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Abstract— We present a novel framework for distributionally
robust optimization (DRO), called cost-aware DRO (CADRO).
The key idea of CADRO is to exploit the cost structure in the
design of the ambiguity set to reduce conservatism. Particularly,
the set specifically constrains the worst-case distribution along
the direction in which the expected cost of an approximate
solution increases most rapidly. We prove that CADRO provides
both a high-confidence upper bound and a consistent estimator
of the out-of-sample expected cost, and show empirically that it
produces solutions that are substantially less conservative than
existing DRO methods, while providing the same guarantees.

I. INTRODUCTION

We consider the stochastic programming problem

minimize
x∈X

IE[ℓ(x, ξ)] (1)

with X ⊆ IRn a nonempty, closed set of feasible decision
variables, ξ ∈ Ξ a random variable following probability
measure P, and ℓ : IRn×Ξ → IR a known cost function. This
problem is foundational in many fields, including operations
research [1], machine learning [2], and control (e.g., stochastic
model predictive control) [3].

Provided that the underlying probability measure P is
known exactly, this problem can effectively be solved using
traditional stochastic optimization methods [1], [4]. In reality,
however, only a data-driven estimate P̂ of P is typically
available, which may be subject to misestimations—known as
ambiguity. Perhaps the most obvious method for handling this
issue is to disregard this ambiguity and instead apply a sample
average approximation (SAA) (also known as empirical risk
minimization (ERM) in the machine learning literature),
where (1) is solved using P̂ as a plug-in replacement for P.
However, this is known to produce overly optimistic estimates
of the optimal cost [4, Prop. 8.1], potentially resulting in
unexpectedly high realizations of the cost when deploying the
obtained optimizers on new, unseen samples. This downward
bias of SAA is closely related to the issue of overfitting, and
commonly referred to as the optimizer’s curse [5], [6].

Several methods have been devised over the years to
combat this undesirable behavior. Classical techniques such
as regularization and cross-validation are commonly used in
machine learning [2], although typically, they are used as
heuristics, providing few rigorous guarantees, in particular for
small sample sizes. Alternatively, the suboptimality gap of
the SAA solution may be statistically estimated by reserving
a fraction of the dataset for independent replications [7].
However, these results are typically based on asymptotic
arguments, and are therefore not valid in the low-sample
regime. Furthermore, although this type of approach may be
used to validate the SAA solution, it does not attempt to

improve it, by taking into account possible estimation errors.
More recently, distributionally robust optimization (DRO) has
garnered considerable attention, as it provides a principled
way of obtaining a high-confidence upper bound on the true
out-of-sample cost [6], [8], [9]. In particular, its capabilities to
provide rigorous performance and safety guarantees has made
it an attractive technique for data-driven and learning-based
control [10]–[12]. DRO refers to a broad class of methods
in which a variant of (1) is solved where P is replaced with
a worst-case distribution within a statistically estimated set
of distributions, called an ambiguity set.

As the theory essentially requires only that the ambiguity
set contains the true distribution with a prescribed level of
confidence, a substantial amount of freedom is left in the
design of the geometry of these sets. As a result, many
different classes of ambiguity sets have been proposed in the
literature, e.g., Wasserstein ambiguity sets [9], divergence-
based ambiguity sets [6], [12], [13] and moment-based
ambiguity sets [8], [14]; See [15], [16] for recent surveys.

Despite the large variety of existing classes of ambiguity
sets, a common characteristic is that their design is consid-
ered separately from the optimization problem in question.
Although this simplifies the analysis in some cases, it may
also induce a significant level of conservatism; In reality,
we are only interested in excluding distributions from the
ambiguity set which actively contribute to increasing the
worst-case cost. Requiring that the true distribution deviates
little from the data-driven estimate in all directions may
therefore be unnecessarily restrictive. This intuition motivates
the introduction of a new DRO methodology, which is aimed
at designing the geometry of the ambiguity sets with the
original problem (1) in mind. The main idea is that by only
excluding those distributions that maximally affect the worst-
case cost, higher levels of confidence can be attained without
introducing additional conservatism to the cost estimate.

Contributions: (i) We propose a novel class of ambiguity
sets for DRO, taking into account the structure of the
underlying optimization problem; (ii) We prove that the DRO
cost is both a high-confidence upper bound and a consistent
estimate of the optimal cost of the original stochastic program
(1); (iii) We demonstrate empirically that the provided
ambiguity set outperforms existing alternatives.

Notation: We denote [n] = {1, . . . , n}, for n ∈ IN. |S|
denotes the cardinality of a (finite) set S. ei ∈ IRn is the
ith standard basis vector in IRn. Its dimension n will be
clear from context. We write ‘a.s.’ to signify that a random
event occurs almost surely, i.e., with probability 1. δX is the
indicator of a set X: δX(x) = 0 if x ∈ X , +∞ otherwise.
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II. PROBLEM STATEMENT

We will assume that the random variable ξ is finitely
supported, so that without loss of generality, we may write
Ξ = {1, . . . , d}. This allows us to define the probability
mass vector p = (P[ξ = i])di=1, and enumerate the cost
realizations ℓi = ℓ( · , i), i ∈ [d]. Furthermore, it will be
convenient to introduce the mapping L : IRn → IRd as
L(x) = (ℓ1(x), . . . , ℓd(x)). We will pose the following
(mostly standard) regularity assumption on the cost function.

Assumption II.1 (Problem regularity). For all i ∈ [d]

(i) ℓi is continuous on X;
(ii) ℓi := ℓi + δX is level-bounded;

Since any continuous function is lower semicontinuous
(lsc), Assumption II.1 combined with the closedness of X
implies inf-compactness, which ensures attainment of the
minimum [17, Thm. 1.9]. Continuity of ℓi is used mainly
to establish continuity of the solution mapping V⋆—defined
below, see (2). However, a similar result can be obtained by
replacing condition (i) by lower semicontinuity and uniform
level-boundedness on X . However, for ease of exposition,
we will not cover this modification explicitly.

Let p⋆ ∈ ∆d := {p ∈ IRd
+ | ∑d

i=1pi = 1} denote the
true-but-unknown probability mass vector, and define V :
IRn×∆d → IR : (x, p) 7→ ⟨p, L(x)⟩, to obtain the parametric
optimization problem with optimal cost and solution set

V⋆(p) = min
x∈X

V (x, p) and X⋆(p) = argmin
x∈X

V (x, p). (2)

The solution of (1) is retrieved by solving (2) with p = p⋆.
Assume we have access to a dataset Ξ̂ := {ξ1, . . . , ξm} ∈

Ξm collected i.i.d. from p⋆. In order to avoid the afore-
mentioned downward bias of SAA, our goal is to obtain a
data-driven decision x̂m along with an estimate V̂m such that

P[V (x̂m, p⋆) ≤ V̂m] ≥ 1− β, (3)

where β ∈ (0, 1) is a user-specified confidence level.
We address this problem by means of distributionally robust

optimization, where instead of (2), one solves the surrogate
problem

V̂m = min
x∈X

max
p∈Am

V (x, p). (DRO)

Here, Am ⊆ ∆d is a (typically data-dependent, and thus,
random) set of probability distributions that is designed to
contain the true distribution p⋆ with probability 1−β, ensuring
that (3) holds. Trivially, (3) is satisfied with β = 0 by taking
Am ≡ ∆d. This recovers a robust optimization method, i.e.,
minx∈X maxi∈[d] ℓi(x). Although it satisfies (3), this robust
approach tends to be overly conservative as it neglects all
available statistical data. The aim of distributionally robust
optimization is to additionally ensure that V̂m is a consistent
estimator, i.e.,

lim
m→∞

V̂m = V⋆(p⋆), a.s. (4)

We will say that a class of ambiguity sets is admissible
if the solution V̂m of the resulting DRO problem (DRO)
satisfies (3) and (4). Our objective is to develop a methodology

for constructing admissible ambiguity sets that take into
account the structure of (DRO) and in doing so, provide
tighter estimates of the cost, while maintaining (3) with a
given confidence level β.

III. COST-AWARE DRO

In this section, we describe the proposed DRO framework,
which we will refer to as cost-aware DRO (CADRO). The
overall method is summarized in Alg. 1.

A. Motivation
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Fig. 1. Conceptual motivation for the structure of the ambiguity set (6).
The cost contour lines {p ∈ ∆3 | ⟨L(x), p⟩ = α} corresponding to some
x ∈ X are shown for increasing values of α (dark to light), together with
the sets ATV :=∆3 ∩ IB1(p̂, ϱ) and A := {p ∈ ∆3 | ⟨L(x), p⟩ ≤ α}.
Here, ϱ > 0 is determined to satisfy (5) and α = maxp∈ATV ⟨L(x), p⟩.
Since ATV ⊂ A, A satisfies (5) with a higher confidence level 1− β, but
nevertheless, we have maxp∈A V (x, p) = maxp∈ATV V (x, p).

We start by providing some intuitive motivation. Consider
the problem (DRO). In order to provide a guarantee of the
form (3), it obviously suffices to design Am such that

P[p⋆ ∈ Am] ≥ 1− β. (5)

However, this condition alone still leaves a considerable
amount of freedom to the designer. A common approach
is to select Am to be a ball (expressed in some statistical
metric/divergence) around an empirical estimate p̂ of the
distribution. Depending on the choice of metric/divergence
(e.g., total variation [18], Kullback-Leibler [6], Wasserstein
[9], . . . ), several possible variants may be obtained. Using
concentration inequalities, one can then select the appropriate
radius of this ball, such that (5) is satisfied. A drawback
of this approach, however, is that the construction of Am

is decoupled from the original problem (1). Indeed, given
that Am takes the form of a ball, (5) essentially requires the
deviation of p̂ from p⋆ to be small along every direction. If
one could instead enlarge the ambiguity set without increasing
the worst-case cost, then (5) could be guaranteed for smaller
values of β without introducing additional conservatism. This
idea is illustrated in Fig. 1.

Conversely, for a fixed confidence level β, one could thus
construct a smaller upper bound V̂m, by restricting the choice
of p only in a judiciously selected direction. Particularly,
we may set Am = {p ∈ ∆d | ⟨L(x), p⟩ ≤ αm} for
some candidate solution x ∈ X , where αm is the smallest
(potentially data-dependent) quantity satisfying (5). This
directly yields an upper bound on the estimate V̂m. Namely,
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for x⋆ ∈ X⋆(p⋆), we have with probability 1− β,

V (x⋆, p⋆)
(a)

≤ V (x̂m, p⋆) ≤ max
p∈Am

V (x̂m, p) = V̂m

= min
x∈X

max
p∈Am

V (x, p)
(b)

≤ max
p∈Am

V (x, p) = αm.

Here, inequalities (a) and (b) become equalities when x̂m =
x⋆ = x. Thus, a reasonable aim would be to select x to be a
good approximation of x⋆. We will return to the matter of
selecting x in §III-C. First, however, we will assume x to be
given and focus on establishing the coverage condition (5).

B. Ambiguity set parameterization and coverage

Motivated by the previous discussion, we propose a family
of ambiguity sets parameterized as follows. Let v ∈ IRd be
a fixed vector (we will discuss the choice of v in §III-C).
Given a sample Ξ̂ = {ξ1, . . . , ξm} of size |Ξ̂| = m drawn
i.i.d. from p⋆, we consider ambiguity sets of the form

AΞ̂(v) := {p ∈ ∆d | ⟨p, v⟩ ≤ αΞ̂(v)}, (6)

where α : Ξm × IRd ∋ (Ξ̂, v) 7→ αΞ̂(v) ∈ IR is a data-
driven estimator for ⟨p⋆, v⟩, selected to satisfy the following
assumption, which implies that (5) holds for Am = AΞ̂(v).

Assumption III.1. P[⟨p⋆, v⟩ ≤ αΞ̂(v)] ≥ 1− β, ∀v ∈ IRd.

Note that the task of selecting α to satisfy Assumption III.1
is equivalent to finding a high-confidence upper bound on
the mean of the scalar random variable ⟨v, eξ⟩, ξ ∼ p⋆. It
is straightforward to derive such bounds by bounding the
deviation of a random variable from its empirical mean using
classical concentration inequalities like Hoeffding’s inequality
[19, Prop. III.2]. Although attractive for its simplicity, this
type of bounds has the drawback that it applies a constant
offset (depending only on the sample size, not the data) to the
empirical mean, which may be conservative, especially for
small samples. Considerably sharper bounds can be obtained
through a more direct approach. In particular, we will focus
our attention on the following result due to Anderson [20],
which is a special case of the framework presented in [21].

Proposition III.2 (Ordered mean bound [21]). Let
ηk := ⟨v, eξk⟩, k ∈ [m], so that IE[ηk] = ⟨v, p⋆⟩. Let
η(1) ≤ η(2) ≤ · · · ≤ η(m) ≤ η denote the sorted sequence,
with ties broken arbitrarily, where η := maxi∈[d] vi. Then,
there exists a γ ∈ (0, 1) such that Assumption III.1 holds for

αΞ̂(v) =
(
κ
m −γ

)
η(κ)+

∑m
i=κ+1

η(i)

m +γη, κ = ⌈mγ⌉. (7)

For finite m, the smallest value of γ ensuring that
Proposition III.2 holds, can be computed efficiently by solving
a scalar root-finding problem [21, Rem. IV 3]. Furthermore,
it can be shown that the result holds for [22, Thm. 11.6.2]

γ =

√
log(1/β)

2m , for sufficiently large m. (8)

This asymptotic expression will be useful when establishing
theoretical guarantees in Section IV.

C. Selection of v

The proposed ambiguity set (6) depends on a vector v.
As discussed in §III-A, we would ideally take v = L(x⋆)
with x⋆ ∈ X⋆(p⋆). However, since this ideal is obviously
out of reach, we instead look for suitable approximations. In
particular, we propose to use the available dataset Ξ̂ in part
to select v to approximate L(x⋆), and in part to calibrate the
mean bound α.

To this end, we will partition the available dataset Ξ̂ into
a training set and a calibration set. Let τ : IN → IN be a
user-specified function determining the size of the training
set, which satisfies

τ(m) ≤ cm for some c ∈ (0, 1); and (9a)
τ(m) → ∞ as m → ∞. (9b)

Correspondingly, let {Ξ̂T, Ξ̂C} be a partition of Ξ̂, i.e., Ξ̂T ∩
Ξ̂C = ∅ and Ξ̂T∪Ξ̂C = Ξ̂. Given that |Ξ̂| = m, we ensure that
|Ξ̂T| = τ(m) and thus |Ξ̂C| = m′ :=m− τ(m). Note that by
construction, m′ ≥ (1− c)m, with c ∈ (0, 1), and thus, both
|Ξ̂T| → ∞ and |Ξ̂C| → ∞ as m → ∞. Due to the statistical
independence of the elements in Ξ̂, it is inconsequential
how exactly the individual data points are divided into Ξ̂T

and Ξ̂C. Therefore, without loss of generality, we may take
Ξ̂T = {ξ1, . . . , ξτ(m)} and Ξ̂C = {ξτ(m)+1, . . . , ξm}.

With an independent dataset Ξ̂T at our disposal, we may
use it to design a mapping vτ(m) : Ξτ(m) → IRd, whose
output will be a data-driven estimate of L(x⋆). For ease of
notation, we will omit the explicit dependence on the data,
i.e., we write vτ(m) instead of vτ(m)(Ξ̂T). We propose the
following construction. Let p̂τ(m) =

1
τ(m)

∑τ(m)
k=1 eξk denote

the empirical distribution of Ξ̂T and set

vτ(m) = L(xτ(m)), with
xτ(m) ∈ argmin

x∈X
V (x, p̂τ(m)).

(10)

Remark III.3. We underline that although (10) is a natural
choice, several alternatives for the training vector could in
principle be considered. To guide this choice, Lemma IV.2
provides sufficient conditions on the combination of α and
vτ(m) to ensure consistency of the method.

Given vτ(m) as in (10), we will from hereon use the
following shorthand notation whenever convenient:

Am :=AΞ̂C
(vτ(m)), αm :=αΞ̂C

(vτ(m)), (11)

with AΞ̂C
(vτ(m)) as in (6). We correspondingly obtain the

cost estimate V̂m according to (DRO).

D. Selection of τ

Given the conditions in (9), there is still some flexibility
in the choice of τ(m), which defines a trade-off between the
quality of vτ(m) as an approximator of L(x⋆) and the size
of the ambiguity set Am.

An obvious choice is to reserve a fixed fraction of the
available data for the training set, i.e., set τ(m)/m equal to
some constant. However, for low sample counts m, the mean
bound αm will typically be large and thus Am will not be
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substantially smaller than the unit simplex ∆d, regardless of
vτ(m). As a result, the obtained solution will also be rather
insensitive to vτ(m). In this regime, it is therefore preferable
to reduce the conservatism of αm quickly by using small
values of τ(m)/m (i.e., large values of m′ = m− τ(m)).

Conversely, for large sample sizes, αm is typically a
good approximation of ⟨p⋆, vτ(m)⟩ and the solution to (DRO)
will be more strongly biased to align with vτ(m). Thus, the
marginal benefit of improving the quality of vτ(m) takes
priority over reducing αm, and large fractions τ(m)/m become
preferable. Based on this reasoning, we propose the heuristic

τ(m) = ⌊µνm(m+1)
µm+ν ⌋, µ, ν ∈ (0, 1). (12)

Note that µ and ν are the limits of τ(m)/m as m → 0 and m →
∞, respectively. Eq. (12) then interpolates between these
extremes, depending on the total amount of data available.
We have found µ = 0.01, ν = 0.8 to be suitable choices for
several test problems.

E. Tractable reformulation

The proposed ambiguity set takes the form of a polytope,
and thus, standard reformulations based on conic ambiguity
sets apply directly [23]. Nevertheless, as we will now show, a
tractable reformulation of (DRO) specialized to the ambiguity
set (6) may be obtained, which requires fewer auxiliary
variables and constraints.

Proposition III.4 (Tractable reformulation of (DRO)). Fix
parameters p̂ ∈ ∆, v ∈ IRd, and α ∈ IR and let A =
{p ∈ ∆d | ⟨p, v⟩ ≤ α} be an ambiguity set of the form (6).
Denoting VA := minx∈X maxp∈A V (x, p), we have

VA = min
x∈X,λ≥0

λα+max
i∈[d]

{ℓi(x)− λvi}. (13)

Proof. Let g(z) := maxp∈∆d
{⟨p, z⟩ | ⟨p, v⟩ ≤ α}, where

z ∈ IRd and α are constants with respect to p. By strong
duality of linear programming [24],

g(z) = min
λ≥0

max
p∈∆d

⟨p, z⟩ − λ(⟨p, v⟩ − α)

= min
λ≥0

λα+max
p∈∆d

⟨p, z − λv⟩

Noting that maxp∈∆d
y = maxi∈[d] yi, ∀y ∈ IRd and that

VA = minx∈X g(L(x)), we obtain (13).

If the functions {ℓi}i∈[d] are convex, then (13) is a
convex optimization problem, which can be solved efficiently
using off-the-shelf solvers. In particular, if they are convex,
piecewise affine functions, then it reduces to a linear program
(LP). For instance, introducing a scalar epigraph variable,
one may further rewrite (13) as

min
x∈X,λ≥0,z∈IR

{λα+ z | L(x)− λv ≤ z1}, (14)

which avoids the non-smoothness of the pointwise maximum
in (13) at the cost of a scalar auxiliary variable. Even for
general (possibly nonconvex) choices of ℓi, (13) is a standard
nonlinear program, which can be handled by existing solvers.

We conclude the section by summarizing the described
steps in Alg. 1.

Algorithm 1 CADRO

Require: i.i.d. dataset Ξ̂ = {ξ1, . . . , ξm}; τ(m) (cf. (9)); Confi-
dence parameter β ∈ (0, 1).

Ensure: (V̂m, x̂m) satisfy (3)–(4) ▷ Cf. §IV
Ξ̂T ← {ξ1, . . . , ξτ(m)}, Ξ̂C ← {ξτ(m)+1, . . . , ξm}
vτ(m) ← evaluate (10)
(V̂m, x̂m)← solve (DRO) with Am = AΞ̂C

(vτ(m)) ▷ Use (13)

IV. THEORETICAL PROPERTIES

We will now show that the proposed scheme possesses
the required theoretical properties, namely to provide (i) an
upper bound to the out-of-sample cost, with high probability
(cf. (3)); and (ii) a consistent estimate of the true optimal
cost (cf. (4)). The first guarantee follows almost directly by
construction, and its proof is therefore omitted here. See [19]
for more details.

Theorem IV.1 (Out-of-sample guarantee). Fix m > 0, and
let V̂m, x̂m be generated by Alg. 1. Then,

P[V (x̂m, p⋆) ≤ V̂m] ≥ 1− β. (15)

We now turn our attention to the matter of consistency.
That is, we will show that under suitable conditions on the
mean bound α and the training vector v in (6), V̂m converges
almost surely to the true optimal value, as the sample size
m grows to infinity. We will then conclude the section by
demonstrating that for the choices proposed in §III-B and
III-C, the aforementioned conditions hold.

Lemma IV.2 (consistency conditions). Let Ξ̂T, Ξ̂C be two
independent samples from p⋆, with sizes |Ξ̂T| = τ(m) and
|Ξ̂C| = m′ :=m−τ(m). Let p̂m′ := 1

m′
∑

ξ∈Ξ̂C
eξ denote the

empirical distribution of the calibration set Ξ̂C. If vτ(m) =
L(xτ(m)), with xτ(m), αm = αΞ̂C

(vτ(m)) chosen to ensure
(i) ⟨p̂m′ , vτ(m)⟩ ≤ αΞ̂C

(vτ(m)), a.s.;
(ii) lim supm→∞ αΞ̂C

(vτ(m)) ≤ V⋆(p⋆), a.s.

Then V̂m → V⋆(p⋆), a.s., where V̂m is given by (DRO).

Proof. Let Vm(x) := maxp∈Am⟨p, L(x)⟩. It is clear from
condition (i) and (6) that p̂m′ ∈ Am. Let us furthermore define
εm(x) = L(x)−L(xτ(m)). Then, by [19, Lem. A.2], we have
for all x ∈ X , ⟨p̂m′ , L(x)⟩ ≤ Vm(x) ≤ αm + ∥εm(x)∥∞.
Minimizing with respect to x yields that for all m,

V̂ SAA

m′ ≤ V̂m ≤ αm, (16)

where V̂ SAA

m′ :=V⋆(p̂m′) (cf. (2)). By the law of large
numbers, p̂m′ → p⋆, a.s. Furthermore, under Assumption II.1,
[19, Lem. A.4] states that the optimal value mapping V⋆(p)
is continuous, which implies that also V̂ SAA

m′ → V⋆(p⋆), a.s.
The claim then follows directly from condition (ii).

Informally, Lemma IV.2 requires that the mean bound
is bounded from below by the empirical mean, and from
above by a consistent estimator of the optimal cost. The
latter excludes choices such as the robust minimizer xτ(m) ∈
argminmaxi∈[d] ℓi(x) in the construction of vτ(m). How-
ever, besides (10), one could consider alternatives, such as
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a separate DRO scheme to select vτ(m). A more extensive
study of such alternatives, however, is left for future work. We
now conclude the section by showing that (10) and the mean
bound given by Proposition III.2 satisfy the requirements of
Lemma IV.2.

Theorem IV.3 (Consistency – Ordered mean bound). Let V̂m

be generated by Alg. 1, for m > 0. If αm = αΞ̂C
(vτ(m)) is

selected according to Proposition III.2, with vτ(m) as in (10),
then, V̂m → V⋆(p⋆), a.s.

Proof. It suffices to show that conditions (i) and (ii) of
Lemma IV.2 are satisfied by αΞ̂C

(vτ(m)).
Condition (i): Consider αΞ̂C

(v) as in (7) for an arbitrary
v ∈ IRd, and let (η(i))i∈[m′] denote (⟨v, eξ⟩)ξ∈Ξ̂C

, sorted in
increasing order, then, we may write

⟨p̂m′ , v⟩ = 1
m′

∑m′

i=1η(i), (17)

and thus,

αΞ̂C
(v)− ⟨p̂m′ , v⟩ =

(
κ
m′ − γ

)
η(κ) −

∑κ
i=1

η(i)

m′ + γη,

(a)
≥

(
κ
m′ − γ

)
η(κ) − κ

m′ η(k) + γη,

= γ(η − η(k))
(γ≥0)

≥ 0, ∀v ∈ IRd,

where (a) follows from the fact that η(i) are sorted.
Condition (ii): There exists a constant v ≥ ∥vτ(m)∥∞,

∀m > 0, a.s. [19, Lem. A.4]. Therefore, using (7) and (17),

αm − ⟨p̂m′ , vτ(m)⟩ ≤ ( κ
m′ − γ)v + κ

m′ v + γv

= 2v( κ
m′ )

(b)
≤ 2v(γ + 1

m′ ),
(18)

for all m′ > 0, where (b) follows from κ = ⌈m′γ⌉ ≤
m′γ + 1. By construction (see (9) and below), we have that
both τ(m) → ∞ and m′ → ∞. Thus, using (8), γ + 1

m′ =√
log(1/β)

2m′ + 1
m′ → 0. Combined with (18), this yields that

lim sup
m→∞

αΞ̂C
(vτ(m))− ⟨vτ(m), p̂Ξ̂C

⟩ ≤ 0. (19)

Finally, by the law of large numbers, p̂m′ → p⋆ and p̂τ(m) →
p⋆, a.s. Thus (under Assumption II.1), [19, Cor. A.6] ensures
that limm→∞⟨p̂m′ , L(xτ(m))⟩ = V⋆(p⋆), which, combined
with (19) yields the required result.

V. ILLUSTRATIVE EXAMPLE

As an illustrative example, we consider the following
facility location problem, adapted from [25, Sec. 8.7.3].
Consider a bicycle sharing service setting out to determine
locations x(i) ∈ Xi ⊆ IR2, i ∈ [nx], at which to build
stalls where bikes can be taken out or returned. We will
assume that Xi are given (polyhedral) sets, representing areas
within the city suitable for constructing a new bike stall. Let
z(k) ∈ IR2, k ∈ [d], be given points of interest (public
buildings, tourist attractions, parks, etc.). Suppose that a
person located in the vicinity of some point z(k) decides to
rent a bike. Depending on the availability at the locations
x(i), this person may be required to traverse a distance
ℓk(x) = maxi∈[nx]∥x(i) − z(k)∥2, where x = (x(i))i∈[nx].

With this choice of cost, (13) can be cast as a second
order cone program. Thus, if the demand is distributed over
(z(k))k∈[d] according to the probability mass vector p⋆ ∈ ∆d,
then the average cost to be minimized over X = X1×· · ·×Xd

is given by V (x, p⋆) as in (2). We will solve a randomly
generated instance of the problem, illustrated in Fig. 2.

X1

X2

X3

z(k)

argmin
x∈X

V (x, p
⋆
)

argmin
x∈X

max
k∈[d]

ℓk(x)

CADRO (m = 20)

10
−4

10
−3

10
−2

10
−1

Fig. 2. Illustration of the facility location problem. The colors of the points
z(k) represent their probability p⋆k .

As p⋆ is unknown, one has to collect data, e.g., by means
of counting passersby at the locations z(k). As this may be a
costly operation, it is important that the acquired data is used
efficiently. Furthermore, in order to ensure that the potentially
large up-front investment is justified, we are required to
provide a certificate stating that, with high confidence, the
quality of the solution will be no worse than what is predicted.
Thus, given our collected sample of size m, our aim is
to compute estimates V̂m, satisfying (3). We compare the
following data-driven methods.
CADRO Solves (DRO) according to Alg. 1, setting τ(m) as
in (12), with µ = 0.01, ν = 0.8.
D-DRO Solves (DRO), with an ambiguity set of the form
Am = {p ∈ ∆d | D(p̂m, p) ≤ rDm}, with D ∈ {TV,KL,W}
the total variation, Kullback-Leibler, and Wasserstein dis-
tance/divergence1 (cf. [12, Tb. I]). rTV

m , rKL
m are selected

according to [26, Thm 2.1]2, [6, Thm. 5], respectively, and
rW
m = maxi,j∈[d] Kijr

TV
m [28], ensuring that (5) is satisfied.

SAA Using the same data partition {Ξ̂T, Ξ̂C} as CADRO, we
use Ξ̂T to compute xm = xτ(m) as in (10), and we use Ξ̂C to
obtain a high-confidence upper bound V̂m = αΞ̂C

(L(xτ(m))),
utilizing Proposition III.2.
Note that D-DRO does not require an independent data
sample in order to satisfy (3).
Remark V.1. Other methods could be used to validate SAA
(e.g., cross-validation [2], replications [7]), but these methods
only guarantee the required confidence level asymptotically.
In order to obtain a fair comparison, we instead use the
same mean bound, namely (7) for both CADRO and SAA,
so both methods provide the same theoretical guarantees.
Moreover, we note that a different data partition could be used
for SAA. However, preliminary experiments have indicated
that significantly increasing or decreasing τ(m) resulted in
deteriorated bounds on the cost.

We set nx = 3, d = 50, β = 0.01, and apply each method
for 100 independently drawn datasets of size m. In Fig. 3, we

1We use Kij = ∥z(i) − z(j)∥2, i, j ∈ [d] as the transportation cost.
2This is a slightly improved version of the classical Bretagnolle-Huber-

Carol inequality [27, Prop. A.6.6].
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plot the estimated costs V̂m and the achieved out-of-sample
cost V (x̂m, p⋆), for increasing values of m. We observe that
CADRO provides a sharper cost estimate V̂m than the other
approaches. In particular, the classical DRO formulations
require relatively large amounts of data before obtaining a
non-vacuous upper bound on the cost. The right-hand panel
in Fig. 3 shows that additionally, CADRO returns solutions
which exhibit superior out-of-sample performance than the
compared approaches, illustrating that it does not rely on
conservative solutions to obtain better upper bounds.
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Fig. 3. Results of the facility location problem of Section V. (left): The
cost estimates V̂m satisfying (3) and (4); (right): True out of sample cost
V (x̂m, p⋆). The points indicate the sample mean, the solid errorbars indicate
the empirical 0.95 quantiles and the semi-transparent errorbars indicate the
largest and smallest values over 100 independent runs.

VI. CONCLUSION AND FUTURE WORK

We proposed a DRO formulation, in which the ambiguity
set is designed to only restrict errors in the distribution
that are predicted to have significant effects on the worst-
case expected cost. We proved out-of-sample performance
bounds and consistency of the resulting DRO scheme, and
demonstrated empirically that this approach may be used to
robustify against poor distribution estimates at small sample
sizes, while remaining considerably less conservative than
existing DRO formulations. In future work, we aim to extend
the work to continuous distributions.
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