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Abstract— For over two decades, Flux Balance Analysis
(FBA) has been successfully used for predicting growth rates
and intracellular reaction rates in microbiological metabolism.
An aspect that is often omitted from this analysis, is segregation
or heterogeneity between different cells. In this work, we
propose an extended FBA method to model cell size distribu-
tions in balanced growth conditions. Hereto, a mathematical
description of the concept of balanced growth in terms of
cell mass distribution is presented. The cell mass distribution,
quantified by the Number Density Function (NDF), is affected
by cell growth and cell division. An optimization program is
formulated in a general manner in which the NDF, average
cell culture growth rate and reaction rates per cell mass
are treated as optimization variables. As qualitative proof
of concept, the methodology is illustrated on a core carbon
model of Escherichia coli under aerobic growth conditions.
This illustrates feasibility and applications of this method, while
indicating some shortcomings intrinsic to the simplified biomass
structuring and the time invariant approach.

Index Terms— Cellular dynamics, Population balance mod-
els, Flux balance analysis, Balanced growth.

I. INTRODUCTION

Heterogeneity, or physiological and phenotypical diversity,
in cell populations arises naturally at different levels. Hetero-
geneity in protein expression seems to be caused by stochas-
tic processes, either arising from a biological evolutionary
mechanism, or as a response to a changing environment [1],
[2]. In particular, heterogeneity in cell mass is a direct result
of cell growth and cell division, where the interplay between
both processes is essential to maintain cell size homeostasis
[3]–[6]. There are several reasons for the cell size control,
for example, large cells may experience limited transport via
diffusion [7]. Simulation-based models of heterogeneity in
populations are separated into two classes, individual-based
models and population balance models [2]. In the former, the
heterogeneity is accounted for by simulating a finite number
of cells, whereas in the latter, the population dynamics are
described by a density function subject to averaged processes
[8].

At the core of cellular processes lies the metabolism, i.e.,
all different intracellular reactions and metabolites consti-
tuting a metabolic network, responsible for consuming one
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or multiple substrates leading to the production of biomass
and by-products. A relatively simply yet popular method to
resolve the metabolic network in absence of detailed kinetics,
is Flux Balance Analysis (FBA) [9]–[11]. This method
estimates fluxes based on the optimization of an objective,
often cell growth rate, inspired by evolutionary principles.
Although FBA in itself does not consider heterogeneity of
cell size, several individual-based models integrating FBA
have been reported in literature [12]–[15].

This paper attempts to include cell mass heterogeneity
and cell division described by a population balance model
within the FBA framework, in order to model the cell
size distribution. To the best of our knowledge, no prior
publication describes this concept. The contributions in this
paper are 1) formulating a quasi-steady state condition taking
cell mass into account, 2) modifying the FBA program to
include heterogeneity on the level of individual cell and
3), evaluating the methodology using a metabolic network
describing the core carbon pathways in Escherichia coli [16].

II. BACKGROUND INFORMATION
A. Flux Balance Analysis

A core aspect in FBA is the inclusion of the metabolic
network. This network, specific per organism, describes the
ensemble of different biochemical reactions involved in the
conversion of substrate molecules into biomass and by-
products [9], [11], [17]. The model scope determines the
dimensions of this metabolic network, ranging from tens
to thousands of metabolites and reactions. The metabolic
network is mathematically represented by the so-called sto-
ichiometric matrix S containing the reaction coefficients per
metabolite for each reaction. The dimensions of its rows and
columns equal the number of metabolites and reactions, re-
spectively. The biomass growth reaction is typically lumped
into a single reaction involving several metabolites, resulting
in an unstructured model, where biomass is expressed in
gram cell dry weight (gCDW).

In FBA, it is assumed that the organism grows under quasi-
steady state conditions, often termed balanced growth. Under
quasi-steady state conditions, the intensive properties of the
culture (e.g. intracellular metabolite concentration) remain
constant, while extensive properties (e.g. total biomass) in-
crease. Neglecting dilution due to growth, the quasi-steady
state mass balance is formulated as [9]

S ·v = 0. (1)

Here S represents stoichiometric matrix, and the vector v
represents the reaction fluxes in the metabolic network (units:
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molgCDW−1 h−1 or h−1). The specific rate of production
of a metabolite in a reaction is given by the product of
the reaction flux with its corresponding coefficient in the
stoichiometric matrix S.

FBA typically assumes a maximization of the growth rate
µ = c⊺v, with c containing weighting factors to the biomass
produced per reaction. Often, c is 0 in all but one entry,
with the nonzero entry corresponding to the biomass growth
reaction. Optimizing the growth rate µ subject to (s.t.) the
quasi-steady state metabolism and reaction flux constraints,
the FBA program is given as follows [9], [10], [18]

max
v

µ = c⊺v,

s.t. S ·v = 0,
vlb ≤ v ≤ vub.

(2)

The vectors vlb and vub impose bounds on reaction fluxes,
defined by thermodynamic (e.g. reaction irreversibility) and
kinetic constraints (e.g. maximum uptake rate). The FBA
program in (2) is a linear optimization program, which can
be solved efficiently [18] with standard solvers such as ILOG
CPLEX (IBM).

The objective, i.e. maximization of growth rate, follows
from an evolutionary argument. Over a large timespan, natu-
ral occurring species are assumed to have evolved to utilize
resources close to optimality. It should be noted that a variety
of objective functions for (2) have been formulated [18], [19],
either describing a similar evolutionary assumption (e.g. ATP
yield maximization) or relying on different considerations.
As result of the optimization, one can in silico predict the
reaction fluxes v of the organism under changes in growth
conditions or under genetic modification [10].

B. Population Balance Modeling
Population systems are encountered in many applications

in engineering, including cellular systems. The population
is described as a collection of individual particles, each
characterized with one or multiple states, that undergo the
same type of processes. Population Balance Models (PBM)
provide a deterministic approach to describe the time evolu-
tion of such population systems with heterogeneity among its
individuals [20], [21]. In cell populations, this heterogeneity,
the particle state, may be e.g. cell mass or size, cell age or
enzyme content [22].

In this work, the cell mass is considered as single state
x, that is expected to evolve over time described by ẋ =
µ(x)x. The biomass distribution of cells is represented by
the Number Density Function n(t,x). As implied by the
name, the NDF n(t,x) denotes an (unnormalized) probability
density function, such that the total number of particles with
state x belonging to a domain [x1,x2] is equal to

∫ x2
x1

n(t,ξ )dξ .
The time evolution of the NDF n(t,x) for a cell culture

undergoing cell growth and division is given by the following
Population Balance Model:

∂n(t,x)
∂ t

+
∂ µ(x)xn(t,x)

∂x
=

− γ(x)n(t,x)+
∫

∞

x
β (x,x′)γ(x′)n(t,x′)dx′.

(3)

On the left-hand side, the first term represents a rate of
change over time, and the second term corresponds to cell
growth. The right-hand side represents cell division at rate
γ(x) and division kernel β (x,x′). The negative term indicates
dividing mother cells, whereas the positive term indicates
divided daughter cells from larger cells. Equation (3) is
derived based on a conservation of number of particles. For
further information on the origin of (3), see e.g. [20].

Typically the cell population interacts with a continuous
phase, e.g. concentrations of nutrients, which in turn may in-
fluence kinetic rates and add additional differential equations
to the overall model (3) [22]. Furthermore, standard no-flux
boundary conditions are defined [20], [22], meaning cells do
not leave/enter the domain [0,∞),

µ(x)xn(t,x)→ 0, for x → 0 or x → ∞. (4)

The cell division rate γ(x) indicates how frequently cells in
the population divide. The division rate γ(x) is assumed to
be expressed solely as a function of cell mass x. Modeling
the division rate remains an open issue in literature, and
other dependencies, e.g. cell age or increased size, have been
considered in other works, see e.g. [3], [6], [23]

The division kernel β (x,x′) describes the average number
of daughter cells with cell mass x that are born after division
of a mother cell with mass x′, such that β (x,x′) = 0 for
x > x′. In addition the kernel must satisfy mass conservation,
this is, x′ =

∫ x′
0 ξ β (ξ ,x′)dξ [20], [22]. Binary division is

modeled by a particular kernel β (x,x′) = 2δ (x− x′/2), in
which a mother cell divides into two equally sized daughter
cells. This phenomenon is encountered in Escherichia coli
and other prokaryotic bacteria [6], [24].

The total biomass can be expressed as

B(t) =
∫

∞

0
ξ n(t,ξ )dξ . (5)

Multiplying the PDE in (3) with cell mass x and integrating
over the cell mass domain [0,∞) it is possible to show the
time evolution of the total biomass to be given as

dB(t)
dt

=
∫

∞

0
µ(ξ )ξ n(t,ξ )dξ . (6)

Thus the total biomass change depends explicitly only on
the specific growth rate µ(x), but it can depend implicitly
on cell division.

III. HETEROGENEOUS FBA

In the following Subsection III-A, Equation (3) is refor-
mulated to include the metabolite dynamics. In Subsection
III-B, the quasi-steady state conditions for the PBM are
formulated. In Subsection III-C, the result hereof is combined
with the assumption of maximizing growth rate, to extend
standard FBA with cell size heterogeneity, which is denoted
as heterogeneous FBA.
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A. Coupling the PBM with metabolite dynamics

Equation (3) describes the evolution of a cell population.
The metabolite dynamics are included based on the metabolic
network description. This coupling is important to account
for the changes in metabolite concentrations over time and
results in the set of equations,

∂n(t,x)
∂ t

+
∂ (µ(x,X,Y)xn(t,x))

∂x
=

− γ(x)n(t,x)+
∫

∞

x
β (x,x′)γ(x′)n(t,x′)dx′,

d
dt

(
X(t)
Y(t)

)
=
∫

∞

0

(
SX
SY

)
·v(ξ ,X,Y)ξ n(t,ξ )dξ .

(7)

Here, X(t) and Y(t) represents the amount of intracellular
and extracellular metabolites, respectively. The matrices SX
and SY represent submatrices of the stoichiometric matrix
S. The integral term in the metabolite dynamics sums the
production or consumption from each individual cell mass
interval. In practice, the growth rate µ(x,X,Y) and reac-
tion fluxes v(x,X,Y) depend on metabolite concentrations
(e.g. Michaelis-Menten kinetics). These rate expressions as
functions of X(t) and Y(t) are often unknown, such that (7)
cannot be integrated directly.

B. Quasi-steady state conditions

The PBM in (7) describes a time-dependent evolution
of the NDF. One is often interested in stationary behavior,
corresponding to so-called balanced growth or quasi-steady
state conditions. Here, the total biomass increases expo-
nentially, while the relative composition remains constant.
This is a base concept in FBA [9], as well as in Resource
Balance Analysis (RBA) [25], in which biomass is modeled
as a structured composition. Describing growth under quasi-
steady state has the advantage to reduce computational effort
while still describing a relevant process. A disadvantage is
that time-dependent process cannot be described.

In quasi-steady state conditions, metabolite concentrations
remain constant. This implies that during balanced growth,
the reaction fluxes v(x,X,Y) and growth rate µ(x,X,Y)
remain constant in X and Y. For the remainder of the text,
the unknown dependencies on X and Y for these reaction
fluxes and growth rate are omitted in notation of the reaction
flux vector, i.e. v(x) and µ(x), and are instead to be resolved
based on optimization under constraints, as in standard FBA.

To extend the concept of balanced growth with cell mass
heterogeneity, it is assumed that the ratio of the biomass of
cells with mass in the interval [x,x+∆x] to the total biomass
remains constant. Mathematically, this is

d
dt

(∫ x+∆x
x ξ n(t,ξ )dξ∫

∞

0 ξ n(t,ξ )dξ

)
= 0. (8)

The equation above can be rewritten as∫ x+∆x

x

∂ξ n(t,ξ )
∂ t

dξ =∫ x+∆x
x ξ n(t,ξ )dξ∫

∞

0 ξ n(t,ξ )dξ

d
dt

∫
∞

0
ξ n(t,ξ )dξ .

(9)

For infinitesimal small intervals, i.e. ∆x → 0, and dividing
both sides by the factor x∆x, this reduces to

∂n(t,x)
∂ t

=
n(t,x)∫

∞

0 ξ n(t,ξ )dξ

∫
∞

0
µ(ξ )ξ n(t,ξ )dξ , (10)

using (5) and (6). The coefficient to n(t,x) on the right-
hand side of (10) can be interpreted as the average growth,
weighted against the amount of biomass per individual cell
mass x. The average growth rate µ̄ is defined as

µ̄ =
1∫

∞

0 ξ n(t,ξ )dξ

∫
∞

0
µ(ξ )ξ n(t,ξ )dξ . (11)

This average growth rate corresponds to the specific growth
rate of the entire culture. As a consequence, by substituting
(10) into the PBM (3), the time-dependency of n(t,x) de-
scribes an exponential function with µ̄ , with the cell mass-
dependency described by an integro-differential equation.
One may regard this as the cell growth and cell division
being perfectly balanced out against each other, such that
the size distribution, i.e. cell mass heterogeneity, remains
constant. This formulation is consistent with other time-
invariant solutions to cell population models [8].

C. Heterogeneous FBA

The quasi-steady state conditions, as derived in previous
subsection, are formulated as part of a wider constraint-
based optimization framework. Similar to the reasoning in
FBA (Subsection II-A), the unknown reaction fluxes v(x) and
growth rate µ(x) are resolved assuming optimization of an
objective function, here corresponding to the maximization
of total biomass growth µ̄B, where B is the total biomass.
As the total biomass B increases exponentially, the average
specific growth rate µ̄ is chosen as objective. Due to the
heterogeneous cell mass considered, the maximization of
growth rate is considered over the total population, rather
than individual cell masses.

The growth rate µ(x) can be substituted as µ(x) =
c(x)⊺v(x). Here, c(x) contains the coefficients to determine
the mass-dependent growth rate µ(x), which can be used
to describe the biomass production reaction changing with
individual cell mass, as the cell composition differs between
cells of different mass. Applying quasi-steady state condi-
tions (10) to the PBM with continuous dynamics (7), the
following optimization program is proposed to describe FBA
with cell mass heterogeneity:

max
n(x),v(x),µ̄

µ̄, (12a)

s.t. µ̄n(x)≤− d
dx

(c(x)⊺v(x)xn(x)) (12b)

− γ(x)n(x)+
∫

∞

x
β (x,x′)γ(x′)n(x′)dx′,

c(x)⊺v(x)xn(x)→ 0, for x → 0 or x → ∞, (12c)
SX ·v(x)xn(x) = 0, (12d)∫

∞

0
SY ·v(ξ )ξ n(ξ )dξ ≥ b, (12e)∫

∞

0
c(ξ )⊺v(ξ )ξ n(ξ )dξ ≥ µ̄B, (12f)
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∫
∞

0
ξ n(ξ )dξ = B, (12g)

vlb(x)xn(x)≤ v(x)xn(x)≤ vub(x)xn(x), (12h)
0 ≤ n(x). (12i)

Here, the objective as optimization of average growth rate µ̄

is given in (12a). Equation (12b) tracks the balance between
growth and division to sustain balanced growth, along with
the boundary conditions (12c). Whereas formulations of the
PBM typically define the population balance as an equality,
a nonstrict inequality is used in (12b). The motivation behind
this change is discussed at the end of this section. Constraint
(12d) denotes a mass balance of intracellular metabolites
in quasi-steady state at every cell mass interval, similar to
FBA. Constraint (12e) provides a limit on total uptake b of
extracellular components1. Constraint (12f) denotes a mass
balance for the total biomass, based on the average specific
growth rate µ̄ . Similar to (12b), the equality constraint is
replaced as an inequality constraints. The total biomass B is
fixed in Constraint (12g). This constraint is required, as it
provides a sort of normalization to the NDF. Alternatively,
this constraint could be formulated as a normalization of
n(x), in which case the total biomass B is not defined a
priori. Constraint (12h) provides lower and upper bounds on
reaction fluxes, vlb(x) and vub(x), that are used to impose
reaction irreversibility or to include information on maxi-
mum/minimum kinetic rates. Constraint (12i) ensures that
the NDF n(x) is positive.

The optimization problem in (12) is discretized using a
finite volume scheme with first order upwind discretization
[26] to resolve the derivative to x in (12b). The optimization
problem in (12), after discretization, is nonlinear. However,
note that (12) is expressed in such way that the term v(x)
only appears in terms of v(x)xn(x). By defining n(x) and
v(x)xn(x) as the optimization variables, for a fixed value
of µ̄ , the constraints in the discretized problem are linear
in the optimization variables. In this case, the value of µ̄

determines whether the problem is feasible or infeasible, and
the problem can be solved as a linear feasibility program,
similar to the approach followed in [25], [27], by following
proposition:

Proposition 1: If the optimization program (12) has a
bounded solution (i.e. is infeasible for µ̄ → ∞), then there
exists an optimal µ̄∗ such that (12) is feasible for all µ̄ ≤ µ̄∗,
and infeasible for any µ̄ > µ̄∗.

Proof: The feasible subspace for (12) for a certain µ̄1
is a subspace of the feasible subspace for any µ̄2 ≤ µ̄1. This
can easily be verified from Constraints (12b) and (12f) being
formulated as inequalities. In addition, a maximum µ̄∗ must
exist and be finite, as the solution must be bounded, as (12)
is infeasible for µ̄ → ∞.
This proposition shows that the problem (12) may be solved
as a linear feasibility program, returning the maximum µ̄∗.
Although Constraints (12b) and (12f) would be expected as
equalities from a theoretical point of view, these are written
as inequalities, in part to allow us to prove this proposition.

1By convention, a negative exchange reaction flux denotes uptake [18].

The use of inequality signs in (12b) and (12f) may be
regarded as a capacity requirement, i.e. sufficient growth and
division occurs over all cell masses x to sustain balanced
growth at a fixed average growth rate µ̄ . At any average
growth rate larger than µ̄∗, there is insufficient capacity to
maintain the quasi-steady state condition over a range of
cell masses. From numerical simulations on two small-scale
metabolic networks [16], [28], it is observed that solving (12)
with (12b) and (12f) as either equalities or inequalities results
in a nearly identical optimal growth rate µ̄∗, with an error
that is either zero or orders of magnitude smaller than the
optimum. This suggests that both problems have the same
optimal solution up to numerical error, however, we could
not formally prove this to hold in general.

IV. CASE STUDY ON E. COLI CORE CARBON
PATHWAY

To illustrate the performance of the proposed heteroge-
neous FBA approach, a case study on the model organism
Eschericia coli is considered. The case study is performed
on a small-scale model of E. coli metabolism for aerobic
growth on glucose. The original model [16] contains 72
different metabolites and 95 biochemical reactions. Included
in these are 20 extracellular metabolites (and exchange
reactions). Two growth conditions are considered, one in
which oxygen limits growth, and one where oxygen is a
nonlimiting component. The biomass production reaction is
constructed based on 16 precursor metabolites, with 7 other
metabolites produced as by-products. Among these metabo-
lites are energy-related components such as ATP/ADP, to
account for, among others, growth related maintenance.

Three constraints are imposed. First, as in the orig-
inal model [16], a non-growth-associated ATP mainte-
nance reaction is present, with fixed reaction flux of
8.39 mmolgCDW−1 h−1. Second, a maximum bound on glu-
cose uptake rate is fixed to 10 mmolgCDW−1 h−1 for all cell
masses (as in Constraint (12h)). Third, in case oxygen is
limiting to the growth, a bound on the total oxygen uptake
is set to 12 mmolh−1 (as in Constraint (12e)). A total biomass
of B = 1gCDW is specified. As individual cell mass is on
the order of magnitude of several picograms, the cell mass
is scaled for numerical reasons.

Additionally, the division rate γ(x) and kernel β (x,x′) are
specified. The division kernel is defined as binary division for
E. coli [6], [29], this is β (x,x′) = 2δ (x−x′/2). The division
rate γ(x) is taken from literature [29], using the Hill function,

γ(L(x)) = k
L(x)m

hm +L(x)m , (13)

with the parameter values m = 12, h = 5.65µm and k =
9.3h−1 [29]. The variable L represents the cell size and is
directly related to the cell mass x. Given that E. coli is rod-
shaped, this shape is approximated with a cylinder,

x(L) = ρE. coli
πD2

rod
4

L. (14)

An average cell density ρE. coli = 1.105pgCDWµm−3 [30]
and average diameter Drod = 1µm [6], [7] are used. These
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values remain more or less constant, even upon cell division.
Alternative division rates have been reported in literature [6],
[31].

The optimization program (12) is solved over a grid with
cell lengths L ranging from 0 to 10 µm. This range is
discretized into 20 equidistant subintervals. ILOG CPLEX
(IBM) is used to solve linear programs. The optimal average
growth rate µ̄∗ is obtained iteratively. The maximum average
growth rate µ̄∗ is unique (from Proposition 1), although
multiple solutions for n(x) and v(x) may exist. To quantify
bounds on the range of optima, a procedure similar to Flux
Variability Analysis (FVA) [18], [32] is implemented. For
different fixed values xi, the individual optimization variables
corresponding to the NDF n(xi) and each reaction flux v(xi)
are taken as objective function separately subject to the
constraints (12b) to (12i), with µ̄ = µ̄∗. Maximization and
minimization for each objective variable return upper and
lower bounds, respectively.

In the case study, the biomass equation and reaction flux
bounds are chosen to be modeled constant over cell masses
(in more detailed models, this biomass reaction would differ
per cell mass). This means that the average fluxes determined
in heterogeneous FBA should (approximately) be equal to
those of standard FBA (2) simulated under the same condi-
tions, which is observed. Note that standard FBA does not
calculate the cell size distribution.

Fig. 1 shows results from the heterogeneous FBA program
under oxygen limited (blue) and unlimited (red) growth
conditions. The optimal average growth rates µ̄∗ = 0.62h−1

and µ̄∗ = 0.87h−1 are calculated, which is equal to the solu-
tion obtained from standard FBA under the corresponding
conditions. As seen from the variability analysis (shaded
regions in Fig. 1), the feasible subspace at the optimal aver-
age growth rate µ̄∗ permits multiple solutions The biomass
density distribution is given in Fig. 1a, the case of limited
oxygen availability (blue) returns a broader solution space
compared to the case of no oxygen limitation (red, variability
region in biomass density not distinguishable). This effect is
caused by the variability in growth rate µ(x) per cell size,
Fig. 1b. In the case of growth under nonlimiting oxygen
conditions, a slight variability is predicted, which is likely
caused by numerical errors. In the oxygen limiting case,
there is competition regarding oxygen uptake, resulting in
some cells masses behaving differently than other cells. On
average, the growth rate is equal to the optimal average
specific growth rate µ̄∗.

Interestingly, growth strategies under the same optimal
growth rate µ̄∗ are predicted, in which cells of certain
cell size provide resources (i.e. intracellular metabolites) to
cells of different size via exchange reactions, resulting in
a more uneven growth distribution between cell sizes. This
is demonstrated in Fig. 1c, describing the exchange rate of
pyruvate, an intermediate metabolite which is part of the
biomass production equation. Although in this case study,
this effect is caused by a lack of additional ‘cost’ to the
exchange reactions, similar cross-feeding behavior has been
observed experimentally in subpopulations in e.g. yeast [33].

To control these solutions, additional constraints on exchange
reactions are applied, as included for the thick lines in Fig. 1,
or alternatively, an additional quadratic objective may be
imposed to minimize the squared sum of exchange reactions.

As a last remark, we return to the motivation of defining
Constraints (12b) and (12f) as inequalities (Subsection III-
C). Solving the optimization program with (12b) and (12f)
expressed as equality constraints, the optimal average growth
rate differs with 1.25×10−5 h−1 from the optimum obtained
with (12b) and (12f) as inequalities. This illustrates that
switching (12b) and (12f) to inequalities is justified, at least
in this case study, and it allows for the optimization problem
to be solved as a linear feasibility program.

V. SUMMARY & CONCLUSION

This work proposes an extension to Flux Balance Analysis,
in which cell size distribution is predicted. Hereto, the
framework of Population Balance Models is employed, in
combination with a condition on balanced growth on the
population level. The problem can be solved numerically
efficient as a linear feasibility program. The method is
illustrated on a small-scale E. coli metabolic network. This
illustrates that the program performs well in predicting an
optimal average growth rate, but some difficulties may be en-
countered with respect to the existence of multiple solutions.
This can be attributed to the nondetailed representation of the
total biomass and reaction kinetics, and may be a matter of
choice in imposing reaction flux bounds. As with standard
FBA, the growth environment and physiological conditions
of the specific organism may affect the suitability of the
maximization of specific average growth rate, which should
be validated experimentally case by case.

The case study shows that heterogeneous FBA (12) can
return identical results to standard FBA (2) if modeled under
corresponding conditions, which is a minimum requirement
to show validity of the definition in (12), since standard
FBA completely averages out heterogeneity within the cell
culture. Though not demonstrated in the case study, the
introduced heterogeneous FBA program facilitates the de-
scription of cell composition and kinetic rates per cell mass
(via choice of c(x), vlb(x) and vub(x)). This may allow for
the metabolic description of processes such as cross-feeding
and cell division by considering a total population growth
maximization.

CODE ACCESS

Our code and info regarding discretization can
be found online on https://github.com/
MichielBusschaert/Heterogeneous_FBA.
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I. D. Ofiţeru, “Heterogeneity in pure microbial systems: experimental
measurements and modeling,” Frontiers in microbiology, vol. 8, p.
1813, 2017.

3736



0 1 2 3 4 5 6 7 8 9 10

Cell length (7m)

0

0.1

0.2

0.3

0.4

0.5

0.6
B
io

m
as

s
d
en

si
ty

(g
C
D

W
p
g
C
D

W
!

1
)

O2 limiting
Variation

O2 non-limiting
Variation

(a) Biomass density function xn(x).

0 1 2 3 4 5 6 7 8 9 10

Cell length (7m)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

G
ro

w
th

ra
te
7

(h
!

1
)

O2 limiting
Variation

O2 non-limiting
Variation

FBA 7$

HFBA 77$

(b) Specific growth rate c(x)⊺v(x).

0 1 2 3 4 5 6 7 8 9 10

Cell length (7m)

-5

-4

-3

-2

-1

0

1

2

3

4

5

E
x
cr

et
io

n
ra

te
v p

y
r
(m

m
ol

g
C
D

W
!

1
h
!

1
)

O2 limiting Variation FBA

(c) Pyruvate exchange flux vpyr(x).

Fig. 1: Simulation result from (12) under conditions with limited oxygen availability (blue, µ̄∗ = 0.62h−1) and with sufficient oxygen
availability (red, µ̄∗ = 0.87h−1). The shaded region indicates lower and upper bound per cell size interval from a variability analysis,
indicating the existence of multiple optimal solutions. The thin lines indicate random alternative optimal solutions. The solution in thick
lines are generated without cross-feeding between cells. The black dashed line corresponds to the solution obtained from FBA. In Fig. 1c,
the results for the nonlimiting oxygen case are omitted for clarity. Fig. 1a cannot be obtained with standard FBA.
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