
Value Iteration Algorithm for Solving Shortest Path Problems with
Homology Class Constraints

Wenbo He, Yunshen Huang, Jinran Qie, and Shen Zeng

Abstract— Path planning is a fundamental problem in
robotics that aims to find an optimal path for a system to
move on while avoiding obstacles in the environment. Often,
a feasible path connecting the start and target point with the
shortest length is highly desirable. Additionally, in scenarios
such as drone racing or surveillance, topology constraints may
arise. In this paper, we propose a novel method to address the
shortest path problem with homology class constraints in both
2D and 3D environments. We first define the phase change of
the path with respect to 2D obstacles and then apply the same
technique to a class of super-toroid obstacles compressed by an
embedding map. To synthesize the shortest path, we leverage
the visibility graph and the Value Iteration Algorithm (VIA).
Finally, we demonstrate the effectiveness of our approach with
various simulation examples.

I. INTRODUCTION

Path planning problems consider synthesizing a collision-
free path within which to navigate a moving object in a
cluttered environment. This type of problem is crucial for
controlling mobile robots and autonomous systems and has
been intensively studied [1]. Given a system with very simple
dynamics, various sample-based methods can be deployed
for handling nonconvex environments, such as probabilistic
roadmaps (PRM) [2] and rapidly-exploring random trees
(RRT) [3]. Some variations further take optimality into
account, such as RRT∗ [4]. When system dynamics be-
come more complicated, some optimization-based methods,
which include iterative (LQR) [5] and sequential homotopy
quadratic programming (SHQP) [6], can be leveraged. De-
spite the successful applications, they are unable to handle
the cases where topological constraints are imposed, such as
homotopy class constraints and homology class constraints.

Two trajectories belong to the same homotopy class if
they share the same initial and target state, and they can
continuously deform to each other without intersecting any
obstacles. Homotopy class constraints can be encountered
in, for instance, drone racing, where agents are required to
fly through gates in a particular order. Multiple works are
designed for solving such planning problems with homotopy
class constraints. For instance, search-based methods [7] [8]
are able to classify homotopy classes and synthesize feasible
trajectories fulfilling the topological requirements. For non-
trivial system dynamics, effective approaches like Mixed-
Integer Quadratic Program (MIQP)-based method [8], Auxil-
iary Energy Reduction (AER) [9], and Homotopy Method for
Homotopy Class Constraints (HMHCC) [10] are proposed.

Department of Electrical and System Engineering, Washington Uni-
versity, St. Louis, MO 63130, USA, {wenbo.he, yunshen.huang,
jinran.qie, s.zeng}@wustl.edu. This work was supported by the
NSF grant CMMI-1933976.

Generally speaking, two trajectories belong to the same
homology class if they are homotopy equivalent regarding
every single obstacle. Again, in drone racing, trajectories that
connect the same initial and target locations and pass through
every gate in arbitrary order constitute a homology class.
Although homology class constraints can be considered as
the loose representation of homotopy class constraints, the
corresponding optimization is much harder to address, as
the feasible solution set is no longer compact. Therefore,
the global search-based algorithm is preferable. Pioneering
methods based on H-signature are proposed to generate op-
timal trajectories under homology class constraints for both
2D [11] and 3D [12] environments. Despite the capability
of dealing with obstacles with general shapes, H-signature-
based methods have to be defined differently depending on
the environmental dimensionality, which hinders efficiency.
In this paper, we proposed a novel approach that solves
the constrained shortest path problem for both 2D and
3D environments in a unified manner. For 3D cases, we
first compress the super-toroid-shaped obstacles into a 2D
counterpart. We then classify the homology class of the 2D
trajectory by adopting the idea of phase change. Having done
so, we are able to compute the shortest path fulfilling the
topological requirement using a visibility graph and VIA.
The analysis of our method suggests the potential general-
ization to higher dimensional environments with obstacles
that are properly described.

This paper is organized as follows. Section II defines
the homotopy and homology class, as well as obstacles
in different dimensions. Then we introduce the proposed
method in both 2D and 3D environments and the Value
Iteration Algorithm in Section III. Numerical Results are
shown in Section IV and we conclude the paper in Section V.

II. MATHEMATICAL PRELIMINARIES AND
PROBLEM STATEMENT

A. Homotopy and Homology Classes for Static Obstacles

In this section, we begin with the definition of homotopy
class for trajectories and depict the connection between
homotopy and homology. Two continuous trajectories belong
to the same homotopy class if and only if they have identical
start and target points and they can be smoothly deformed
into one another without intersecting any obstacles, as shown
in Figure 1. The formal definition is shown below.

Definition 1. Two continuous trajectories r1(t) : [0, 1] →
Rn and r2(t) : [0, 1] → Rn belong to the same homotopy
class if and only if r1(0) = r2(0), r1(1) = r2(1), and there

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 8394

exists a continuous function H(s, t) : [0, 1] × [0, 1] → Rn

which satisfies H(0, t) = r1(t), H(1, t) = r2(t) and H(s, t)
never intersects any obstacles for all s ∈ [0, 1] and t ∈ [0, 1].

Considering a 2-dimensional space with a single obstacle,
the homotopy class of a trajectory can be quantified from
the perspective of phase change. Given a trajectory r(t) :
[0, 1] → R2 and a fixed point oi representing the center
point of the obstacle, the responding phase change regarding
the obstacle is defined as

p(r) = θ(r(1)− oi)− θ(r(0)− oi), (1)

where θ : R2 → R is the unwrapped angle, which is the
unwrapped version of arctan : R2 → [0, 2π) that ensure
θ(p(·)) is continuous if p(·) is continuous. It implies that
two trajectories with identical start and target points belong
to the same homology class if they own the same phase
change.

Fig. 1. The three curves are the trajectories connecting identical starting and
target points, and grey rectangles are obstacles. According to the definition
of the homotopy class, the two blue trajectories are homotopy equivalent,
but the green one belongs to a different homotopy class.

In a cluttered environment, the phase change with respect
to n obstacles is given by p(r) = [p1(r), . . . , pn(r)]

T ,
where pi(r) is the phase change regarding the ith obstacle.
Generally, for an arbitrary dimensional space with multiple
obstacles, trajectories belong to the same homology class if
they have the same p(r), i.e., they belong to the same ho-
motopy class regarding every individual obstacle. However,
having the same phase change is only a necessary condition
for homolopy as shown in Figure 2, and the formal definition
is given below.

Definition 2. Two continuous trajectories r1(t) : [0, 1] →
Rn and r2(t) : [0, 1] → Rn belong to the same homology
class if and only if r1(0) = r2(0), r1(1) = r2(1), and r1(t)
together with r2(t) with the opposite orientation forms the
complete boundary of a 2-dimensional manifold embedded
in Rn not containing any obstacles.

Although homology is a loose representation of homotopy
in many applications, finding the optimal trajectory belong-
ing to a specified homology class is even more challenging
than that of the homotopy counterpart. It can be seen from
the fact that a homotopy class can be treated as a compact
set, as every element can continuously deform to one an-
other. Therefore, starting from a random feasible trajectory,
one can reach the local or even global optimum of such
a homotopy class by leveraging the gradient information.
Nevertheless, a homology class is usually a disconnected set
that contains various homotopy classes, which prevents the
implementation of the gradient method, and thus a global
searching mechanism is needed. The objective of this paper

is to design the shortest trajectory that is obstacle-free and
belongs to a particular homology class in both 2D and 3D
space.

Fig. 2. The two curves are the trajectories connecting identical starting
and target points. They belong to the same homology class but different
homotopy classes.

B. Static Obstacle Representations

For practical purposes, we consider M numbers of static
obstacles in i) a 2-dimensional (2D) and ii) a 3-dimensional
(3D) cluttered environment. In case i), though the proposed
method can handle obstacles with arbitrary shapes, we ap-
proximate them using super-ellipse [6] that is aligned with
the case of the 3D environment. In case ii), we consider a
type of obstacle with a hole connecting the two opposite
facets, which emulates the obstacle that a moving object
needs to pass through.

In 2D environments, the collision avoidance constraints
regarding the ith obstacle can be written as[

x̂
ŷ

]
:= Mi diag(eix, eiy)

[
x
y

]
+ bi, (2)

x̂ki + ŷki −Ri
ki ≥ 0, (3)

where [x, y] denotes the allowed spatial trajectory of the
dynamical system, Mi is the rotation matrix, eix, eiy ≥ 1
represent the spatial expansion factor along each axis, bi is
the offset of the center of the obstacle, Ri > 0 is a size
constant and the exponent ki is a positive even number,
which regulates the shape of the obstacle. Particularly, when
ki = 2, the obstacle is a circle or ellipse, otherwise, it would
be a rounded square.

In 3D environments, we consider a group of obstacles with
super-toroid shapes, where the ith obstacle is described by

x̂ŷ
ẑ

 := Mi diag(eix, eiy, eiz)

xy
z

+ bi, (4)

ẑmi + (Ri − (x̂ni + ŷni)
1
ni)mi − ri

mi ≥ 0, (5)

where Ri is the distance from the center of the tube to the
center of the obstacle, ri is the radius of the tube, and the rest
of the parameters are defined in a similar way to that in (2).
It is noted that mi and ni have to be positive even numbers.
Some examples of the obstacle are shown in Figure 3

8395

Fig. 3. 3-dimensional obstacles with (n,m) = (2, 2), (2, 8), (8, 8) from
left to right, respectively.

III. METHODS

In this section, we describe our strategy to synthesize the
shortest obstacle-free path within a specific homology class.
Our method relies on the phase change representation of the
homology class that is well-defined in 2D space, which will
be illustrated in Section III-A. In Section III-B, we prove that
the interested type of 3D obstacles can be simply compressed
into a 2D space. In both cases, we transform feasible paths
into a graph and find the shortest one using the value iteration
shown in Section III-C.

A. 2D Environment

To better present the corresponding homotopy class of a
path, we associate a phase change with each point of the path.
More specifically, given a path and M obstacles, we define
a node of the path as a vector (x, y, p1, . . . , pM), where
(x, y) represents the position of the node and pi ∈ R denotes
the corresponding phase change regarding the ith obstacle.
Because of the conservation of the phase change, given a
specified path, the phase change regarding an obstacle only
relies on the number of the encirclement around it that
must be an integer. Therefore, the difference in the phase
change of the two paths with the same ending points has
to be an integral multiple of 2π. As a result, we are able
to define a straight line, which connects the given start
point xstart and (x, y), as a base path with a base phase
change defined as (p̄1, . . . , p̄M). It is noted that such a base
path does not have to be feasible in terms of obstacles.
According to the base path, the node located at (x, y) of any
feasible path, which starts from xstart, can can be expressed as
(x, y, p̄1 + s12π, . . . , p̄M + sM2π), si ∈ Z. For simplicity,
we use (x, y, s1, . . . , sM) to define the state in the rest of
the paper and (s1, . . . , sM) is the homology class label,
where an example is shown in Figure 4. Likewise, if the
line connects (xa, ya, sa1 , . . . , s

a
M) and (xb, yb, sb1, . . . , s

b
M),

we define the label-wise phase change as (∆s1, . . . ,∆sM) =
(sa1 − sb1, . . . , s

a
M − sbM).

Equipped with the definition above, we proposed a graph
search-based method to find the shortest path for moving
an agent from the start point to the target, where the agent
is assumed to be holonomic, i.e., any path is dynamically
feasible to the agent. Specifically, we consider a visibility
graph that is denoted as G = (V, E), where V is the set of
sampled states and E contains obstacle-free connections be-
tween these states. Given an interested point (x, y), we obtain
(x, y, s1, . . . , sM) as sampled states with si ∈ {−Γ,−Γ +
1, . . . ,Γ} and Γ ∈ Z+ is the hyper-parameter that determines

(0,0,0)

(x,y,1)
(x,y,0)

(x,y,-1)

Fig. 4. Three different paths connecting (0, 0) and (x, y) belong to
different homology classes, where the corresponding nodes at (x, y) are
marked as well.

the size of the sample space. Likewise, we say a state is legal
iff −Γ ≤ si ≤ Γ for all i ∈ {1, . . . ,M}. As such, given N
interested points, the cardinality of the sample space is |V| =
N(2Γ + 1)M , whose value significantly impacts the time
complexity of graph search-based algorithms. To reduce the
number of interested points without highly degenerating the
performance of the proposed method, we sample locations
around obstacles rather than discretize the space into a grid.
Around the obstacles described in Section II-B, we adopt the
sampling strategy depicted in the following way[

x
y

]
sample

=diag(1/eix, 1/eiy)M−1
i(

Ri + δ

(cos(θ)ki + sin(θ)k1)1/ki

[
cos(θ)
sin(θ)

]
− bi

)
,

(6)
where θ ∈ {0, 2π/Ni, . . . , 2(Ni − 1)π/Ni} is the sampling
angle, Ni is the number of samples around the obstacle, and
δ > 0 is a hyper-parameter that ensures the sampled points
residing outside the obstacle. The algorithm for building the
visible graph is summarized in Algorithm 1. Note that the
graph assumes that each state is self-connected. Given the
graph G, the shortest path can be obtained by value iteration
that will be described in Section III-C.

Algorithm 1 Construct Visibility Graph
Require: Obstacle description and hyper-parameter Γ
1: Initialize an empty graph G = (V, E) and a potions set L
2: Sampled points according to (6), and store them in L
3: Push the start and target points into L
4: for each pair of points ((xa, ya), (xb, yb)) from L
5: if the straight line connecting the pair is infeasible
6: continue
7: Get phase change (∆s1, . . . ,∆sM) of the straight line
8: for each legal (s1, . . . , sM)
9: if (s1 +∆s1, . . . , sM +∆sM) is also legal
10: Add the edge between (xa, ya, s1, . . . , sM)

and (xb, yb, s1 +∆s1, . . . , sM +∆sM) to G
11:return G

B. 3D Environment

It is noted that the graph-based method proposed above de-
pends on the phase change for classifying homology classes.

8396

Hereby, it is severely restricted and thus only applicable to
planar systems. To generalize the method to 3-dimensional,
as defined in Section II-B, we consider a certain type of
3D obstacle equipped with a hole, where the agent can
pass through. Because the coordinate transformation between
(x̂, ŷ, ŷ)⊤ and (x, y, z)⊤ is invertible in (4), in this section
and without loss of generality, we only discuss normalized
obstacles

zmi + (Ri − (xni + yni)
1
ni)mi − ri

mi ≥ 0. (7)

We consider an embedding mapping fi : R3 → R2

fi

xy
z

 =

[
(xni + yni)

1
ni

z

]
:=

[
xe
i

yei

]
, (8)

which compresses the ith 3D obstacle to a super-ellipse
centered at (Ri, 0) with the radius ri and the exponent mi. As
a result, the phase change technique proposed in Section III-
A can be safely applied.

Lemma 1. Given a trajectory r(t) : [0, 1] → R3 and the
super-toroid obstacle, the trajectory is obstacle-free iff the
embedded trajectory (xe

i (t), y
e
i (t))

⊤
= fi (r(t)) is obstacle-

free for all t ∈ [0, 1] in the embedding space:

(Ri − xe
i (t))

mi + yei (t)
mi − rmi

i ≥ 0.

Proof. Replacing xe
i (t) and yei (t) by (x(t)ni+y(t)ni)

1
ni and

z(t) in (2), respectively, the obstacle-free condition for 2D
super-ellipse is identical to the one of that in 3D space.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

(xm+ ym)1/m

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

z

Fig. 5. A super-toroid obstacle and three trajectories are shown in the
left figure and their shapes in the embedding space are shown in the right
figure, where the homotopy property of three trajectories still holds.

As such, one can easily evaluate the phase change of a
trajectory and further the homotopy relationship of multiple
trajectories in the embedding space, which is shown in Fig-
ure 5. Having the same phase change in the embedding space
is the necessary and sufficient condition for two trajectories
to be within the same homotopy class when only one obstacle
exists as shown in the corollaries below. If trajectories are
homotopy equivalent towards every single obstacle, then they
belong to the same homology class.

Corollary 1.1. If two continuous trajectories r1(t) : [0, 1]→
R3 and r2(t) : [0, 1] → R3 belong to the same homo-
topy class regarding the super-toroid obstacle, then their
embedding trajectories re1(t) and re2(t) are also homotopy
equivalent regarding the embedded obstacle.

Proof. There exist a continuous function H(s, t) : [0, 1] ×
[0, 1]→ R3 that H(s, t) never inside the obstacle, H(0, t) =
r1(t) and H(1, t) = r2(t) because r1 and r2 are homo-
topy equivalent. We define He(s, t) = fi (H(s, t)), then
He(0, t) = re1(t) and He(1, t) = re2(t). According to
Lemma 1, He(s, t) is obstacle-free, and the function He(s, t)
is still continuous because the embedding function fi is
continuous. Therefore re1(t) and re2(t) are also homotopy
equivalent.

Corollary 1.2. If two continuous trajectories r1(t) : [0, 1]→
R3 and r2(t) : [0, 1]→ R3 have the same initial and terminal
points, and their embedded trajectories re1(t) and re2(t)
are homotopy equivalent regarding the compressed obstacle,
then r1(t) and r2(t) belong to the same homotopy class
towards the original 3-dimensional super-toroid obstacle.

Proof. We define the complementary embedding mapping

f c
i

xy
z

 =

(xni + yni)
1
ni

z
arctan(y, x)

 :=

xe
i

yei
zci

 ,

then f c
i is the generalized cylindrical coordinate transforma-

tion. We kindly assume r1(t) and r2(t) never attach the z-
axis, then their complementary trajectories rc1(t) = f c

i (r1(t))
and rc2(t) = f c

i (r2(t)) are also continuous and well-defined.
Because re1(t) and re2(t) are homotopy equivalent, there
exists a continuous function H(s, t) that is obstacle-free and
connects re1(t) and re2(t). Then we define

Hc(s, t) = f̄ c
i

 H(s, t)1
H(s, t)2

(1− s) · zci (r1(t)) + s · zci (r2(t))

 ,

where f̄ c
i : R3 → R3 is the mapping from the generalized

cylindrical coordinate to the original Cartesian coordinate,
thus Hc(0, t) = r1(t) and Hc(1, t) = r2(t). According to
Lemma 1, Hc(s, t) is obstacle-free. Because f̄ c

i is continu-
ous, Hc(s, t) is also continuous. Hence r1(t) and r2(t) are
homotopy equivalent.

Similar to the 2D case, the state in a 3D environment is
defined as (x, y, z, s1, . . . , sM), where (x, y, z) is the space
location and (s1, . . . , sM) is the homology class label cal-
culated in the 2-dimensional embedding space. To decrease
the number of sampled states, we uniformly sample nodes
around the obstacle as shown in Algorithm 2, and then
construct the graph in the same way as Algorithm 1 except
that the trajectory and obstacles need to be transformed to
the embedding space according to (8).

C. Optimization Method: Value Iteration

Given an undirected graph built in the previous sections,
the Value Iteration Algorithm (VIA) will then be imple-
mented to yield the shortest path. Although VIA has been
widely applied in stochastic shortest path problems, it is less
efficient compared with the Dijkstra algorithm in determin-
istic situations. But we will show that the format of VIA

8397

can be embarrassingly paralleled and therefore outperform
the Dijkstra algorithm on multi-core CPU or GPU.

Algorithm 2 Sample locations around the 3D obstacle
Require: obstacle parameters, hyper-parameter δ
1: Initialize empty set S
2: for θ ∈ {θ1, . . . , θn} and s ∈ {s1, . . . , sn}
3: λ← (ri + δ)/((cos(s)mi + sin(s)mi)1/mi

4: µ← ((cos(θ)ni + sin(θ)ni)1/ni

5:

x̂ŷ
ẑ

←
(Ri + λ sin(s)) cos(θ)/µ
(Ri + λ sin(s)) sin(θ)/µ

λ cos(s)

6:

xy
z

← diag(1/eix, 1/eiy, 1/eiz)M
−1
i

x̂ŷ
ẑ

− bi

7: Put (x, y, z)T to S
8:return S

Shortest path problems based on a graph G = (V, E) can
be converted to reinforcement learning (RL) problems, which
are infinite-horizon Markov decision processes (MDP) with
a terminal state. To begin with, we use the vertex set G(V) to
represent the state set of RL, and A(si) to denote the feasible
actions set of the state si. An action ai,j ∈ A(si) will transfer
the state from si to sj . Moreover, the return function of the
state transfer is defined as

R(si, ai,j) =

{
Λ− E(si, sj), if sj is sT
−E(si, sj), else

(9)

where sT is the terminal state, Λ ∈ R is a large enough
value and E(si, sj) is the Euclidean distance of two states’
locations. A policy π(a|s) describes a deterministic desired
action for each state. Starting from an initial state s1, the
policy π provides an infinite state sequence {s1, s2, . . . } with
return value sequence {r1, r2, . . . }. We define γ ∈ (0, 1) as
the discount factor, then the value function is defined as

V π(s1) = r1 + γr2 + γ2r3 + · · · = r1 + γV π(s2) (10)

Under the optimal policy π′ which maximize the value
function V π′

for every states, we have V π′
(sT) = Λ/(1−γ)

and V π′
(s0) =

∑n
i=0 γ

iE(si, si+1) + γn+1V π′
(sT), where

{si}ni=0 forms a feasible trajectory from s0 to sT for any
s0 ∈ V . If we choose γ close enough to 1, then {si}ni=0 is
the shortest path, and V π′

(s0) approaches V π′
(sT) minus

the length of the shortest path from s0 to xT . Note that Λ
should be larger than the longest shortest path from every
state, otherwise the optimal state sequence of some states
would trivially stay in place. The optimal trajectory is hereby
given by

si+1 = argmax
sj

(
−E(si, sj) + γV π′

(sj)
)
, (11)

where si and sj should be connected directly in the graph
and therefore ai,j ∈ A(si).

To obtain the optimal value function V π′
, we start from a

initial estimated value function V π
0 and update it iteratively:

V π
n+1(si) = max

ai,j∈A(si)
(R(si, ai,j) + γV π

n (sj)) , (12)

which is referred to as Value Iteration as Algorithm 3.
Although it’s proven that V π

n will converge to V π′
for any

initial estimate, the reasonable initial value will dramati-
cally reduce the iterations it needs. In practice, we choose
V π
0 (sT) = Λ/(1 − γ) and V π

0 (s) = 0 for other states.
Within each iteration, the updating processes of states are
independent, therefore no effort is needed to separate the
updating into a number of parallel tasks and reach linear
speedup, which is referred to as embarrassingly parallel.

Algorithm 3 Value Iteration Algorithm (VIA)
Require: a small number θ
1: Initialize V π

0 , n← 0
2: do
3: ∆← 0
4: for each si ∈ V:
5: Update V π

n+1(si) according to (12)
6: ∆← ∆+ |V π

n+1(si)− V π
n (si)|

7: n← n+ 1
8: while ∆ > θ
3. return V π

n

IV. NUMERICAL RESULTS

We evaluate the performance of the proposed method on
various 2D and 3D cases, and compare the efficiency with
cutting-edge algorithms [12]. For all simulations, we set the
sample distance δ = 0.5 in (6) and Algorithm 2, Γ = 1
for sampling candidate states, and Λ = 1000, γ = 0.999
in Algorithm 3. Figure 6 demonstrates the resulting shortest
trajectories with respect to the given homology class. The
3-dimensional case is shown in Figure 7 with two obstacles.

0 50 100

(0, 0, 0)

0

25

50

75

100

1

2
3

0 50 100

(0, 1, 1)

0

25

50

75

100

1

2
3

0 50 100

(0, 1, -1)

0

25

50

75

100

1

2
3

0 50 100

(1, -1, -1)

0

25

50

75

100

1

2
3

Fig. 6. Shortest path with respect to the given homology class. The labels
of obstacles are marked on it and the target homology label (s1, s2, s3) is
shown below each figure.

The proposed method can be separated into two steps:
graph building and then finding the shortest path using
VIA. Given the graph, one can assign different states as the
final states and then design the shortest path accordingly.
Therefore, we demonstrate the efficiency of these two steps
separately. During building the graph, there exists a trade-
off between precision and efficiency. However, given a fixed
number of obstacles, the number of G(V) will be squared
with an increased number of sampled points. Fortunately,
Algorithm 1 can also be paralleled and, hereby, dramatically
decrease the computational time.

8398

Fig. 7. Four trajectories start from (0, 0, 0) to (100, 100, 100) with the
terminal homology class label (s1, s2) = (1, 1) and (−1,−1), respectively.

100 101 102 103

Number of Obstacles

10−1

100

101

102

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

m
s
]

H-signature(segments=5)

H-signature(segments=10)

H-signature(segments=20)

Phase Change

Fig. 8. Comparison of the computation time of getting the homology class
label in a 3D environment with random obstacles between H-signature and
the proposed phase-change-based method.

Figure 8 demonstrates the cost time of getting homology
labels in 3D environments. H-signature methods are required
to discretize the skeleton of obstacles to line segments, and
the low number of segments may lead to inaccurate modeling
and wrong labels. The proposed method can achieve fast
labeling without discretizing obstacles. Figure 9 illustrates
the computation time of the proposed method to find the
shortest path from (0, 0, 0) to (1, 1, 1) with the homology
class label (1, . . . , 1). Obstacles are randomly generated
in the 3D space, and 100 locations are sampled for each
obstacle. For parallel computing VIA using OpenMP, the 6-
core Intel 9400F CPU is used. For the case using CUDA,
the NVIDIA GTX 1660 GPU is leveraged. As the number of
sampled locations increases linearly, the number of possible
homology classes and the number of sampled states increase
exponentially, therefore the calculation time also increases
exponentially.

V. CONCLUSION

In this paper, we introduced a novel path-planning
method with homology class constraints that can handle 2-
dimensional and 3-dimensional environments in a unified
manner. The idea of the proposed method is to first sample
states around obstacles and connect them according to the
phase change to build the graph. For 3-dimensional super-
toroid obstacles, we defined the embedding space in which
the phase change can be calculated in a manner similar to the
case of 2-dimensional obstacles. Then Value Iteration Algo-
rithm is leveraged to find the shortest path in the synthesized
graph. The analysis of the embedding function suggests that
even higher dimensional obstacles can also be mapped to 2-
dimensional embedding space and therefore be processed by

1 2 3 4 5 6

Number of Obstacles

101

102

103

104

C
o
m

p
u
ta

ti
o
n
 T

im
e
 [

m
s
]

Graph Building

Dijkstra Algorithm

VIA(OpenMP)

VIA(CUDA)

Fig. 9. Comparison of the computation time in a 3D environment with
random obstacles between Dijkstra Algorithm and VIA. The complete
computation time is the sum of the graph-building time and the searching
time.

the proposed method if it has a proper formulation. This is
planned to be investigated in future work. On the other hand,
the proposed global searching method lacks efficiency when
the number of possible homology classes increases, which is
also planned to be addressed in the future.

REFERENCES

[1] A. Gasparetto, P. Boscariol, A. Lanzutti, and R. Vidoni, “Path planning
and trajectory planning algorithms: A general overview,” Motion and
Operation Planning of Robotic Systems: Background and Practical
Approaches, pp. 3–27, 2015.

[2] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[3] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE,
2000, pp. 995–1001.

[4] D. J. Webb and J. Van Den Berg, “Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics,” in 2013
IEEE international conference on robotics and automation. IEEE,
2013, pp. 5054–5061.

[5] J. Chen, W. Zhan, and M. Tomizuka, “Autonomous driving motion
planning with constrained iterative LQR,” IEEE Transactions on
Intelligent Vehicles, vol. 4, no. 2, pp. 244–254, 2019.

[6] K. Bergman and D. Axehill, “Combining homotopy methods and
numerical optimal control to solve motion planning problems,” in 2018
IEEE Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 347–354.

[7] Y. Guo and L. E. Parker, “A distributed and optimal motion planning
approach for multiple mobile robots,” in Proceedings 2002 IEEE
International Conference on Robotics and Automation (Cat. No.
02CH37292), vol. 3. IEEE, 2002, pp. 2612–2619.

[8] S. Bhattacharya, “Search-based path planning with homotopy class
constraints,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 24, no. 1, 2010, pp. 1230–1237.

[9] W. He, Y. Huang, and S. Zeng, “Motion planning with homotopy
class constraints via the auxiliary energy reduction technique,” in 2022
American Control Conference, ACC 2022, Atlanta, GA, USA, June 8-
10, 2022. IEEE, 2022, pp. 4933–4938.

[10] W. He, Y. Huang, J. Wang, and S. Zeng, “Homotopy method for
optimal motion planning with homotopy class constraints,” IEEE
Control Systems Letters, vol. 7, pp. 1045–1050, 2022.

[11] S. Kim, K. Sreenath, S. Bhattacharya, and V. Kumar, “Optimal
trajectory generation under homology class constraints,” in 2012 IEEE
51st IEEE Conference on Decision and Control (CDC). IEEE, 2012,
pp. 3157–3164.

[12] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological con-
straints in search-based robot path planning,” Autonomous Robots,
vol. 33, no. 3, pp. 273–290, 2012.

8399

