
Data-driven Self-triggering Mechanism for State Feedback Control

Wenjie Liu, Yifei Li, Jian Sun, Senior Member, IEEE,
Gang Wang, Senior Member, IEEE, and Jie Chen, Fellow, IEEE

Abstract— This paper presents a novel approach for data-
driven self-triggered state feedback control of unknown linear
systems using noisy data gathered offline. The self-triggering
mechanism determines the next triggering time by checking
whether the difference between the predicted state and the
current state is significant or not. However, when the system
matrices are unknown, the challenge lies in characterizing the
distance between future states and the current state using only
data. To address this, we put forth a data-driven online opti-
mization problem for trajectory prediction by using noisy input-
state data. Its optimal solution, together with another unknown
parameter that reflects the open-loop divergence rate, is shown
sufficient for explicitly quantifying the distance. Moreover,
a data-driven set-based over-approximating algorithm using
matrix zonotopes is subsequently proposed to upper-bound the
open-loop divergence rate. Leveraging the optimal solution and
the upper bound, a self-triggering mechanism is devised for
state feedback control systems, which is proven to ensure input-
to-state stability. Numerical examples are presented to validate
the effectiveness of the proposed method.

I. INTRODUCTION

In recent years, data-driven control has experienced pros-
perous development, wherein control laws are designed di-
rectly from data [1]–[4]. This literature contains a multitude
of publications, a majority of which were inspired by the
Willems et al.’s fundamental lemma in the seminal contribu-
tion [5]. This lemma provides an effective way to describe
the trajectory of a linear time-invariant (LTI) system using a
linear combination of some sufficiently rich past trajectories.
Several control problems have been addressed using this
lemma, including stabilization and optimization in [1], [6],
linear quadratic regulation in [7], robust control in [8]–[10],
quantized control in [11], model predictive control (MPC) in
[12]–[15], and control of complex and multi-agent networks
in [16]–[18], stochastic systems in [19].

However, most of these aforementioned works employ
periodic transmission protocols, which may be resource-
inefficient for real-world systems in terms of processor
usage, communication bandwidth, and energy. To address

The work was supported in part by the National Natural Science Foun-
dation of China under Grants 62173034, 61925303, 62088101, the China
Scholarship Council under Grant 202206030127.

W. Liu, Y. Li, J. Sun, and G. Wang are with the National Key Lab
of Autonomous Intelligent Unmanned Systems and School of Automation,
Beijing Institute of Technology, Beijing 100081, China, and also with the
Beijing Institute of Technology Chongqing Innovation Center, Chongqing
401120, China (e-mail: liuwenjie@bit.edu.cn; liyifei@bit.edu.cn; sun-
jian@bit.edu.cn; gangwang@bit.edu.cn).

J. Chen is with the Department of Control Science and Engineering,
Tongji University, Shanghai 201804, China, and also with the National
Key Lab of Autonomous Intelligent Unmanned Systems, Beijing Institute
of Technology, Beijing 100081, China (e-mail: chenjie@bit.edu.cn).

these limitations, a resource-efficient scheduling approach for
data transmissions, known as event-based control, has been
thoroughly studied in the context of model-based control.

There are two event-based approaches that have been
proven effective, that is event-triggered control and self-
triggered control [20]. In event-triggered control, a data
transmission event is triggered only after some triggering
conditions, in terms of the state/output, are met. These condi-
tions should be examined continuously or periodically at the
sensor side, which means that the sensor should be activated
frequently, leading to a waste of resources. However, this
operating manner improves the system’s robustness against
uncertainties and unmodeled dynamics; see e.g., [21]–[24].

Self-triggered control is an approach to determining the
next sampling and transmission time once a sampled mea-
surement is received, eliminating the need for continuous or
periodic sampling. This method saves energy and prolongs
the service life of sensors, as sensors can be completely shut
off between sampling times. Self-triggered control has been
studied extensively in the context of model-based control,
with several studies focusing on its resource-efficient prop-
erties; see, for example, [25]–[27]. Recently, self-triggered
control scheme has been designed using input-state data in
[28], in which only offline data are corrupted by process
noise. In this paper, we aim to design a data-driven self-
triggering mechanism for unknown linear state feedback
systems, accounting for both offline and online noise.

To achieve this goal, we first consider measurement noise,
and then provide modification suggestion accounting for both
process and measurement noise. Inspired by the previous
works on data-driven MPC, we formulate a data-driven
online optimization problem for trajectory prediction, which
is reminiscent of the data-driven MPC in [12], [15] but
does not optimize and thus output the control inputs. Upon
solving this problem, we show that the distance between the
predicted state and the state from the most recent triggering
time depends only on the optimal solution and an unknown
parameter relating to the system open-loop divergence rate.
By open-loop, we refer to the system with a zero control
input. In addition, an algorithm is proposed which returns
an upper bound on the open-loop divergence rate, using the
data-driven set-based technique in [29]. Finally, we combine
the optimal solution with the upper bound to develop a
data-driven self-triggering mechanism, followed by stability
guarantees.

In succinct form, the contribution of this work is threefold,
summarized as follows.
c1) A data-driven online optimization problem is formulated
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to predict future states using only noisy input-state data;
c2) A data-driven set-based algorithm using matrix zono-

topes for estimating the system open-loop divergence
rate is proposed; and,

c3) Leveraging the optimal solution of the optimization
problem and the upper bound on the open-loop di-
vergence rate, a data-driven self-triggering mechanism
is designed, for which input-to-state stability (ISS) is
established.

Notation: Denote the set of real numbers, integers, and
positive integers by R, N, and N+, respectively. For a full
row-rank matrix M , its right pseudo-inverse is denoted by
M†. Let N[t1,t2] := [t1, t2]∩N. Given a vector x ∈ Rnx , ∥x∥,
∥x∥1, and ∥x∥∞ denote its Euclidean, ℓ1-, and ℓ∞-norm,
respectively, and for a positive definite matrix P = P ′ ≻ 0,
define the weighted norm ∥x∥P =

√
x′Px. If the argument

is matrix-valued, then these mean the corresponding induced
norms. The contraction norm for matrix G of vector x in [30,
Lemma 2] is defined by |x|G 1.

Given a signal x : N → Rnx , for N ∈ N+, let
x[0,N−1] := [x′

0 x′
1 · · · x′

N−1]
′ denote its vectorized form,

and let ∥x[0,N−1]∥∞ := maxs∈[0,N−1] ∥xt∥∞. Denote the
Hankel matrix of signal x[0,N−1] by

HL(x) :=

 x0 x1 . . . xN−L

...
...

. . .
...

xL−1 xL . . . xN−1


where x is used to represent x[0,N−1] for brevity. The
definition of persistency of excitation as in [5] is given below.

Definition 1.1 (Persistency of excitation): Given L ∈ N+,
a signal x[0,N−1] ∈ Rnx with N ≥ (nx + 1)L + 1 is
persistently exciting of order L if rank(HL(x)) = nxL.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. State feedback control systems
Consider the following discrete-time state feedback con-

trol system

xt+1 = Axt +But, t ∈ N (1a)
ζtℓ = xtℓ + ntℓ , tℓ ∈ N (1b)
ut = Kζtℓ , tℓ ≤ t < tℓ+1 (1c)

where xt ∈ Rnx , ut ∈ Rnu , ζtℓ ∈ Rnx and ntℓ ∈ Rnx are the
state, control input, sensor measurement and measurement
noise, respectively. The feedback gain matrix K ∈ Rnu×nx

is arbitrary given such that matrix A+BK is Schur stable.
Let tℓ ∈ N denote the time at which the ℓ-th event is
triggered, i.e., the state sampling and transmission occur.
Assume without loss of generality that t0 = 0, and the
subsequent times tℓ for all ℓ ∈ N+ are dictated by a self-
triggering mechanism, which is to be designed. In this paper,
we make the following assumptions.

1Given a matrix G ∈ Rnx×nx and constants c ≥ 1, ϕ > 0 such that
∥Gt∥∞ ≤ cϕt holds for all t ∈ N, then the function | · |G : Rnx 7→ R
defined by x 7→ |x|G := supt∈N ∥ϕ−tGtx∥∞ is the contraction norm of
x, satisfying all the properties of a norm on Rnx . In addition, for every x ∈
Rnx and t ∈ N, it holds that ∥x∥∞ ≤ ∥x∥G ≤ c∥x∥∞ and |Gtx|G ≤
ϕt|x|G.

Assumption 2.1 (Controllability): The pair (A,B) in (1)
is unknown but assumed stabilizable.

Assumption 2.2 (System trajectory): Given N,L ∈ N+,
under an input sequence up

[0,N−1] that is persistently exciting
of order L+nx, data ζp[0,N ], x

p
[0,N ], and np

[0,N ] are generated
from the open-loop system (1a)-(1b) through offline experi-
ments. We only have access to data (up

[0,N−1], ζ
p
[0,N ]).

Assumption 2.3 (Bounded noise): There exists a known
constant n̄ ≥ 0 such that np

t ∈ Bn̄ := {n|∥n∥∞ ≤ n̄}
for all t ∈ N[0,N ], and nt ∈ Bn̄ for all t ∈ N.

Regarding the assumptions, we have the next observation.
Remark 2.1 (Matrix K): Assumptions 2.2 and 2.3 indi-

cate that ζp[0,N ] = xp
[0,N ]+np

[0,N ] with bounded noise np
[0,N ].

Hence, several methods can be used to design a stabilizing
matrix K from data (up

[0,N−1], ζ
p
[0,N ]); see, e.g. [1], [7], [10].

Fig. 1 depicts the networked system structure. Specifically,
we consider the plant is connected to a remote controller
through an ideal network, i.e., the network phenomena such
as delay and packet loss are not taken into account here
but leave it for future research. At time tℓ, the ℓ-th event
is triggered at the controller side, and the sensor samples
the current state xtℓ and transmits its noisy version ζtℓ to
the controller over the network. The self-triggering mod-
ule computes the next triggering time tℓ+1 by evaluating
a triggering function on a predicted trajectory using the
received noisy state ζtℓ and then feeds it back to the plant.
Meanwhile, the control input is updated using ζtℓ and sent
to the actuator at the plant side, which implements a sample
and hold controller as in (1c).

Fig. 1. Data-driven self-triggered state feedback control.

Due to the presence of measurement noise nt, instead
of pursing asymptotic stability, a weaker notion of stability,
known as input-to-state stability (ISS), is discussed.

Definition 2.1 ([31, Definition 2.2]): System (1) is ISS if,
for any x0 ∈ Rnx and measurable essentially bounded nt for
t ∈ N, the solution satisfies

∥xt∥ ≤ α(∥xt∥, t) + πn(∥n[0,t−1]∥∞), ∀t ∈ N (2)

where α is a KL-function and πn is a K-function2.

2A function πn : [0,∞) → [0,∞) is said to be of class K if it is
continuous, strictly increasing, and πn(0) = 0. A function α : [0,∞) ×
[0,∞) → [0,∞) is a KL-function if α(·, t) is of class K for each fixed
k ≥ 0 and α(s, t) decreases to 0 as t → ∞ for any fixed s ∈ N.
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With the preliminaries above, the problem to be addressed
is formally stated as follows.

Problem 1: For the state feedback control system (1), un-
der Assumptions 2.1-2.3, design a self-triggering mechanism
to save transmissions while ensuring ISS of the system.

B. Fundamental lemma

In this section, we briefly review the data-driven system
representation based on the Willems et al.’s fundamental
lemma in [5], which is crucial to derive our data-driven self-
triggering mechanism.

According to Definition 1.1, it has been shown in [5]
that any finite trajectory of noise-free system (1a) can be
expressed as a linear combination of some pre-collected
input-state data (up

[0,N−1], x
p
[0,N ]), provided that the input

sequence up
[0,N−1] is persistently exciting of sufficient order.

This result is formally summarized below.
Lemma 2.1 ([5, Theorem 1]): For input sequence

up
[0,N−1] as in Assumption 2.2, if noise-free data

(up
[0,N−1], x

p
[0,N ]) are available, then (ū[0,L−1], x̄[0,L−1]) is

a trajectory of the noise-free system (1a) if and only if there
exists a vector g ∈ RN−L+1 such that the following holds[

HL(u
p)

HL(x
p)

]
g =

[
ū[0,L−1]

x̄[0,L−1]

]
. (3)

III. DATA-DRIVEN SELF-TRIGGERING MECHANISM

This section advocates a data-driven approach to designing
a self-triggering mechanism for the unknown linear feedback
system (1). Typically, a self-triggering module determines
the next transmission by sequentially comparing the current
state with predicted future states at each triggering time, and
if they differ considerably, the associated time index of the
future state is the next triggering time. The challenge of
addressing Problem 1 lies in how to predict future states and
quantify its distance with the current state without knowing
the system matrices but only using data. In the following,
inspired by Lemma (Lem.) 2.1 and robust data-driven MPC
schemes in e.g. [12], [15], a data-driven online optimization
problem is developed to predict future states using noisy
input-state data, whose solution facilitates the design of a
data-based self-triggering mechanism. Moreover, describing
the distance between the future states and the current one
requires also the open-loop divergence rate of the system,
i.e., ∥Ai∥∞. To tackle this issue, the data-driven set-based
technique in [29] is recalled and an algorithm computing an
upper bound of the system open-loop divergence rate is put
forth. Finally, standard conditions are derived, under which
the system with the data-driven self-triggering mechanism
achieves ISS.

A. Self-triggering mechanism
For a given prediction horizon L ∈ N+, we consider, at

each triggering time tℓ, the following optimization problem
to predict the states for its subsequent L times

J∗
L(ζtℓ) := min

g(tℓ),h(tℓ)

x̄i(tℓ)

L−1∑
i=0

∥x̄i(tℓ)∥Q + (λh/n̄)∥h(tℓ)∥2

+ λgn̄∥g(tℓ)∥2 (4a)

s.t.

[
u(tℓ)

x̄(tℓ) + h(tℓ)

]
=

[
HL(u

p)
HL(ζ

p)

]
g(tℓ) (4b)

x̄0(tℓ) = ζtℓ (4c)

where u(tℓ) := [u′
tℓ
· · ·u′

tℓ
]′ ∈ RnuL copies utℓ a number

of L times, and (x̄(tℓ), h(tℓ), g(tℓ)) are the optimization
variables, i.e., x̄(tℓ) = [x̄′

0(tℓ) · · · x̄′
L−1(tℓ)]

′ ∈ RnxL collects
the predicted L−1 states from tℓ, g(tℓ)∈RN−L+1 as in Lemma
2.1, and h(tℓ) := [h′

0(tℓ) · · ·h′
L−1(tℓ)]

′ ∈ RnxL is a slack
vector compensating the influence of measurement noise in
both offline data np

t and online data nt. Penalties imposed
on g(tℓ) and h(tℓ) in the objective function J∗

L(ζtℓ) reflect
the constraint on the noise in Assumption 2.3. Parameters
Q ≻ 0, λh > 0 and λg > 0 are appropriate weighting
parameters, which can be chosen similar as in the data-driven
MPC literature e.g. [12], [15]. Based on (4c), if L = 1, then
x̄(tℓ) = ζtℓ and no future state is returned rendering solving
Problem (4) trivial. To avoid this situation, a lower bound
on L is required.

Assumption 3.1 (Prediction horizon): The prediction ho-
rizon L of the data-driven problem (4) satisfies L ≥ 2.

It is worth noticing that the optimization problem in (4)
is similar to the robust data-driven MPC formulation in
[12], [15], except that the subsequent control inputs are not
optimized but replaced with that at the current triggering
time tℓ. Hence, we refer to Problem (4) also as the trajectory
prediction problem in the rest of this paper.

The inter-triggering time between two consecutive self-
triggered times is defined as τℓ := tℓ+1 − tℓ for each ℓ ∈
N. Observe from (4b) that at most L − 1 future states can
be predicted at time tℓ. Therefore, the inter-triggering time
between any two consecutive self-triggering times obeys 1 ≤
τℓ ≤ L − 1. With these definitions, the following lemma
indicates that the error between the predicted state and the
actual state is bounded and can be rigorously quantified using
the optimizer of (4).

Lemma 3.1: Under Assumptions 2.1–3.1, for any ℓ ∈ N,
Problem (4) is feasible at time tℓ, whose optimal solution is
denoted by (x̄∗(tℓ), g

∗(tℓ), h
∗(tℓ)). Moreover, for any ℓ ∈ N,

the prediction error between xtℓ+1
and x̄∗

τℓ
(tℓ) satisfies

∥e(tℓ+1)∥∞ := ∥xtℓ+1 − x̄∗
τℓ(tℓ)∥∞

≤ ρτℓ
(
n̄+ n̄∥g∗(tℓ)∥1 + ∥h∗

0(tℓ)∥∞
)

+ ∥h∗
τℓ(tℓ)∥∞ + n̄∥g∗(tℓ)∥1 (5)

where ρτℓ := ∥Aτℓ∥∞ is the system divergence rate when
ut = 0, and we refer to it as the open-loop divergence rate.
The proof follows from [12, Lem. 2] and is omitted here.

B. Over-approximating the open-loop divergence rate

According to Lem. 3.1, an upper bound on the error
between the predicted state and the actual state is charac-
terized in terms of known or computable parameters x̄∗(tℓ),
g∗(tℓ), h∗(tℓ), n̄, as well as the unknown parameter ρτℓ that
depends on the open-loop divergence rate. To design the self-
triggering mechanism, upper bounds on the parameters ρi,
i = 1, · · · , L − 1 should be prepared offline. When noise-
free data (up

[0,N−1], x
p
[0,N−1]) are available, upper bounds

on ρi can be easily obtained from solving the optimization
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problem in [14, Sec. V.B (27)]. However, the requirement on
clean data can be stringent in real-world settings. Inspired
by the set-based method proposed in [29], we advocate an
algorithm for approximating ρi from noisy input-state data.
It is worth stressing that the proposed algorithm runs offline
and thus will not affect the real-time performance of the
self-triggering mechanism.

Rearranging the offline data ζp[0,N ], u
p
[0,N−1], and np

[0,N ]
into matrices, yields

Zp
− := [ζp0 ζp1 · · · ζpN−1], Zp

+ := [ζp1 ζp2 · · · ζpN ], (6a)
Up

− := [up
0 up

1 · · · up
N−1], (6b)

Np
− := [np

0 np
1 · · · np

N−1], Np
+ := [np

1 np
2 · · · np

N ] (6c)

which satisfies

Zp
+ −Np

+ = [A B]

[
Zp

− −Np
−

Up
−

]
. (7)

Based on Assumption 2.3, there exists a zonotope Zn =
⟨cn, Gn⟩ ⊂ Rnx such that np

t , nt ∈ Zn, where ⟨cn, Gn⟩ is
used as a shorthand notation of the following zonotope

Zn =

{
n ∈ Rnx

∣∣∣n = cn +

ξ∑
i=1

β(i)g(i)n ,−1 ≤ β(i) ≤ 1

}
and Gn =

[
g
(1)
n g

(2)
n · · · g

(ξ)
n

]
∈ Rnx×ξ. In fact, since

the noise is upper bounded by n̄, i.e., ∥np
t ∥∞ ≤ n̄, and

∥nt∥∞ ≤ n̄, zonotope Zn can be constructed by letting cn =

0, ξ = nx, and the vector g
(i)
n = [0 · · · n̄ · · · 0]′ whose i-th

element is n̄ and remaining ones are zeros. Building on Zn, a
matrix zonotope Mn = ⟨CM,n, G

(1:ξN)
M,n ⟩ can be constructed

such that Np
−, N

p
+ ∈ Mn; see [29, Sec. III.A] for details. As

has been shown in [29, Lem. 1], all the matrix pairs [A,B]
that are consistent with the data (Up

−, Z
p
−, Z

p
+) and under

Assumption 2.3 are contained in the following zonotope

M(A,B) = (Zp
+ −Mn)

[
Zp

− −Mn

Up
−

]†

. (8)

For i ∈ [0, L − 1], let the set R̃i = ⟨c̃i, G̃i⟩ be updated by
R̃i+1 = M(A,B)(R̃i × U) with U = ⟨0, 0⟩. The initial con-
dition R̃0 is given by c̃0 = 0 and G̃0 = [g̃

(1)
0 g̃

(1)
0 · · · g̃

(ξ)
0 ]

with ξ = nx, where the vector g̃
(i)
0 = [0 · · · 1 · · · 0]′

whose i-th element is 1 and remaining ones are zeros. Let
Bi := maxr∈R̃i

∥r∥∞. It follows from [29, Thmorem 1]
that Bi ≥ ∥Ai∥∞ = ρi which indicates that an upper bound
on the prediction error ∥e(tℓ+1)∥∞ can be expressed using
only data. For reference, the over-approximation method is
summarized in Algorithm (Alg.) 1 on the right column.

Leveraging the upper bound (5) in Lem. 3.1 and the
optimal solution (x̄∗(tℓ), g

∗(tℓ), h
∗(tℓ)) of Problem (4), the

next self-triggering time is determined by

tℓ+1 := tℓ +min {L− 1, τℓ}, t0 := 0 (9)

with

τℓ := sup
{
τℓ ∈ N+ |∥x̄∗

τ (tℓ)− ζtℓ∥∞ + ∥h∗
τℓ(tℓ)∥∞

+ ρτℓ
(
n̄+ n̄∥g∗(tℓ)∥1 + ∥h∗

0(tℓ)∥∞
)

+ n̄∥g∗(tℓ)∥1 ≤ σ∥ζℓ∥∞
}

(10)

where the constant σ ∈ (0, 1) balances between the system
performance and the inter-triggering time.

Algorithm 1 Over-approximation of ρi.
1: Input: Data (up

[0,N−1], ζ
p
[0,N−1]) from (1) with arbitrary xp

0 and
persistently exciting up

[0,N−1] of order L+ nx.
2: Construct matrices Zp

+, Zp
−, Up

−, and zonotopes Mn as in [29,
Sec. III.A], U = ⟨0, 0⟩, R̃0 = ⟨c̃0, G̃0⟩ with c̃0 = 0, matrix
G̃0 = [g̃

(1)
0 · · · g̃

(ξ)
0 ] with ξ = nx and g̃

(i)
0 = [0 · · · 1 · · · 0]′

.
3: Compute matrix zonotope M(A,B) via (8), which contains all

matrices [A,B] consistent with the data Zp
+, Zp

− and Up
−.

4: For i = 0, · · · , L− 1 do
5: Calculate the zonotope R̃i+1 = M(A,B)(R̃i × U).

Record Bi := maxri∈R̃i
∥ri∥∞.

Set ρi = Bi.
6: End for

C. Stability analysis

Based on (9)–(10) with (x̄∗(tℓ), g
∗(tℓ), h

∗(tℓ)) from Prob-
lem (4) and ρτℓ from Algorithm 1, the proposed data-
driven self-triggering mechanism is presented in Algorithm
2, whose stability guarantees are provided below.

Algorithm 2 Data-driven self-triggering mechanism.
1: Offline: leftmargin=8mm,topsep = 0.5 pt

1) Input prediction horizon L ≥ 2; coefficients Q ≻ 0,
λg > 0, λh > 0, σ ∈ (0, 1); noise bound n̄; data
(up

[0,N−1], ζ
p
[0,N−1]) obeying Assumption 2.2.

1) Construct Hankel matrices HL+1(u
p) and HL+1(ζ

p) for
the input and noisy state data.

2) Design matrix K from data (up
[0,N−1], ζ

p
[0,N−1]) using the

method in e.g., [1, Sec. V.A].
3) Compute ρi for i = 1, 2, . . . , L− 1 using Alg. 1.

2: Online: For t = 0, 1, 2, · · · do
If t = tℓ, do

leftmargin=15mm,topsep = 0.5 pt
1) Solve Problem (4) with the current ut and ζt.
2) Compute the next triggering time tℓ+1 by (9).
3) Set ut = Kζtℓ and tℓ = tℓ+1.
Else if t ̸= tℓ, set ut = utℓ .

Theorem 3.1: Consider the state feedback control system
(1) adopting the self-triggering mechanism in Alg. 2. Let
Assumptions 2.1–3.1 hold. If i) the self-triggering times are
generated by (9)–(10) with the parameters g∗(tℓ), h∗(tℓ),
x̄∗(tℓ) obtained from solving Problem (4) and ρi from Alg.
1, and ii) any σ ∈ (0, σ̄) with 0 < σ̄ < (1−ϕ1)/(c

2
1∥BK∥),

where the constants c1 ≥ 1 and ϕ1 ∈ (1, 0) are such that
∥(A+BK)i∥∞ ≤ c1ϕ

i
1 holds for all i ∈ N, then system (1)

achieves ISS under the proposed data-driven self-triggering
mechanism in Algorithm 2.

Proof: For k ∈ N[0,τℓ], it follows from Lem. 3.1 that

∥ζtℓ−xtℓ+k∥∞≤ ∥ζtℓ − x̄∗
k(tℓ)∥∞ + ∥xtℓ+k − x̄∗

k(tℓ)∥∞
(5)
≤ ∥ζtℓ−x̄∗

k(tℓ)∥∞+n̄∥g∗(tℓ)∥1+∥h∗
k(tℓ)∥∞

+ρk
[
n̄(1 +∥g∗(tℓ)∥1)+∥h∗

0(tℓ)∥∞
]

(11)
(10)
≤ σ∥ζtℓ∥∞. (12)

Notice that matrix K is such that A := A + BK is
Schur stable, meaning that there exist constants c1 ≥ 1
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and ϕ1 ∈ (0, 1) such that ∥Ai∥∞ ≤ c1ϕ
i
1 holds for all

i ∈ N. Recalling the contraction norm that |Aix|A ≤ ϕi
1|x|A.

Hence, it follows recursively from (1) that for k ∈ N[0,τℓ],
the state obeys

|xtℓ+k|A ≤
[
ϕk
1((1− γσ) + γσ)

]
|xtℓ |A

+

k∑
i=0

c21ϕ
i
1∥BK∥σ∥n[0,tℓ+k−1]∥∞ (13)

where γ := c21∥BK∥/(1− ϕ1). If σ < 1/γ, then it follows
from [30, Thmorem 3.4] that ϕk

1((1 − γσ) + γσ) < 1 and
(ϕk

1(1 − γσ) + γσ)1/k is strictly increasing on k ∈ [1,∞).
Letting ϕ2 := (ϕL−1

1 (1 − γσ) + γσ)1/(L−1), the inequality
(13) becomes |xtℓ+k|A ≤ ϕk

2 |xtℓ |A + γσ∥n[0,tℓ+k−1]∥∞.
Recursively, one gets that |xtℓ+k|A ≤ ϕtℓ+k

2 |x0|A + (1 +∑ℓ−1
i=0 ϕ

τi
2 )γσ∥n[0,tℓ+k−1]∥∞.

Furthermore, it follows from the fact ∥x∥/√nx ≤
∥x∥∞ ≤ |x|A ≤ c1∥x∥∞ ≤ c1∥x∥ that ∥xtℓ+k∥ ≤
c1
√
nxϕ

tℓ+k
2 ∥x0∥ + (1 +

∑ℓ−1
i=0 ϕ

τi
2 )γσ

√
nx∥n[0,tℓ+k−1]∥∞

which completes the proof according to Definition 2.1.
Remark 3.1 (Extension): Consider systems with bounded

process noise, i.e., rather than (1a), the state obeys xt+1 =
Axt + But + wt with ∥wt∥∞ ≤ w̄ for all t ∈ N. In this
case, additional terms consisting of

∑j
i=0 A

iwp
j−i for all

j ∈ N[0,N−1] will be involved in the prediction error (5).
Since ∥

∑j
i=0 A

iwp
j−i∥∞ ≤

∑j
i=0 ∥Ai∥∞w̄ and ∥Ai∥∞ can

be bounded following a similar procedure as in Alg. 1, for
any j ∈ N[0,N−1], an upper bound on ∥

∑j
i=0 A

iwp
j−i∥∞ can

be obtained and a more complex self-triggering mechanism
can be designed. This method can be also used to extend the
result in [32] by considering noisy offline data.

Remark 3.2 (Trade-off): It can be observed from (10) and
(13) that as σ decreases, both the transmission frequency and
the state convergence rate increase, which is similar to the
effect of the performance parameter in multi-step MPC, see,
e.g., [33]. Upper bounds of σ defined in Theorem 3.1 can
be approximated using e.g., the set-based method in [29],
which is left for future investigation. In addition, for a fixed
L, it has been shown in [12] that larger N is beneficial
for decreasing the impact of measurement noise on the
prediction performance of Problem (4), which may conse-
quently affect the system performance. Such an improvement
becomes significant when N is small, and becomes marginal
when N is large [34]. On the other hand, increasing the
value of N leads to an increasing online complexity of (4),
since g(t) ∈ RN−L+1. In conclusion, the proposed self-
triggering mechanism allows a trade-off among transmission
frequency, state convergence, and computational complexity
by appropriately selecting N , L and σ.

IV. NUMERICAL EXAMPLES

To examine the correctness and numerical effectiveness of
the proposed data-driven self-triggering mechanism and as-
sociated state feedback controller, two examples are provided
in this section.

5 10 15 20 25 30 35 40 45
i
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4
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8

10

12

14

0 50 100 150 200 250 300 350 400

Time

-1

0

1

2

3

30 35 40
3.5

4

4.5

25 samples15 samples

(a)

(b)

20 samples 18 samples

20 samples

Fig. 2. (a): Estimated ρi by Alg. 1 under different levels of noise; (b):
State trajectories under different N and σ.

1) Example 1: Consider the discrete-time version of the
system in [28] with a sampling period of 0.1s as follows

ẋ(t) =

[
0 1
0 −0.1

]
x(t) +

[
0
0.1

]
u(t), t ≥ 0. (14)

Letting N = 200, input-state trajectories under different
noise bounds were first collected by applying a sequence
of inputs u uniformly and independently sampled in [−1, 1],
and the divergence parameters ρi were computed using Alg.
1. For i = 1, · · · , L − 1 with L = 41, it has been shown
in Fig. 2 (a) that ρi ≤ ∥Ai∥∞ holds, and moreover, ρi

approaches ∥Ai∥∞ as then noise vanishes, which verifies
the effectiveness of Alg. 1 in upper-bounding ∥Ai∥∞.

Letting n̄ = 0.0015, Q = 3I2, λgn̄ = 10−6, λh/n̄ = 500,
σ = 0.5, and the feedback controller gain K = [−0.2908 −
4.0340], which are same as in [28]. Over the interval t ∈
[0, 400] and with the initial state x0 = [3 − 2]′, we first
compare the system performances under different parameters
N and σ. Fig. 2 (b) verifies the discussion in Remark 3.2.

In addition, using the same setting as in [28], i.e., only
offline data subject to process noise with n̄ = 0.001, 3
(a1)-(a2) compares the proposed Alg. 2 (solid line) and
the method in [28] (dashed line). Although both methods
require the same number of transmissions (i.e., 15 out of
400 samples), the state converges faster under the proposed
Alg. 1.

2) Example 2: Consider the discretized inverted pendu-
lum control problem as in [35]

ẋ(t) =

0 1 0 0
0 0 m1g

−m2
0

0 0 0 1
0 0 g

ℓ
0

x(t) +


0
1

m2

0
−1
m2ℓ

u(t) (15)

where m1 = 1, m2 = 10, ℓ = 3, and g = 10. A collection
of N = 100 input-state data was obtained following the
same procedure described in Example 1. Consider n̄ = 15×
10−4, Q = 3I4, λgn̄ = 10−6, λh/n̄ = 500, σ = 0.33,
L = 11, matrix K = [2 12 378 210], and the initial state
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Fig. 3. (a1)-(a2): State trajectory in Example IV-.1; (b1)-(b2): State
trajectory in Example IV-.2.

x0 = [0.98 0 0.2 0]′. It can be seen from Fig. 3 (b1) and
(b2) that the system converges to zero with 49 (σ = 0.33)
and 39 (σ = 0.5) samples over a simulation horizon of 150
time steps.
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