such that

λN+1 = (N + 1)2 > q + σ. (5)

This condition is very natural: we consider all the unstable
modes in the control design. It guarantees that all the ρn,
given in (14) below, are positive for some νf > 0.

Separating the first N + 1 modes, we obtain

żN (t) = AzN (t) +Bu(t) + F (t), (6a)
żn(t) = (q − λn) zn + fn(t) + bnu(t), n > N, (6b)

where

zN = [z0, . . . , zN ]⊤, F = [f0, . . . , fN ]⊤,

A = diag{q − λ0, . . . , q − λN},
B =

√
2/π[1/

√
2,−1, 1, . . . , (−1)N ]⊤.

Since all the eigenvalues, λn, are different, the pair (A,B) is
controllable, e.g., by the Hautus Lemma [26, Lemma 3.3.1].
Our objective is to find K ∈ R1×(N+1) such that

u(t) = −KzN (t) (7)

guarantees (3) for any f subject to (2).

IV. GUARANTEED COST CONTROL
VIA THE L2 RESIDUE SEPARATION

Using Parseval’s identity, ∥z(·, t)∥2 =
∑∞

n=0 z
2
n(t), the

objective (3) can be expressed in terms of the Fourier
coefficients, zn(t). Our main idea is to decompose it as

J =
∫∞
0

[∑N
n=0 z

2
n(t) + (r + ρ̄N )u2(t)

]
dt

+
∫∞
0

∑∞
n=N+1

[
z2n(t)− ρnu

2(t)
]
dt ≤ α

∑∞
n=0 z

2
n(0),

where
ρ̄N =

∑∞
n=N+1 ρn. (8)

Given this decomposition, (3) holds if∫ ∞

0

[
N∑

n=0

z2n(t) + (r + ρ̄N )u2(t)

]
dt ≤ α

N∑
n=0

z2n(0), (9a)∫ ∞

0

[
z2n(t)− ρnu

2(t)
]
dt ≤ αz2n(0), n > N. (9b)

Our intuition is that, since the modes with n > N are
ignored in the controller design, u(t) should be viewed as
a disturbance in these modes. Condition (9b) means that
the square of the L2 gain from u(t) to zn(t) for systems
(6b) is not greater than ρn. Then ρ̄N , given in (8), reflects
the combined L2 gain from u(t) to the residue modes. By
adding it in (9a), we guarantee that the control designed for
the dominating modes will not lead to spillover.

The remainder of this section ensures (9). First, we assume
that α > 0 is fixed and find the minimum ρn guaranteeing
(9b). Then, we calculate their sum, ρ̄N , as in (8). Finally,
we find u(t) guaranteeing (9a). This idea is inspired by [25],
where the H∞ problem was solved for a linear beam PDE.

The main difference compared to [25] is that the con-
ditions in (9) cannot be fulfilled independently due to the
nonlinearity f in the heat equation (1). When calculating ρn
guaranteeing (9b), one needs to use the conditions on fn,
which are given in (4) and cannot be separated for each n.
We overcome this difficulty using the Lyapunov functional

V (z(·, t)) = (zN (t))⊤PzN (t) +
∑∞

n=N+1 z
2
n(t) (10)

with 0 < P ∈ R(N+1)×(N+1). By Parseval’s theorem,

c1∥z(·, t)∥2 ≤ V (z(·, t)) ≤ c2∥z(·, t)∥2,



where c1 = min{1, λmin(P )} and c2 = max{1, λmax(P )}.
In what follows, we find the conditions guaranteeing

V̇ + η
[
∥z(·, t)∥2 + ru2(t)

]
≤ 0 (11)

for η > 0. Integrating the above from 0 to ∞ in t, we obtain∫∞
0

[
∥z(·, t)∥2 + ru2(t)

]
dt ≤ η−1(V (z(·, 0))− V (z(·, t)))

≤ η−1V (z(·, 0)) ≤ η−1c2∥z(·, 0)∥2.

Note that there is not much benefit in considering∑∞
n=N+1 pnz

2
n(t) as the second term of V since pn has to

converge to a constant for V to be “sandwiched” between
the L2 norms of the state.

For (10) to be differentiable, we consider z(·, 0) ∈ H1 and
the corresponding classical solution. In this case, we derive
conditions guaranteeing (3). Since H1 is dense in L2, (3)
remains true (by continuous extension) for z(·, 0) ∈ L2.

To guarantee (11), we calculate the time derivative of V
along the trajectories of (6) and add (4) to compensate f
(i.e., apply the S-procedure):

V̇ + η∥z(·, t)∥2 + ηru2(t)
(6)
= 2(zN )⊤P [AzN +Bu+ F ]

+ 2

∞∑
n=N+1

zn[(q − λn)zn + fn + bnu]

+ η|zN |2 + η

∞∑
n=N+1

z2n + ηru2

(4)
≤ (zN )⊤[PA+A⊤P + ηI + νfσ

2I]zN

+ 2(zN )⊤PBu+ 2(zN )⊤PF − νfF
⊤F

+ 2

∞∑
n=N+1

zn[(q − λn)zn + fn + bnu] + η

∞∑
n=N+1

z2n

+ νf

∞∑
n=N+1

(σ2z2n − f2
n) +

(
ηr + ρ̄N−

∞∑
n=N+1

ρn

)
u2.

(12)
The last term equals ηru2 in view of (8). We substitute u =
−KzN for the first N + 1 modes and keep it as u for the
remaining modes:

V̇ +η∥z(·, t)∥2+ηru2(t) ≤
[
zN

F

]⊤[
Φ11 P
P −νfI

][
zN

F

]
+

∞∑
n=N+1

[ zn
fn
u

]⊤
Φn

[ zn
fn
u

]
, (13)

where

Φ11 = P (A−BK) + (A−BK)⊤P

+ (ηr + ρ̄N )K⊤K + (η + νfσ
2)I,

Φn =

 2(q − λn) + η + νfσ
2 1 bn

1 −νf 0
bn 0 −ρn

 .

In what follows, we find the minimum ρn > 0 guaran-
teeing Φn ≤ 0 (Section IV-A) and design K ∈ R1×(N+1)

guaranteeing that the first term in the right-hand side of (13)
is negative (Section IV-B).

A. L2 gain calculation for the residue

By the Schur complement lemma, Φn ≤ 0 follows from

2(q − λn) + η + νfσ
2 + ν−1

f + b2nρ
−1
n = 0, n > N.

Solving this equation, we obtain

ρn =
b2n

2(λn − q)− η − νfσ2 − ν−1
f

=
π−1

λn − d
(14)

with d = q + η
2 +

νfσ
2

2 + 1
2νf

. Since λn = n2 increases
monotonically, ρn > 0 for any n > N if and only if

λN+1 − q − η

2
− νfσ

2

2
− 1

2νf
> 0

with fixed q and σ. This holds when νf ∈ (ν−, ν+) with

ν± =
λN+1 − q − η

2 ±
√
(λN+1 − q − η

2 )
2 − σ2

σ2
. (15)

For this set to be non-empty, we need

0 < η < 2(λN+1 − q − σ), (16)

which is feasible in view of (5).
For the ρn given in (14), the series in (8) can be calculated

explicitly, e.g., using the Mittag-Leffler expansion for the
cotangent [29, Section 7.10]:

π cotπz =
1

z
+ 2

∞∑
n=1

z

z2 − n2
.

Substituting z =
√
d and reorganizing the terms, we obtain

ρ̄N =
∑∞

n=N+1 ρn = 1
π

∑∞
n=N+1

1
n2−d

= 1
π

[∑N
n=0

1
d−n2 − 1+π

√
d cotπ

√
d

2d

]
.

The expression with the cotangent is not defined when d is
a square of an integer, but the limit will always exist. Since
the series converges, ρ̄N → 0 as N → ∞, meaning that
when more modes are considered in the control design, the
destabilizing effect of the control imposed by the residue is
reduced.

B. Controller design for the first N + 1 modes

By the Schur complement lemma,[
Φ11 P
P −νfI

]
≤ 0 (17)

follows from the algebraic Riccati equation (ARE)

P (A−BK) + (A−BK)⊤P + (ηr + ρ̄N )K⊤K

+ (η + νfσ
2)I + ν−1

f P 2 = 0.

Following the H∞ conventions, we are looking for the
controller gain in the form

K = µB⊤P, µ > 0.

Substituting and reorganizing the terms, we obtain

PA+A⊤P + P (ν−1
f I − (2µ− ηrµ2 − ρ̄Nµ2)BB⊤)P

+ (η + νfσ
2)I = 0.



The maximum of 2µ−ηrµ2−ρ̄Nµ2 is (ηr+ρ̄N )−1 achieved
at µ = (ηr + ρ̄N )−1. Substituting this µ, we obtain

PA+A⊤P + P (ν−1
f I − (ηr + ρ̄N )−1BB⊤)P

+ (η + νfσ
2)I = 0. (18)

This algebraic Riccati equation solves the H∞ full-
information control problem for (6a) with the disturbance
F (t) and objective (see, e.g., [30])∫∞

0

[
(η + νfσ

2)|zN (t)|2 + (ηr + ρ̄N )u2(t)

− νf |F (t)|2
]
dt ≤ 0. (19)

The resulting control law is

u = −(ηr + ρ̄N )−1B⊤PzN . (20)

In Section IV-A, we selected ρn that guarantees Φn ≤ 0
in the second term of (13). In this section, we found P
that guarantees (17), i.e., the first term in (13) is negative.
Therefore, (11) is true, which implies the following result.

Theorem 1 (Guaranteed cost): Consider the semilinear
heat equation (1) subject to (2). Let N ∈ N satisfy (5), η > 0
satisfy (16), and νf ∈ (ν−, ν+) with ν± defined in (15). If
there exists 0 < P ∈ R(N+1)×(N+1) solving (18), then the
state-feedback control law (20) guarantees that (3) holds with
α = η−1c2 = η−1 max{1, λmax(P )}.

Remark 1 (Number of modes and the Lipschitz bound):
When N grows, the maximum admissible Lipschitz
constant, σ, cannot decrease. Indeed, ΦN+1 ≤ 0 guarantees
that VN+1 = z2N+1 satisfies

V̇N+1 + (η + νfσ
2)z2N+1 − ρN+1u

2 − νff
2
n ≤ 0.

Integrating this from 0 to ∞ and taking zN+1 = 0, we obtain∫∞
0

[
(η + νfσ

2)z2N+1 − ρN+1u
2 − νff

2
n

]
dt ≤ 0.

By adding this to (19), we find that (19) holds when N is
replaced with N + 1. By [30, Theorem 6.3.6], (18) must be
feasible for N + 1.

Remark 2 (LMI formulation): By the Schur complement
lemma, (17) is equivalent to

Φ̃11 P (ηr + ρ̄N )K⊤ (η + νfσ
2)I

∗ −νfI 0 0
∗ ∗ −(ηr + ρ̄N ) 0
∗ ∗ ∗ −(η + νfσ

2)I

 ≤ 0

with Φ̃11 = P (A − BK) + (A − BK)⊤P . Multiplying by
diag{P−1, I, 1, I} from left and right, and denoting P̄ =
P−1, Y = KP−1, we obtain

Φ̄11 I (r + ρ̄N )Y ⊤ (1 + νfσ
2)P̄

∗ −νfI 0 0
∗ ∗ −(r + ρ̄N ) 0
∗ ∗ ∗ −(1 + νfσ

2)I

 ≤ 0 (21)

with Φ̄11 = AP̄ + P̄A− BY − (BY )⊤. Therefore, instead
of solving (18), one can solve (21) and take K = Y P̄−1.
LMIs (21) take more time to solve compared to (18) because
the number of decision variables is higher and the solvers

tailored for solving (18) are more efficient than the universal
LMI solvers. However, the LMIs (21) are useful if the results
of this paper are extended to the delayed input case.

C. Exponential stability
The above L2-separation idea can be extended to guaran-

tee the exponential stability of (1) under (7) with a given
decay rate δ > 0. To this end, one needs (cf. (11))

V̇ + 2δV ≤ 0.

Then, the calculations (12) are modified in a straightforward
way: η = 0 and q should be replaced by q + δ. The
corresponding L2 gain for the residue is given by (14) with

d = q + δ +
νfσ

2

2
+

1

2νf
. (22)

Furthermore, the ARE (18) becomes

PAδ +A⊤
δ P + P (ν−1

f I − ρ̄−1
N BB⊤)P + νfσ

2I = 0

with Aδ = A + δI . Dividing by νf and defining Pν =
P/νf > 0, we obtain

PνAδ +A⊤
δ Pν + Pν(I − κ−1

N BB⊤)Pν + σ2I = 0 (23)

with κN = (ρ̄Nνf )
−1. Clearly, κN should be minimized to

improve feasibility. Similarly to the previous section, ρn > 0
if and only if νf ∈ (ν−, ν+) with ν± given by (15) with η/2
replaced by δ. Therefore, we take

κN = min
νf∈(ν−,ν+)

ρ̄N (νf )

νf
. (24)

Summarizing, we have the following result.
Theorem 2 (Exponential stability): Consider the semilin-

ear heat equation (1) subject to (2). Let δ > 0 be a desired
decay rate. For any given N ∈ N satisfying (cf. (5))

λN+1 = (N + 1)2 > q + σ + δ, (25)

take d as in (22) and κN as in (24). Let 0 < Pν ∈
R(N+1)×(N+1) be the solution of (23). Then the state-
feedback control law

u = −κ−1
N B⊤Pνz

N

makes (1) globally exponentially stable in the L2 norm with
the decay rate δ.

Remark 3: Note that (11) implies that V̇ ≤ −2δV with
δ = η

2c2
> 0, which guarantees the exponential stability of

(1), (7) in the L2 norm.

V. GUARANTEED COST CONTROL
VIA YOUNG’S INEQUALITY

To compare our results with the approach in [23], we
extend it to system (1). Recall that for V defined in (10),

V̇+η[∥z(·, t)∥2+ru2(t)]
(6),(7)
= 2(zN )⊤P [(A−BK)zN+F ]

+ 2

∞∑
n=N+1

zn[(q − λn)zn + fn − bnKzN ]

+ η|zN |2 + η

∞∑
n=N+1

z2n + ηr|KzN |2. (26)



Young’s inequality gives∑∞
n=N+1 2znfn ≤

∑∞
n=N+1 ν

−1
f z2n+νf

∑∞
n=0 f

2
n−νf |F |2

(4)
≤ (ν−1

f + νfσ
2)
∑∞

n=N+1 z
2
n + νfσ

2|zN |2 − νf |F |2

and

−
∑∞

n=N+1 2znbnKzN ≤
∑∞

n=N+1 ν2λnz
2
n+∑∞

n=N+1
|bnKzN |2

ν2λn
=
∑∞

n=N+1 ν2λnz
2
n + χN

ν2
|KzN |2,

(27)

where νf > 0, ν2 > 0, and

χN :=
∑∞

n=N+1
2

πλn
= 2

π

[
π2

6 −
∑N

n=1
1
n2

]
.

Using these in (26), we obtain

V̇ + η[∥z(·, t)∥2 + ru2(t)] ≤
[
zN

F

]⊤ [
Ψ11 P
P −νfI

] [
zN

F

]
+
∑∞

n=N+1(−2λn + 2q + η + ν−1
f + νfσ

2 + ν2λn)z
2
n,

where

Ψ11 =P (A−BK) + (A−BK)⊤P

+ (ηr + χNν−1
2 )K⊤K + (νfσ

2 + η)I.

Clearly, V̇ + η[∥z(·, t)∥2 + ru2(t)] < 0 follows from

Ψ :=

[
Ψ11 P
P −νfI

]
< 0, (28a)

− 2λN+1 + 2q + η + ν−1
f + νfσ

2 + ν2λN+1 < 0. (28b)

By the Schur complement lemma, (28a) is equivalent to
Ξ P K⊤ rK⊤ σI I
∗ −νf I 0 0 0 0

∗ ∗ − ν2
χN

0 0 0

∗ ∗ ∗ − r
η 0 0

∗ ∗ ∗ ∗ −ν−1
f I 0

∗ ∗ ∗ ∗ ∗ − 1
η I

 < 0,

where Ξ = P (A−BK)+(A−BK)⊤P . Multiplying this by
diag{P−1, ν−1

f I, 1, I, I} from left and right, and introducing

P̄ = P−1, Y = KP−1, ν1 = ν−1
f , η1 = η−1,

we obtain 
Ξ̃ ν1 Y ⊤ rY ⊤ σP̄ P̄
∗ −ν1I 0 0 0 0
∗ ∗ − ν2

χN
0 0 0

∗ ∗ ∗ −η1r 0 0
∗ ∗ ∗ ∗ −ν1I 0
∗ ∗ ∗ ∗ ∗ −η1I

 < 0 (29)

with Ξ̃ = AP̄ + P̄A⊤ − BY − Y ⊤B⊤. By the Schur
complement lemma, (28b) is equivalent to −2λN+1 + 2q + ν1 + ν2λN+1 σ 1

∗ −ν1 0
∗ ∗ −η1

 < 0.

(30)
Note that (29) and (30) are LMIs that depend on P̄ , Y ,
ν1, ν2, and η1. If (29) and (30) hold, the controller gain is
K = Y P̄−1. Summarizing, we have the following result.

Theorem 3 (Guaranteed cost): Consider the semilinear
heat equation (1) subject to (2). Let N ∈ N satisfy (5).
If there exist 0 < P̄ ∈ R(N+1)×(N+1), Y ∈ R1×(N+1),
and scalars ν1 > 0, ν2 > 0, and η1 > 0 such that
(29) and (30) hold, then the state-feedback control law (7)
with K = Y P̄−1 guarantees (3) with α = η−1c2 =
η1 max{1, λmax(P̄

−1)} (equivalently, minimum α > 0 such
that α ≥ η1 and P̄ ≥ η1α

−1I).
Similarly to Section IV-C, for a given decay rate δ > 0, we

let N ∈ N satisfy (25) and arrive at V̇ + 2δV ≤ 0 providedAδP̄+P̄A⊤
δ −BY−Y ⊤B⊤ ν1 Y ⊤ σP̄

∗ −ν1I 0 0
∗ ∗ − ν2

χN
0

∗ ∗ ∗ −ν1I

 < 0,[
−2λN+1+2q+2δ+ν1+ν2λN+1 σ

∗ −ν1

]
< 0.

(31)

Summarizing, we have the following conditions for the
exponential stability.

Theorem 4 (Exponential stability): Consider the semilin-
ear heat equation (1) subject to (2). Let δ > 0 be a desired
decay rate. For a given N ∈ N satisfying (25), let there exist
0 < P̄ ∈ R(N+1)×(N+1), Y ∈ R1×(N+1), and scalars ν1 > 0
and ν2 > 0 satisfying (31). Then, the state-feedback control
law (7) with K = Y P̄−1 makes (1) globally exponentially
stable in the L2 norm with the decay rate δ.

Remark 4: The proofs of Theorems 3 and 4 use Young’s
inequality in (27) to separate the control input from the
residue. Our approach circumvents conservative Young’s
inequality by leveraging the L2-gain ideas: the cross-terms
znbnu in (13) are compensated by −ρnu

2 with ρn later
added to the control weight in the cost. This leads to a drastic
improvement compared to [23], which is demonstrated by an
example in the next section.

VI. EXAMPLE

As an example, we consider (1) with q = 1 or q = 5, and
the nonlinearity that makes the open-loop system unstable.
First, let δ = 10−2 be the desired decay rate. To compare
Theorems 2 and 4, we perform linear search over σ >
0 to find the maximum Lipschitz constant preserving the
feasibility of (23) with κN from (24) and the LMIs (29), (30),
respectively. The maximum σ for N ∈ {1, . . . , 6} are given
in Table I. The residue separation method developed in this
paper always leads to a larger Lipschitz constant compared to
the approach based on Young’s inequality. In particular, for
q = 5 and N = 2, the Lipschitz constant increases by 26%.

TABLE I
THE MAXIMUM ADMISSIBLE σ.

N = 1 2 3 4 5 6
Thm 2 q = 1 0.3763 0.4099 0.4195 0.4235 0.4256 0.4268
Thm 4 q = 1 0.3564 0.4003 0.4137 0.4196 0.4228 0.4247
Thm 2 q = 5 – 0.0841 0.1119 0.1217 0.1263 0.1289
Thm 4 q = 5 – 0.0667 0.1006 0.1142 0.1209 0.1248

Next, we consider the guaranteed cost control (3) and try
to minimize α > 0. We consider q = 1 with σ = 0.35 and
q = 5 with σ = 0.06, and take r = 0.1. For Theorem 1,
we perform linear search over α > 0 and make a grid of



η ∈ (0, 2(λN+1 − q − σ)) and νf ∈ (ν−, ν+) with ν−, ν+
defined in (15) to find minimum α ≥ η−1 max{1, λmax(P )}
preserving the feasibility of (18) with P > 0. For comparison
of the results with Theorem 3, we solve LMIs (29) and (30)
with the constraints α ≥ η1 and P̄ ≥ η1α

−1I to find the
minimum value of α > 0 that preserves the feasibility. The
minimum α for N ∈ {1, . . . , 6} are given in Table II. For
the same Lipschitz constant, the residue separation method
always leads to a smaller α > 0 compared to the approach
based on Young’s inequality. In particular, for q = 5 and
N = 2, the value of α is reduced by 90%.

TABLE II
THE MINIMUM VALUE OF α.

(q, σ)\N 1 2 3 4 5 6
Thm 1 (1, 0.35) 2261.4 521.6 425.9 402.4 393.8 390.1
Thm 3 (1, 0.35) 25419.2 699.9 480.8 428.2 408.4 399.1
Thm 1 (5, 0.06) – 27408 9634 8371 8061 7945
Thm 3 (5, 0.06) – 266031 12824 9340 8511 8198

In simulations, we consider q = 1, f(z) = 0.35 sin(z),
and N = 6. Using the grid search, we find η = 8.8 and
νf = 496. Solving (18), we obtain the control gain

K = (ηr + ρ̄N )−1B⊤P

= [153.96, 80.19,−2.60,−0.05, 0.50,−0.52, 0.46].

Fig. 1 shows J(t) =
∫ t

0

[
∥z(·, s)∥2 + ru2(s)

]
ds for the

initial condition z(x, 0) =
∑N

n=0 ϕn(x)zn(0) with

zN (0) = [z0(0), . . . , zN (0)]⊤

= [−86.13,−50.73, 2.69,−0.83, 0.33,−0.16, 0.08]⊤ × 102,

which was chosen to satisfy PzN (0) = λmax(P )zN (0) and
|zN (0)| = 1. The theoretical upper bound on J from Table
II is α∥z(·, 0)∥2 = 390.1.

Fig. 1. Evolution of J(t) =
∫ t
0

[
∥z(·, s)∥2 + ru2(s)

]
ds.
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