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Abstract— Feedforward controllers typically rely on accu-
rately identified inverse models of the system dynamics to
achieve high reference tracking performance. However, the im-
pact of the (inverse) model identification error on the resulting
tracking error is only analyzed a posteriori in experiments.
Therefore, in this work, we develop an approach to feedforward
control design that aims at minimizing the tracking error a
priori. To achieve this, we present a model of the system in
a lifted space of trajectories, based on which we derive an
upperbound on the reference tracking performance. Minimiza-
tion of this bound yields a feedforward control–oriented system
identification cost function, and a finite–horizon optimization
to compute the feedforward control signal. The nonlinear
feedforward control design method is validated using physics–
guided neural networks on a nonlinear, nonminimum phase
mechatronic example, where it outperforms linear ILC.

I. INTRODUCTION

Feedforward control is a dominant actor in achieving
high reference tracking performance, and typically relies on
linear, physics–based models [1], [2]. Linear models have
good extrapolation properties, but limited accuracy. As such,
it would be desirable to employ rich, nonlinear models
for feedforward control that can learn the complete system
dynamics from data [3].

A common approach to feedforward control design is
inverse model–based feedforward, which generates the feed-
forward signal by passing the reference through a model of
the inverse system dynamics, see, e.g., [1], [4]. When the
model of the system is nonminimum phase, i.e., it has an
unstable inverse, different methods are available to generate
a stable feedforward controller, see, e.g., [4], [5]. These
methods however, are not directly extendable to nonlinear
feedforward controllers. Hence, a different approach is to
formulate feedforward control as an optimization problem,
where the goal is to minimize the norm of the difference
between the reference and the model output. Within this
category, it is possible to optimize the complete feedforward
signal [6], [7], or to parameterize the feedforward signal as
a function of time or the reference and optimize over the
parameters [8], [9]. When the system performs a repetitive
task, an iterative learning control (ILC) method can be used
to minimize the tracking error based on the tracking error of
previous repetitions by updating the feedforward input [10],
the parameters of an inverse model [11], or both [12].
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The aforementioned methods typically assume a known,
physics–based model of the system. To account for unknown
dynamics, data–driven techniques have been explored in
combination with artificial intelligence, e.g., neural network
(NN) models [13], physics–informed neural networks and
physics–guided neural network (PGNN) models [14], other
hybrid model structures [15], or Gaussian processes [16].

When performing the identification, i.e., fit the model to
the data, the identification cost function should be relevant
for the intended use of the model [17], [18]. Therefore, when
identifying a model for feedforward control, the identification
cost function should push model errors in a region where
these errors least affect the tracking performance. This is
not achieved when performing an identification of the inverse
dynamics directly, which is generally adopted in nonlinear
(including PGNN) feedforward control due to the non–
invertibility of nonlinear models in general, see, e.g., [3],
[14], [19]. In [20], a control–relevant identification cost
function, which filters the inverse model error with a linear
model of the process sensitivity, was proposed to mitigate
this issue. Alternatively, in [21], the authors proposed an
inversion method for (PG)NNs which opens up the path to
perform the identification of the forward dynamics, but did
not yet achieve a quantitative relation between the tracking
error and the identification error. Such a quantitative relation
is desired to have a relevant identification cost function for
the feedforward control objective.

Motivated by the above observations, in this paper, we
establish a quantitative link between the tracking error and
the identification error. The main contributions of this paper
are as follows:

1) A lifted formulation of the nonlinear feedforward con-
trol problem in the space of finite–length trajectories,
which enables the derivation of an explicit upperbound
on the norm of the tracking error;

2) A feedforward control–oriented identification cost
function, which minimizes the upperbound on the
tracking error, and hence, it minimizes the tracking
error itself a priori, during the design stage;

3) A finite–horizon optimal feedforward control (FHOFC)
formulation for a general class of nonlinear, possibly
nonminimum phase MIMO systems which allows for
specifying input, output, and state constraints.

The developed FHOFC problem can be solved iteratively,
yielding an iterative learning scheme for nonlinear systems.
We prove that this iterative learning FHOFC recovers linear
ILC [10], which is another contribution of this work.
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Fig. 1. Schematic overview of the control structure.

II. PRELIMINARIES

A. Notation

We denote y(k) ∈ Rny as the output at time k ∈ N>0,
r(k) ∈ Rny is the reference, e(k) := r(k) − y(k) the
tracking error and ny ∈ Z>0 the number of outputs. The
input u(k) ∈ Rnu is the sum of the feedback and the
feedforward input, such that u(k) := ufb(k) + uff(k) with
nu ∈ Z>0 the number of inputs. The state of a system is
denoted as x(k) ∈ Rnx with nx ∈ Z>0 the state dimension.
A signal of length Nk ∈ Z>0 is denoted by its capital
letter, e.g., R := [r(1)T , ..., r(Nk)T ]T is the reference signal
and E := [e(1)T , ..., e(Nk)T ]T is the error signal. The
superscript d is used to indicate that a signal is from the data
set, e.g., Udff = [udff(1)T , ..., udff(Nd)

T ]T is the feedforward
input measured during the data generating experiment of
length Nd ∈ Z>0. Let a hat denote a prediction of a model,
e.g., Ŷ := [ŷ(1)T , ..., ŷ(Nk)T ]T is a prediction of the output
Y and Ŷ d := [ŷd(1)T , ..., ŷd(Nd)

T ]T a prediction of Y d. A
model is parametrized by the parameters θ ∈ Rnθ , nθ ∈ Z>0,
and θ̂ denotes the identified parameters.

B. System dynamics and model–based feedforward

We consider the feedforward control design for a system G
operating in closed–loop with feedback controller C as
visualized in Fig. 1. The closed–loop system dynamics is
(partly) unknown, which is the case in real–life systems, e.g.,
for a linear motor, one has to deal with parasitic effects,
such as nonlinear friction and electromagnetic distortions.
The closed–loop system dynamics is denoted as φ, such that

φ :


x(k + 1) = f

(
x(k), u(k)

)
,

y(k) = g
(
x(k)

)
,

u(k) = C(q)
(
r(k)− y(k)

)
+ uff(k).

(1)

In (1), f : Rnx × Rnu → Rnx describes the unknown
system dynamics, with g : Rnx → Rny the unknown
output equation. The feedback controller is assumed to be
linear, such that ufb(k) = C(q)

(
r(k) − y(k)

)
with C(q)

the discrete–time transfer function of the feedback controller,
and q the forward shift operator.

An input–output data set is generated by exciting the sys-
tem via the reference r(k) and the feedforward input uff(k),
such that we obtain Y d = [yd(1)T , ..., yd(Nd)

T ]T , Rd =
[rd(1)T , ..., rd(Nd)

T ]T , and Udff = [udff(1)T , ..., udff(Nd)
T ]T

that satisfies (1) for k = 1, ..., Nd.
The optimal feedforward input uff(k) yields y(k) = r(k)

for all k when supplied to the system (1). However, since
f and g in (1) are unknown, it is common practice to

parameterize a model φ̂ of the system φ in (1), such that

φ̂ :


x̂(k + 1) = f̂

(
θ, x̂(k), û(k)

)
,

ŷ(k) = ĝ
(
θ, x̂(k)

)
,

û(k) = C(q)
(
r(k)− ŷ(k)

)
+ uff(k).

(2)

where f̂ and ĝ are a model of f and g in (1), respectively,
and θ ∈ Rnθ are the free parameters.

The state–space model in (2) reduces to the input–output
representation used in, e.g., [14], [20] by choosing the state
as past inputs and outputs, i.e.,

ŷ(k + 1) = f̂
(
θ, [ŷ(k)T , ..., ŷ(k − na + 1)T ,

û(k − nk)T , ..., û(k − nk − nb)T ]T
)
,

û(k) = C(q)
(
r(k)− ŷ(k)

)
+ uff(k),

(3)

where na, nb, nk ∈ Z>0 denote the order of the dynamics.
Suppose that there exists an inverse relation f̂−1 of f̂ in (3),
such that, with a slight abuse of notation, we have

û(k) = f̂−1
(
θ, [ŷ(k + nk + 1)T , ..., ŷ(k + nk − na + 1)T ,

û(k − 1)T , ..., û(k − nb + 1)T ]T
)
.

(4)

Then, the inverse model–based feedforward controller is
obtained by substitution of ŷ(i) = r(i), i = k + nk − na +
1, ..., k + nk + 1, and û(i) = uff(i), i = k − nb + 1, ..., k.

III. PROBLEM FORMULATION

Since the dynamics f in (1) is unknown, the feedforward
control design is based on a model f̂ as in (2). This typically
yields a two–step feedforward controller design procedure,
consisting of an identification to fit the model (2) to the
system (1) using the data {Y d, Rd, Udff}, and an inversion to
find the feedforward input Uff for which the output Ŷ of the
model (2) follows the reference R.

The identification step aims to find the parameters θ = θ̂
for the model φ̂ in (2) that best fit the data by minimizing a
cost function, such that

θ̂ = arg min
θ
Vid(θ, Y d, Rd, Udff ) + ‖Λ(θ − θ∗)‖, (5)

where Vid : Rnθ × RnyNd × RnyNd × RnuNd → R is the
identification cost function, and Λ ∈ Rnθ×nθ and θ∗ ∈ Rnθ
are used for regularization. Suppose that f̂ is a nonlinear
input–output representation as in (3). Then, it is not generally
possibly to find an inverse f̂−1 as in (4). A common approach
to circumvent this issue is to parametrize a model f̂−1

directly, and identify its parameters using, e.g., a one step–
ahead direct inverse identification, such that

Vid(θ, Y d, Rd, Udff ) =
1

N

Nd∑
i=1

(
ud(k)− f̂−1

(
θ, xd(k)

)2
,

xd(k) = [yd(k + nk + 1), ..., yd(k + nk − na + 1),

ud(k − 1), ..., ud(k − nb + 1)]T .
(6)

This approach is commonly adopted in literature, see,
e.g., [3], [19], but fails to provide a quantitative relation
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Fig. 2. Visual representation of the dynamics (1) in lifted form (7).

between the identification and the tracking error. Note that,
the tracking error e(k) = r(k) − y(k) does not even have
the same unit as ud(k)− f̂−1

(
θ, xd(k)

)
. In order to mitigate

this issue, [20] proposes to filter the inverse model error
by a linear model of the process sensitivity, i.e., minimize
G(q)S(q)

(
ud(k)− f̂−1

(
θ, xd(k)

))
, with G(q) and S(q) the

transfer function of the model of the system and the sen-
sitivity, respectively. This approach establishes a qualitative
relation between the tracking error and the identification cost
function, but a quantitative relation is still missing.

Hence, in this work we will address two main issues: how
to design the identification cost function Vid in (5), and how
to compute the feedforward control input uff(k) based on the
identified nonlinear model, i.e., φ̂ in (2) with θ = θ̂, such that
the resulting tracking error is minimized for a general class
of nonlinear, possibly nonminimum phase MIMO systems.

IV. FEEDFORWARD CONTROL–ORIENTED
IDENTIFICATION

We rewrite the closed–loop system (1) and model (2) into
a lifted form, based on which we propose the feedforward
control–oriented identification cost function as well as the
FHOFC formulation. Afterwards, we show that, indeed,
minimizing the identification cost function and finding an
optimal solution to the FHOFC minimizes the reference
tracking error.

The lifted form of the closed–loop system is obtained by
simulating φ in (1) as in Fig. 2, such that

Y = Φ(x0, R, Uff). (7)

In (1), x0 ∈ Rnx are the initial conditions, and Φ : Rnx ×
RnyNk × Rnu×Nk → RnyNk is a mapping obtained by
recursive composition of the system φ. Similarly, the lifted
form of the model φ̂ in (2) is defined as follows

Ŷ = Φ̂(θ, x0, R, Uff), (8)

where Φ̂ : Rnθ × Rnx × RnyNk × RnuNk → RnyNk is
a model–based mapping obtained by recursive composition
of φ̂. The data set is generated by exciting the system with
Udff and Rd, such that, from (7) and (8), we can write

Y d = Φ(xd0, R
d, Udff ), Ŷ d = Φ̂(θ, xd0, R

d, Udff ), (9)

with xd0 ∈ Rnθ the initial state of the experiment.
We aim to minimize the p–norm of the tracking error,

i.e., ‖E‖p = ‖R − Y ‖p for some p ∈ Z≥1, while keeping
the input, output, and states in the safe sets, i.e., U ∈ RU ,
Y ∈ RY , and X ∈ Rx. The feedforward control signal
computation is done as follows:

1) Identify the optimal set of parameters θ̂ for the
model φ̂ in (2) according to (5) with the feedforward
control–oriented identification cost function

Vid(θ, Y d, Rd, Udff ) =
1

N
1/p
d

‖Y d − Φ̂(θ, xd0, R, Uff)‖p. (10)

2) Compute the feedforward input Uff using the identified
model, i.e., φ̂ with θ = θ̂, according to the FHOFC

Uff = arg min
Uff

Vff(θ̂, R, Uff) + ‖ΓUff‖,

subject to: Uff ∈RUff , Û ∈ RU , Ŷ ∈ RY , X̂ ∈ RX .
(11)

with the FHOFC cost function

Vff(θ̂, R, Uff) =
1

N
1/p
k

‖R− Φ̂(θ̂, x0, R, Uff)‖p. (12)

Remark 4.1: The feedforward control–oriented identifica-
tion cost function (10) penalizes the closed–loop simulation
error of the model φ̂. This is different from the one–
step–ahead inverse identification in (6), even when it is
filtered with the process sensitivity. Moreover, [21] did not
consider the feedback controller in the identification, and was
therefore unable to link the tracking and identification error.

Remark 4.2: Solving the FHOFC optimization (11) be-
comes computationally expensive when Nk is large. How-
ever, the partial derivative of Vff with respect to Uff is known,
such that, e.g., the constraint Gauss–Newton approach in [6]
can be used. Several other options to reduce the computa-
tional complexity are: 1) parametrize the feedforward signal
using basis functions [8], [9], 2) Parametrize an inverse
model of the system and find its parameters via (11), or 3)
solve (11) in a receding horizon manner.

Proposition 4.1: Consider the system φ in (1) with lifted
form Φ in (7) and a corresponding parametrized model φ̂
in (2) with lifted form Φ̂ in (8). Suppose that θ̂ is identified
according to (5) with Vid in (10), that Uff is obtained
from (11) with Vff in (12), and define

ε :=
1

N
1/p
k

‖Y − Ŷ ‖p −
1

N
1/p
d

‖Y d − Ŷ d‖p. (13)

Then, the tracking error resulting from Uff satisfies

1

N
1/p
k

‖R− Y ‖p ≤ Vid(θ̂, Y d, Rd, Udff ) + Vff(θ̂, R, Uff) + ε.

(14)
Proof: From the triangular inequality and (13), we have

‖R− Y ‖p = ‖R− Ŷ + Ŷ − Y ‖p
≤ ‖R− Ŷ ‖p + ‖Y − Ŷ ‖p

≤ ‖R− Ŷ ‖p +
N

1/p
k

N
1/p
d

‖Y d − Ŷ d‖p +N
1/p
k ε.

(15)

Dividing both sides by N1/p
k and using Vid and Vff as in (10)

and (12) on the right hand side concludes (14).
The parameter ε in (13) is a measure stating the rele-

vance of the training data {Y d, Rd, Udff} with respect to the
operation data {Y,R,Uff}, which can be interpreted as the
validation data. Accordingly, ε > 0 indicates that the training
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data does not sufficiently represent the operation data, while
ε < 0 indicates that the training data covers all system
dynamics that contribute to the tracking error. We aim for
ε = 0, which is achieved when either:

1) Training data is the operation data, i.e., design
{Rd, Udff} = {R,Uff}. An existing feedforward con-
troller could be used for Udff as an approximation of Uff;

2) Consistent parameter identification, such that
Φ(x0, R, Uff) = Φ̂(θ̂, x0, R, Uff) and Φ(xd0, R

d, Udff ) =
Φ̂(θ̂, xd0, R

d, Udff ). This requires standard assumptions
from system identification, i.e., the system is in the
model set, the data is persistently exciting, and the
optimization of (5) yields a global optimum, see,
e.g., [21] for the formalized assumptions.

Suppose that the operation data has the same length as the
data set, i.e., Nk = Nd = N and that xd0 = x0. Then, with
the triangular inequality, we upperbound ε in (13) by

ε ≤ 1

N1/p
‖Y − Ŷ − Y d + Ŷ d‖p

≤ 1

N1/p

∥∥∥∥[γR, γUff

] [R−Rd
Uff − Udff

]∥∥∥∥
p

.
(16)

where γR = max
∣∣∂(Y−Ŷ )

∂R

∣∣ and γUff = max
∣∣∂(Y−Ŷ )

∂Uff

∣∣. Since
Y and Ŷ in (16) result from a closed–loop simulation, the
feedback controller C(q) also affects the upperbound in (16).
Note that, for a linear system, ∂Y∂R and ∂Y

∂Uff
describe the com-

plementary sensitivity and process sensitivity, respectively.
Remark 4.3: Once the feedforward input Uff is obtained

from (11), it is possible to use it for generating new data
which results in a smaller ε.

V. FINITE–HORIZON OPTIMAL FEEDFORWARD
CONTROL

Next we show that the FHOFC (11) can recover some
of the state–of–the–art methods for feedforward control,
namely: inverse model–based feedforward and linear ILC.
For simplicity, we neglect the constraints in (11).

Lemma 5.1: Consider the feedforward control design us-
ing an identified input–output model (3) for which the inverse
relation (4) is unique. Suppose that the initial conditions are
such that y(i) = r(i) for i ∈ {nk − na + 1, ..., nk}. Then,
the inverse model–based feedforward controller

uff(k) = f−1
(
θ̂, [rT (k + nk + 1), ..., rT (k + nk − na + 1),

uTff (k − 1), ..., uTff (k − nb + 1)]T
)

(17)

solves the unconstrained FHOFC (11) with Γ = 0 in a
receding horizon manner with a preview of nk + 1.

Proof: uff(k) appears first in the predicted output ŷ(k+
nk + 1), such that uff(k + i), i ∈ Z>0 does not play a role
in the cost function when Γ = 0. Hence, the FHOFC (11)
with preview nk + 1 becomes

uff(k) = arg min
uff(k)

‖r(k + nk + 1)− ŷ(k + nk + 1)‖. (18)

Since the minimum is attained for r(k + nk + 1) = ŷ(k +
nk + 1), the solution of (18) equals (17) when (18) is

solved sequentially, i.e., for k = 0, 1, ..., Nk. Observing that,
from (3), û(k) = C(q)

(
r(k) − y(k)

)
+ uff(k) = uff(k) for

r(i)− ŷ(i) = 0, i ∈ {0, ..., k}, completes the proof.
Remark 5.1: In [21], the optimization (18), which is a

specific case of the FHOFC (11), was solved by proposing a
specific PGNN structure for which f−1 of f in (3) is known
analytically. Moreover, it discusses the use of a numerical
solver when f−1 is not known.

When the identification in (5) and the FHOFC (11) are
solved accurately, the tracking error may remain large due
to ε in (14). To improve performance, it is possible to re–
identify θ based on new data that is generated with Uff.
Alternatively, when the system has to perform a repetitive
tasks, i.e., has to track a reference R multiple iterations, an
iterative learning scheme can be implemented when the same
reference is executed repetitively, as is done in ILC [10].
Inspired by ILC, we present the iterative learning FHOFC
(IL–FHOFC) scheme:

ζ = Φ̂(θ̂, x0, R, U
(i)
ff ) + αE(i),

U
(i+1)
ff = Qm

[
arg min

Uff

∥∥ζ − Φ̂(θ̂, x0, R, Uff)
∥∥+ ‖ΓUff‖

]
.

(19)

In (19), the superscript (i) relates to iteration i ∈ Z>0 of
a signal, E(i) = R − Y (i) is the tracking error since R is
constant over the iterations, ζ ∈ RnuNk is an auxiliary signal,
and Qm ∈ RnuNk×nuNk contains the Markov parameters of
a robustness filter with transfer function matrix Q.

Lemma 5.2: Suppose that G is the transfer function matrix
of a linear system, C is a feedback controller, and Ĝ is
a model of G, with all transfer functions represented in
the digital domain. Let Φ̂ be the closed–loop model–based
mapping obtained from C and Ĝ, and let α ∈ (0, 1] be a
learning gain and Q a robustness filter. Then, the ILC law

ξ(i)(k) = u
(i)
ff (k) + αĜ−1(1 + ĜC)e(i)(k),

u
(i+1)
ff (k) = Qξ(i)(k),

(20)

solves the IL–FHOFC problem (19) with Γ = 0.
Proof: The output predicted by Ĝ at iteration i is

ŷ(i)(k) = (1+ĜC)−1ĜCr(k)+(1+ĜC)−1Ĝu
(i)
ff (k). (21)

The output of the system with input ξ(i+1)(k) in (20) is

ŷ(i+1)(k) = ŷ(i)(k) + αe(i)(k). (22)

Placing the time entries of (22) in a column, shows that∥∥ζ(i+1) − Φ̂(θ̂, x0, R, [ξ
(i+1)(1)T , ..., ξ(i+1)(Nk)T ]T )

∥∥ = 0.
(23)

Hence, the first line of the linear ILC (20) solves the
optimization in the IL–FHOFC (19) for Γ = 0. Since Qm
describes the robustness filter Q in ILC (20), U (i+1)

ff in (19)
is the column of u(i+1)

ff (k) in (20).
Remark 5.2: Both Qm and Γ in the IL–FHOFC (19) are

parameters that affect convergence. Proving convergence for
specific systems and models will be done in future work.
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⋅

Fig. 3. Rotating–translating mass with actuation and sensing on opposite
sides of the centre of mass.

TABLE I
PARAMETER VALUES OF THE SYSTEM DISPLAYED IN FIG. 3.

m lx, ly J fv c d lm cα cg

20 1 40
3

50 25·103
3

575
3

0.05 0.05 1

kg m kgm2 kg
s

kg
s2

kg
s

m − N

VI. VALIDATION ON A NONMINIMUM PHASE
NONLINEAR MECHATRONIC EXAMPLE

System description: We consider the position control of
a translating–rotating mass with force input u and position
output y at opposite sides of the centre of mass, see Fig. 3.
Let x1 be the position of the centre of mass, and x2 the
rotation, such that u, x1, x2 and y are functions of time.
Then, the continuous time dynamics are

ẍ1 =
1

m

(
− fvẋ1 +

(
1 + α(x1 + lyx2)

)
u

− g(x1 + lyx2)
)
,

ẍ2 =
1

J

(
− 2lx(dẋ2 + cx2)+

ly
(
1 + α(x1 + lyx2)

)
u− lyg(x1 + lyx2)

)
,

y = x1 − lyx2.

(24)

In (24), lx, ly ∈ R≥0 are the width and height of the mass
m ∈ R>0, J = 1

3m(l2x + l2y) is the moment of inertia,
fv ∈ R>0 the viscous friction coefficient, and d, c ∈ R>0

the damping and spring constant counteracting rotation from
both ends of the mass. The nonlinearities α(x1 + lyx2) and
g(x1 + lyx2) represent the force ripple and cogging force,
and are unknown. For simulation purposes, they are modelled
as

α(x1 + lyx2) = cα sin
(2π

lm
(x1 + lyx2) +

π

4

)
,

g(x1 + lyx2) = cg sin
(2π

lm
(x1 + lyx2)

)
,

(25)

with lm ∈ R>0 the magnet magnet pole pitch and cα, cg ∈ R
the riple and cogging magnitude. Parameter values are listed
in Table I. The system (24) is controlled in closed–loop at a
frequency Fs = 100 Hz by the ZOH discretization of

C(s) = 5 · 103
s+ 4π

s+ 20π
. (26)

A normally distributed noise v(k) ∼ N
(
0, (10−6)2

)
m is

added as measurement noise. The system (24) exhibits the
following challenges for feedforward control:

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

Fig. 4. Reference R used for performance evaluation.

0 10 20 30 40

10-6

10-4

0 10 20 30 40

10-6

10-4

Fig. 5. Normalized 2–norm of the identification (Y d − Ŷ d, N = Nd),
inversion (R − Ŷ , N = Nk) and tracking (R − Y , N = Nk) error for
PGNNs with different number of neurons using γ = 2 ·10−4 (left window)
and γ = 10−3 (right window).

1) Nonlinear dynamics on the input (force ripple) and
output (cogging force), depending on an internal state;

2) Nonminimum phase dynamics which requires non–
causal actuation to return a stable feedforward signal.

Data generation: The training data is generated in closed–
loop by sampling the output yd(k) at the frequency Fs for
a duration of 45 s. The reference Rd is a concatenation of
15 times the third order reference R in Fig. 4, which has
bounded velocity | ddtr

d| ≤ 0.1 m
s , acceleration | d

2

dt2 r
d| ≤ 4

m
s2 and jerk | d

3

dt3 r
d| ≤ 40 m

s3 . Additionally, Udff is a zero–mean
white noise with variance σ2 = 102 N2 for t = [10, 40) s.

Model parametrization: We parameterize the system (24)
with a state–space PGNN as

˙̂x = A(θphy)x̂+B(θphy)
(
û+ fNN(θNN, x̂, û)

)
,

ŷ = C(θphy)x̂,
(27)

where û, x̂ and ŷ are functions of time, fNN : Rnθnn ×R4 ×
R→ R4 is a NN, and θ = [θTphy, θ

T
NN]T with θphy representing

the physical parameters, and θNN the NN weights and biases.
The NN has a single hidden layer with n1 ∈ Z≥0 neurons,
which we can vary. We discretize (27) using ZOH while
assuming that fNN remains constant in between two samples.

System identification: The PGNN parameters are identi-
fied according to (5) with feedforward control–oriented iden-
tification cost function (10) (using the lsqnonlin MATLAB
function) with Λ = 10−5[diag(θTphy)−1, 0], θ∗ = [θ∗phy

T , 0]T ,
and θ∗phy the parameters obtained for the linear part of (27).

Feedforward: The feedforward signal Uff has length Nk =
300 and is computed by solving the FHOFC (11) while
penalizing the rate of change in Uff by choosing Γ = γ∆,
with γ ∈ R≥0 the importance of the regularization and
∆ ∈ RNk×Nk has 1 on the diagonal, −1 on the subdiagonal
and 0 elsewhere. Solving the FHOFC (11) converges in 7 s
with lsqnonlin on a 2.59 GHz Intel Core–I7–9750H using
MATLAB 2019A.

4534



1 2 3 4 5 6
10-8

10-6

10-4

1 2 3 4 5 6
10-8

10-6

10-4

Fig. 6. Normalized 2–norm of the tracking error over the iterations using
IL–FHOFC (19) with α = 1, γ = 10−5 and Qm = I using a linear and a
PGNN (27) model with n1 = 24, simulated with v(k) ∼ N

(
0, (10−6)2

)
(left window) and with v(k) = 0 (right window).

Results: Fig. 5 visualizes the 2–norm of the identification,
inversion and tracking error in (14) for the reference R in
Fig. 4 using different number of neurons n1, with γ =
2 · 10−4 (left window) and γ = 1 · 10−3 (right window).
Increasing the number of neurons n1 in the model (27)
improves the accuracy of the identification. For γ = 2 ·10−4

the inversion error is small, such that the tracking error is
limited by the accuracy of the identification. In contrast,
for γ = 10−3 the inversion error increases, which limits
the achievable performance for ni > 12. Comparing the
upperbound (14) with the results in Fig. 5 indicates that ε is
small. Correspondingly, hyperparameters can be tuned based
on (14), e.g., Fig. 5 shows that at least nl = 16 neurons are
required to achieve 1√

Nk
‖E‖2 < 10−4 m.

Fig. 6 shows the 2–norm of the tracking error for a
linear and a PGNN model over multiple iterations of the
reference R in Fig. 4 when using the IL–FHOFC (19). Since
both approaches reach the noise–floor, results are added
where v(k) = 0 to emphasize the benefit of the nonlinear
PGNN model structure. The IL–FHOFC (19) with nonlinear
PGNN model yields a significant reduction in the number of
iterations required to reach a target performance.

VII. CONCLUSIONS

In this paper, we presented a generalized approach to
nonlinear data–driven feedforward control design from the
perspective of minimizing tracking errors. We showed that
the norm of the reference tracking error is upperbounded by
the sum of the inversion and the identification error, respec-
tively. This resulted in a two–step approach to feedforward
control design, consisting of a feedforward control–oriented
system identification followed by a finite–horizon optimiza-
tion to compute the feedforward input signal. Generality of
the FHOFC formulation was demonstrated by recovering
inverse model–based feedforward and linear ILC for specific
settings.
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