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Abstract— This paper focuses on the linear quadratic reg-
ulator problem of discrete-time Markov jump linear systems
without knowing the system matrices. A model-free fixed-point
iteration algorithm is proposed to learn the optimal state
feedback control law without the requirement of an initial
admissible control policy. Analogous to the Gauss-Seidel method
for linear equations, the model-free algorithm is constantly
iterating with the latest information of each mode. It is proved
that the algorithm converges monotonically to the optimal
solution. In addition, our algorithm is faster than the classical
model-based value iteration method. Finally, an example is used
to illustrate our results.

I. INTRODUCTION

Markov jump linear systems (MJLSs), containing abrupt
changes in their dynamics, are a class of significant stochastic
models. The linear quadratic regulator (LQR) problem of
MJLSs has been studied since the 1960s [1]. The optimal
solution is associated with the coupled algebraic Riccati
equations (CARE) [2], which are identical in form to those
for a deterministic system except for modal coupling. The
controllability and observability of MJLSs are defined in [3],
and then a sufficient condition for the existence of a mean-
square stabilizing solution to the CARE is presented in [4].
Model-based value iteration (VI) [5] and policy iteration
(PI) [6] algorithms are proposed to compute the optimal solu-
tion for the LQR problem of discrete-time MJLSs. However,
these methods for obtaining the optimal control law require
full knowledge of the system dynamics.

Reinforcement learning (RL) is a method of learning
optimal actions through interaction with the environment
to maximize cumulative expected return [7], [8]. RL has
been well applied in control theory, such as state feedback
problem [8], [9], output feedback problem [10], optimal
tracking problem [11], and H∞ control problem [12]–[14],
to obtain desired control policy without knowing the system
matrices. Based on policy iteration, the integral RL method
is used for model-free LQR control [15] and optimal tracking
control [16] of continuous-time MJLSs. The natural gradient
method [17] and policy iteration [18] are applied for the
model-free optimal control of discrete-time MJLSs. How-
ever, these model-free methods for MJLSs require an initial
admissible control policy, which largely relies on the system
dynamics.
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This paper aims to solve the model-free LQR optimal con-
trol problem of discrete-time MJLSs without the requirement
of an initial admissible control policy. Unlike deterministic
discrete-time linear systems, the optimal solution to the LQR
problem of discrete-time MJLSs involves the coupling of
multiple modes. The model-free coupled equations for LQR
control are established using the system states and control
inputs. Then a model-free fixed-point iteration algorithm
is proposed to obtain the optimal control law of discrete-
time MJLSs, which does not require an initial admissible
controller. Similar to the Gauss-Seidel method for solving
linear equations, any information obtained is immediately
used to iterate for the next mode. We prove that our algorithm
converges monotonically to the optimal solution and is at
least as fast as the classical model-based value iteration
method [5]. Finally, a simulation example demonstrates the
effectiveness and good performance of our algorithm.

Notation: In this article, Rn is the n-dimensional real
Euclidean space and B (Rn,Rm) is the normed bounded
linear space of all m × n real matrices, with B (Rn) ≜
B (Rn,Rn). Set Hn,m as the linear space made up of all
s-sequences of real matrices V = (V1, . . . , Vs) with Vi ∈
B (Rn,Rm) , i = 1, . . . , s, and, for simplicity, set Hn ≜
Hn,n. For X = (X1, . . . , Xs), Y = (Y1, . . . , Ys) ∈ Hn,
X > 0 means Xi, for each i, is a symmetric positive definite
matrix; X ≥ 0 means Xi, for each i, is a symmetric positive
semi-definite matrix; X = 0 means, for each i, every element
in Xi equals 0; X ≥ Y means Xi − Yi ≥ 0 for each i. Set
Hn+ ≜ {X|X ∈ Hn, X ≥ 0}. The superscript ⊤ indicates
the transpose of a matrix and E(·) denotes the mathematical
expectation.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider a discrete-time MJLS in an appropriate proba-
bilistic space (Ω, P, {Fk} ,F) :

x(k + 1) = Aθ(k)x(k) +Bθ(k)u(k), (1)

where x(k) ∈ Rn is the system state, and u(k) ∈ Rm is the
control input. θ(k) is a Markov chain taking values in a finite
state space S = {1, 2, . . . , s} with transition probability
matrix P = [pij ]. Define A = (A1, A2, . . . , As) ∈ Hn

and B = (B1, B2, . . . , Bs) ∈ Hm,n. In this paper, θ(k) is
observed, and the transition probability matrix P is known.
The system matrices Ai and Bi are all unknown for ∀i ∈ S.

Next, we give some definitions of mean square stability.
Definition 1: The system (1) with u(k) ≡ 0 is mean

square stable if lim
k→+∞

E
(
∥x(k)∥2

)
= 0 for any initial

condition x(0) and θ(0).
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Definition 2: [4] F = (F1, . . . , FN ) ∈ Hn,m stabilizes
(A,B) in the mean square sense if the system (1) with
u(k) = Fθ(k)x(k) is mean square stable.

Definition 3: The control u(k) is said to be admissible if
the system (1) with u(k) is mean square stable.

Definition 4: (A,B) is mean square stabilizable if there
exists F = (F1, . . . , FN ) ∈ Hn,m such that F stabilizes
(A,B) in the mean square sense.

The following assumptions hold throughout this paper.
Assumption 1: (A,B) is mean square stabilizable.
Assumption 2: (Ai, Bi) is controllable for each i ∈ S.
Define the infinite horizon quadratic cost function as

J (x(0), θ(0), u)

≜E

{ ∞∑
k=0

(
x(k)⊤Qθ(k)x(k) + u(k)⊤Rθ(k)u(k)

)}
,

(2)

where Q = (Q1, Q2, . . . , Qs) ∈ Hn, Q > 0, R =
(R1, R2, . . . , Rs) ∈ Hm, R > 0, and u = (u(0), u(1), . . .)
is the control input sequence. The objective of LQR control
is to find the optimal state feedback control law, which
minimizes the cost (2).

For X = (X1, X2, . . . , Xs) ∈ Hn, define the following
operator E (·) = (E1(·), . . . ,Es(·)) ∈ B (Hn) as

Ei(X) ≜
s∑

j=1

pijXj , i ∈ S. (3)

The coupled algebraic Riccati equations (CARE) for
discrete-time MJLSs are given as

Xi =A⊤
i Ei(X)Ai +Qi −A⊤

i Ei(X)Bi

×
(
Ri +B⊤

i Ei(X)Bi

)−1
B⊤

i Ei(X)Ai, i ∈ S.
(4)

The definition of the mean square stabilizing solution for
the CARE (4) is given in the following.

Definition 5: [4] X = (X1, X2, . . . , Xs) ∈ Hn is
a mean square stabilizing solution for the CARE (4) if
X satisfies CARE (4) and F = (F1, . . . , FN ) ∈ Hn,m

stabilizes (A,B) in the mean square sense with Fi =

−
(
Ri +B⊤

i Ei(X)Bi

)−1
B⊤

i Ei(X)Ai.
Lemma 1: [4] Under Assumption 1, there exists a unique

mean square stabilizing solution X∗ = (X∗
1 , X

∗
2 , . . . , X

∗
s )

for the CARE (4). Moreover, X∗ > 0.
The following lemma gives the optimal control law and the

optimal cost for the LQR problem of discrete-time MJLSs.
Lemma 2: [2] The optimal control law for the LQR

problem is given by

u∗(k) = F ∗
θ(k)x(k), (5)

where F ∗ = (F ∗
1 , . . . , F

∗
s ) ∈ Hn,m is

F ∗
i = −

(
Ri +B⊤

i Ei(X
∗)Bi

)−1
B⊤

i Ei(X
∗)Ai, (6)

and the optimal cost is

J∗ (x(0), θ(0)) = E
{
x(0)⊤X∗

θ(0)x(0)
}
. (7)

This paper focuses on solving the model-free LQR control
problem directly from the system states and control inputs.

III. MODEL-FREE OPTIMAL CONTROL

In this section, a model-free fixed-point iteration algo-
rithm is proposed to obtain the optimal control law for
the LQR problem of discrete-time MJLSs. The algorithm
does not require an initial admissible control policy and is
constantly iterating with the latest information similar to the
Gauss-Seidel method. We prove that our algorithm converges
monotonically to the mean square stabilizing solution of the
CARE (4) and is at least as fast as the classical model-based
value iteration algorithm [5].

A. A Model-free Algorithm Based on Gauss-Seidel Method

In this subsection, the model-free equations for LQR
control are established using the system states and control
inputs of discrete-time MJLSs. Then a model-free fixed-
point iteration algorithm based on the Gauss-Seidel method is
proposed to solve the LQR problem without the requirement
of an initial admissible control policy.

For H∗ = (H∗
1 , H

∗
2 , . . . , H

∗
s ) ∈ Hl, where l = m + n,

define H∗
i , i ∈ S, as

H∗
i ≜

[
H∗

i,xx H∗
i,xu

H∗
i,ux H∗

i,uu

]
≜

[
Qi +A⊤

i Ei(X
∗)Ai A⊤

i Ei(X
∗)Bi

B⊤
i Ei(X

∗)Ai Ri +B⊤
i Ei(X

∗)Bi

]
.

(8)

For each i ∈ S, H∗
i can be expressed as

H∗
i =

[
Qi 0
0 Ri

]
+
[
Ai Bi

]⊤
Ei(X

∗)
[
Ai Bi

]
. (9)

Then for any x(k) and u(k) when θ(k) = i, i ∈ S, we obtain[
x(k)
u(k)

]⊤
H∗

i

[
x(k)
u(k)

]
=x(k)⊤Qix(k) + u(k)⊤Riu(k)

+ x(k + 1)⊤Ei(X
∗)x(k + 1).

(10)

where x(k + 1) = Aix(k) +Biu(k).
The optimal control gain matrices can be expressed as

F ∗
i = −(H∗

i,uu)
−1H∗

i,ux, i ∈ S. (11)

According to CARE (4), equations (8) and (11), the relation-
ship between X∗ and H∗ also satisfies

X∗
i =

[
I
F ∗
i

]⊤
H∗

i

[
I
F ∗
i

]
, i ∈ S. (12)

Let u(k) = Fθ(k)x(k)+e(k), where e(k) is probing noise.
Define

z(k) ≜
[
x(k)⊤ u(k)⊤

]⊤
,

and

rθ(k)(x(k), u(k)) ≜ x(k)⊤Qθ(k)x(k) + u(k)⊤Rθ(k)u(k).

Equation (10) becomes

z(k)⊤H∗
i z(k) =ri(x(k), u(k))

+ x(k + 1)⊤Ei(X
∗)x(k + 1).

(13)
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For a symmetric matrix H ∈ B
(
Rl

)
, define svec(H) =

[h11,
√
2h12, · · · ,

√
2h1l, h22,

√
2h23, · · · ,

√
2h2l, · · · , hll]

⊤

with hij being an entry. For a vector x, define
x̃ = svec(xx⊤). Then equation (13) can be parameterized
as

z̃(k)⊤ svec (H∗
i ) =ri(x(k), u(k))

+ x̃(k + 1)⊤ svec (Ei(X
∗)) .

(14)

For each i ∈ S , define Ξi as a matrix stacking by all
z̃(k)⊤, Ωi as a matrix stacking by all ri(x(k), u(k)), and Φi

as a matrix stacking by all x̃(k + 1)⊤ when θ(k) = i from
k = 0 to k = N − 1. It follows from equation (14) that

Ξi svec(H
∗
i ) = Ωi +Φi svec (Ei(X

∗)) . (15)

Remark 1: Unlike the model-free optimal control problem
of discrete-time linear systems, the data matrices stacking
needs to distinguish the operation mode when generating the
system state of MJLSs. This is because the optimal control
gain matrices are different under different modes.

The over-determined linear equations (15) can be solved
by the least squares method. The following assumption is
required to ensure that equation (15) has a unique solution.

Assumption 3: rank (Ξi) =
l(l + 1)

2
, ∀i ∈ S.

Remark 2: Assumption 3 is a common rank condition for
model-free control [10], [13]. The probing noise added into
the control input ensures the data set is linearly independent.
Thus, Assumption 3 holds.

Under Assumption 3, equation (15) can be solved as

svec(H∗
i ) =

(
Ξ⊤
i Ξi

)−1
Ξ⊤
i (Ωi +Φi svec (Ei(X

∗))) . (16)

Assumption 3 guarantees that H∗ in (16) is the unique
solution of (15). Thus, the model-free equation (16) is the
same as the model-based equation (9).

The detailed model-free algorithm for solving the LQR
problem of discrete-time MJLSs is proposed in Algorithm 1.

Remark 3: System (1) with u(k) = F η
θ(k)x(k) + e(k) is

probably unstable. In Algorithm 1, the system is restarted
when ∥x(k)∥ ≥ c to continue collecting data to prevent the
system state from being too large.

It can be seen that Algorithm 1 does not require an initial
admissible control policy. The convergence of Algorithm 1
will be proved in III-B, which shows our algorithm can
obtain the optimal state feedback control law. Similar to
the Gauss-Seidel method for solving linear equations, the
information of each mode is applied to the next iteration
immediately after the update in Algorithm 1. This brings
advantages in convergence rate to our algorithm, which is
shown in III-C.

B. Convergence of Algorithm 1

In this subsection, we prove that Algorithm 1 converges
monotonically to the mean square stabilizing solution of the
CARE (4).

First, we give the following lemmas.

Algorithm 1 Model-Free Fixed-point Iteration

Input: X0 =
(
X0

1 , X
0
2 , . . . , X

0
s

)
= 0; X̄ = X0; F 0 =(

F 0
1 , F

0
2 . . . , F 0

N

)
= 0; tolerable convergence error ϵ; a

large positive constant c; data length N ; the transition
probability matrix P .

Output: Xη , Hη , F η .
1: for η = 0, 1, 2, . . . do
2: Let the control input u(k) = F η

θ(k)x(k)+e(k). Collect
data for obtaining Ξi, Ωi, and Φi, i ∈ S. If ∥x(k)∥ ≥
c, restart the system to continue collecting data until
data length is N .

3: if rank (Ξi) <
l(l+1)

2 for some i ∈ S then
4: go to step 2
5: end if
6: for i = 1, 2, . . . , s do
7: svec(Hη

i ) = (Ξ⊤
i Ξi)

−1Ξ⊤
i

(
Ωi +Φi svec(Ei(X̄))

)
,

8: F η
i = −(Hη

i,uu)
−1Hη

i,ux,

9: Xη+1
i =

[
I
F η
i

]⊤
Hη

i

[
I
F η
i

]
,

10: X̄i = Xη+1
i ,

11: end for
12: if

∥∥Xη+1 −Xη
∥∥ < ϵ then

13: break
14: end if
15: end for

Lemma 3: Define the following operators: E 1
i (X) =∑i−1

j=1 pijXj and E 2
i (X) =

∑s
j=i pijXj , i ∈ S . Then the

iteration of Xη in Algorithm 1 is the same as

Xη+1
i =A⊤

i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Ai +Qi

−A⊤
i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Bi

×
(
Ri +B⊤

i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Bi

)−1

×B⊤
i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Ai, i ∈ S.

(17)
Proof: See Appendix V-A.

Lemma 4: The iteration equation (17) is the same as

Xη+1
i =(Ai +BF η

i )
⊤ (

E 1
i (X

η+1) + E 2
i (X

η)
)

× (Ai +BF η
i ) +Qi + (F η

i )
⊤
RiF

η
i , i ∈ S,

(18)

where

F η
i =−

(
Ri +B⊤

i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Bi

)−1

×B⊤
i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Ai.

(19)

Proof: Substituting (19) into (18) yields (17). This
completes the proof.

Lemma 5: Let Xη and F η , η = 0, 1, . . ., satisfy (18)
and (19). Then Xη ≤ Xη+1 ≤ X∗.

Proof: See Appendix V-B.
Algorithm 1 is convergent as shown in the following

theorem.
Theorem 1: Let Xη , Hη , and F η , η = 0, 1, . . ., be

generated in Algorithm 1. Then
(1) Xη ≤ Xη+1 ≤ X∗;
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(2) lim
η→+∞

Xη = X∗, lim
η→+∞

Hη = H∗, and lim
η→+∞

F η =

F ∗.
Proof: According to Lemma 3-5, it is straightforward

to show that Xη ≤ Xη+1 ≤ X∗. Because Xη, η = 0, 1, . . .,
is monotonous and upper-bounded, lim

η→+∞
Xη = X∞ exists.

It implies that lim
η→+∞

Hη = H∞ and lim
η→+∞

F η = F∞ exist.

For each i ∈ S, we have

F∞
i =− (H∞

i,uu)
−1H∞

i,ux,

X∞
i =

[
I

F∞
i

]⊤
H∞

i

[
I

F∞
i

]
,

H∞
i =

[
Qi 0
0 Ri

]
+
[
Ai Bi

]⊤
Ei(X

∞)
[
Ai Bi

]
.

Combining the above equations, we can obtain that X∞

satisfies the CARE (4) and X∞ ≥ 0. Because CARE (4)
has a unique solution X∗ in Hn+ [4], one has X∞ = X∗.
Then H∞ = H∗ and F∞ = F ∗.

Theorem 1 shows that Algorithm 1 converges mono-
tonically to the optimal solution of the LQR problem for
discrete-time MJLSs. Thus, Algorithm 1 can be used to learn
the optimal state feedback control policy without knowing
the system matrices. Moreover, it can be used to obtain a
stabilizing control policy for discrete-time MJLSs.

C. Compared with Value Iteration

In this subsection, we compare Algorithm 1 with a clas-
sical model-based value iteration algorithm proposed in [5].

The model-based value iteration is given in the following
lemma.

Lemma 6: [5] Let X̃0 =
(
X̃0

1 , X̃
0
2 , . . . , X̃

0
s

)
= 0. For

η = 0, 1, 2, . . ., and i ∈ S,

X̃η+1
i =

(
Ai +BF̃ η

i

)⊤
E (X̃η)

(
Ai +BF̃ η

i

)
+Qi +

(
F̃ η
i

)⊤
RiF̃

η
i , i ∈ S,

(20)

where

F̃ η
i = −

(
Ri +B⊤

i E (X̃η)Bi

)−1

B⊤
i E (X̃η)Ai. (21)

Then
(1) X̃η ≤ X̃η+1 ≤ X∗;
(2) lim

η→+∞
X̃η = X∗ and lim

η→+∞
F̃ η = F ∗.

The model-based value iteration algorithm has the same
convergence as Algorithm 1. However, all modes are updated
simultaneously before proceeding to the next iteration in
the VI algorithm. The following theorem will demonstrate
the superiority of Algorithm 1 over the model-based value
iteration algorithm.

Theorem 2: Let Xη , η = 0, 1, . . ., be generated in Algo-
rithm 1, and X̃η , η = 0, 1, . . ., be generated in Lemma 6.
Then Xη ≥ X̃η for all η.

Proof: From Lemma 6, for any i ∈ S, we have F̃ 0
i = 0.

It follows that

X̃1
i = Qi > 0, i ∈ S.

According to Lemma 3, one has that X1
1 = Q1 and

X1
i =

(
Ai +BF 0

i

)⊤ (
E 1
i (X

1) + E 2
i (X

0)
) (

Ai +BF 0
i

)
+Qi +

(
F 0
i

)⊤
RiF

0
i ≥ Qi, i = 2, 3, . . . , s

Thus, we obtain X1 ≥ X̃1 > 0.
Assume that Xη ≥ X̃η > 0. According to (20) and (21),

X̃i, i ∈ S, can be expressed as

X̃η+1
i =A⊤

i Ei(X̃
η)Ai +Qi −A⊤

i Ei(X̃
η)Bi

×
(
Ri +B⊤

i Ei(X̃
η)Bi

)−1

B⊤
i Ei(X̃

η)Ai.
(22)

Using Woodbury matrix equality, Xη+1
i and X̃η+1

i , i ∈ S ,
also can be written as

Xη+1
i =A⊤

i

((
E 1
i (X

η+1) + E 2
i (X

η)
)−1

+BiR
−1
i B⊤

i

)−1

×Ai +Qi,

X̃η+1
i =A⊤

i

((
Ei(X̃

η)
)−1

+BiR
−1
i B⊤

i

)−1

Ai +Qi.

According to Theorem 1, we obtain Xη+1 ≥ Xη . Under the
assumption Xη ≥ X̃η > 0, one has

E 1
i (X

η+1) + E 2
i (X

η) =

i−1∑
j=1

pijX
η+1
j +

s∑
j=i

pijX
η
j

≥
i−1∑
j=1

pijX
η
j +

s∑
j=i

pijX
η
j

≥Ei(X̃
η) > 0.

It follows that

0 <
(
E 1
i (X

η+1) + E 2
i (X

η)
)−1 ≤

(
Ei(X̃

η)
)−1

Then we have((
E 1
i (X

η+1) + E 2
i (X

η)
)−1

+BiR
−1
i B⊤

i

)−1

≥
((

Ei(X̃
η)
)−1

+BiR
−1
i B⊤

i

)−1

It is straightforward to show that

Xη+1
i ≥ X̃η+1

i > 0.

Therefore, Xη ≥ X̃η for all η.
According to Theorem 1 and Lemma 6, both Algorithm 1

and the model-based VI algorithm converge monotonically
to the optimal solution. Theorem 2 shows that Xη in Al-
gorithm 1 is always closer to the optimal solution than VI.
Thus, Algorithm 1 is at least as fast as the model-based value
iteration algorithm.

IV. ILLUSTRATIVE EXAMPLE

Consider a classical discrete-time MJLS [5] with three
modes. The system matrices are provided as A1 =[

0 1
−2.5 3.2

]
, A2 =

[
0 1

−4.3 4.5

]
, A3 =

[
0 1
5.3 −5.2

]
, and

B1 = B2 = B3 =
[
0 1

]⊤
. The discrete state transition
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Fig. 1. Cost Jη(x(0), θ(0)) vs. iteration number η.
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Fig. 2. Relative error

∥∥F η
i − F ∗

i

∥∥∥∥F ∗
i

∥∥ vs. iteration number η.

probability matrix is P =

0.67 0.17 0.16
0.3 0.47 0.23
0.26 0.1 0.64

. The weight

matrices of quadratic cost are given as Q1 =

[
3.6 −3.8
−3.8 4.87

]
,

Q2 =

[
10 −3
−3 8

]
, Q3 =

[
5 −4.5

−4.5 4.5

]
, and R1 = 2.6,

R2 = 1.165, R3 = 1.111.
The initial state x0 is a random vector with standard

normal distribution. The data length is set as N = 100.
The probing noise is given by ek = randn(m, 1), where
randn(m, 1) is an m × 1 matrix with standard normal
distribution.

Define the cost function in the iterative process as
Jη(x(0), θ(0)) = E

{
x(0)⊤Xη

θ(0)x(0)
}

. The change of cost
function in the iterative process is shown in Fig. 1. Our algo-
rithm converges to the optimal solution with J∗(x(0), 1) =
46.77, J∗(x(0), 2) = 67.17, and J∗(x(0), 3) = 85.13.
The optimal state feedback gain F ∗ is given as F ∗

1 =[
2.3172 −2.3317

]
, F ∗

2 =
[
4.1684 −3.7131

]
, F ∗

3 =[
−5.1657 5.7933

]
.

Fig. 2 shows the changes in the relative errors of F η during
the iteration process. Consider the case of the first iteration

step. The relative error of our algorithm is smaller than the VI
method for modes 2 and 3. The reason is that our algorithm
immediately uses the just generated information of mode
1. As shown in Fig. 2, the relative error of gain matrices
decreases faster than the VI algorithm for each mode, which
means our algorithm has a faster convergence rate than VI.

V. CONCLUSION

The model-free LQR control problem of discrete-time
MJLSs has been studied in this paper. The model-free equa-
tions were established without knowing the system matrices.
Based on the Gauss-Seidel method, a model-free fixed-point
iteration algorithm was proposed for designing the optimal
control policy of discrete-time MJLSs. Our model-free al-
gorithm converges monotonically to the optimal solution
and is faster than the classical model-based value iteration
algorithm for discrete-time MJLSs. Finally, a numerical
example was used to verify the feasibility and effectiveness
of our algorithm.

APPENDIX

A. Proof of Lemma 3

Proof: Under Assumption 3, line 7 in Algorithm 1 is
the same as

Hη
i =

[
Qi 0
0 Ri

]
+

[
Ai Bi

]⊤
Ei(X̄)

[
Ai Bi

]
.

Then the iteration of lines 7 and 10 in Algorithm 1 can be
written as

Hη
i,xx =Qi +A⊤

i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Ai,

Hη
i,xu =A⊤

i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Bi,

Hη
i,ux =B⊤

i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Ai,

Hη
i,uu =Ri +B⊤

i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Bi.

The iteration of lines 8 and 9 in Algorithm 1 can be
expressed as

Xη+1
i =

[
I

−(Hη
i,uu)

−1Hη
i,ux

]⊤[
Hη

i,xx Hη
i,xu

Hη
i,ux Hη

i,uu

]
×
[

I
−(Hη

i,uu)
−1Hη

i,ux

]
=Hη

i,xx −Hη
i,xu(H

η
i,uu)

−1Hη
i,ux.

For i ∈ S, we have

Xη+1
i =Hη

i,xx −Hη
i,xu(H

η
i,uu)

−1Hη
i,ux

=A⊤
i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Ai +Qi

−A⊤
i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Bi

×
(
Ri +B⊤

i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Bi

)−1

×B⊤
i

(
E 1
i

(
Xη+1

)
+ E 2

i (Xη)
)
Ai.

(23)

This completes the proof.
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B. Proof of Lemma 5

Proof: When i = 1, we have X1
1 = Q1 ≥ 0. When

i > 1 and i ∈ S, we have

X1
i =

(
Ai +BF 0

i

)⊤ (
E 1
i (X

1) + E 2
i (X

0)
) (

Ai +BF 0
i

)
+Qi +

(
F 0
i

)⊤
RiF

0
i ≥ 0,

Hence, 0 = X0 ≤ X1.
Assume that Xη ≤ Xη+1. Define the following operators:

R1
i (X) =

∑i−1
j=1 pijRi + B⊤

i E 1
i (X)Bi and R2

i (X) =∑N
j=i pijRi +B⊤

i E 2
i (X)Bi. From equation (19), we have

B⊤
i

(
E 1
i (X

η+1) + E 2
i (X

η)
)
Ai

=−
(
R1

i (X
η+1) + R2

i (X
η)
)
F η
i , i ∈ S.

After a tedious derivation, Xη+1
i , i ∈ S, in equation (18)

can be written as

Xη+1
i =

(
Ai +BF η+1

i

)⊤ (
E 1
i (X

η+1) + E 2
i (X

η)
)

×
(
Ai +BF η+1

i

)
+Qi +

(
F η+1
i

)⊤
RiF

η+1
i −Mη

i ,

(24)

where

Mη
i =(F η+1

i − F η
i )

⊤ (
R1

i (X
η+1) + R2

i (X
η)
)

× (F η+1
i − F η

i ).

For each i ∈ S, Xη+2
i satisfies the following equation

Xη+2
i =

(
Ai +BF η+1

i

)⊤ (
E 1
i (X

η+2) + E 2
i (X

η+1)
)

×
(
Ai +BF η+1

i

)
+Qi +

(
F η+1
i

)⊤
RiF

η+1
i .

(25)

Subtracting equation (24) by equation (25) yields

Xη+2
i −Xη+1

i

=
(
Ai +BF η+1

i

)⊤ (
E 1
i (X

η+2 −Xη+1)

+E 2
i (X

η+1 −Xη)
) (

Ai +BF η+1
i

)
+Mη

i , i ∈ S.

Therefore, Xη+1
i ≤ Xη+2

i , i ∈ S. It shows that Xη ≤ Xη+1.
The next thing is to prove Xη+1 ≤ X∗. First, 0 = X0 ≤

X∗. Assume that Xη ≤ X∗. Similar to equation (24), Xη+1,
i ∈ S, can be expressed as

Xη+1
i =(Ai +BF ∗

i )
⊤ (

E 1
i (X

η+1) + E 2
i (X

η)
)

× (Ai +BF ∗
i ) +Qi + (F ∗

i )
⊤
RiF

∗
i −M∗

i ,
(26)

where

M∗
i = (F η

i − F ∗
i )

⊤ (
R1

i (X
η+1) + R2

i (X
η)
)
(F η

i − F ∗
i ).

The unique mean square stabilizing solution X∗, i ∈ S ,
satisfies

X∗
i =(Ai +BF ∗

i )
⊤ Ei(X

∗) (Ai +BF ∗
i )

+Qi + (F ∗
i )

⊤
RiF

∗
i .

(27)

Subtracting equation (26) by equation (27) yields

X∗
i −Xη+1

i =(Ai +BF ∗
i )

⊤ (
E 1
i (X

∗ −Xη+1)

+ E 2
i (X

∗ −Xη)
)
(Ai +BF ∗

i ) +M∗
i , i ∈ S.

Hence, Xη+1 ≤ X∗. It is obtained that Xη ≤ Xη+1 ≤ X∗.
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