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Abstract— We propose a time-discounted integral variant
of incremental input/output-to-state stability (i-iIOSS) together
with an equivalent Lyapunov function characterization. Con-
tinuity of the i-iIOSS Lyapunov function is ensured if the
system satisfies a certain continuity assumption involving the
Osgood condition. We show that the proposed i-iIOSS notion
is a necessary condition for the existence of a robustly globally
asymptotically stable observer mapping in a time-discounted
“L2-to-L∞” sense. In combination, our results provide a gen-
eral framework for a Lyapunov-based robust stability analysis
of observers for continuous-time systems, which in particular is
crucial for the use of optimization-based state estimators (such
as moving horizon estimation).

I. INTRODUCTION

The concept of incremental IOSS (i-IOSS) was originally
proposed in [1] as a more appropriate notion of nonlinear
detectability than IOSS (which can merely be viewed as
“zero-detectability”). Introduced in an “L∞-to-L∞” sense
(where we adopt the terminology from [2]), it has been
shown that a continuous-time system must necessarily satisfy
the i-IOSS property to admit a robustly stable observer, and
its discrete-time analogue has become the standard in the
field of optimization-based state estimation, cf. [3]–[5].

The characterization of system properties via Lyapunov
functions linked to converse theorems that establish necessity
of their existence has turned out to be very useful for system
analysis and the design of controllers and observers. Such
results are available for, e.g., global asymptotic stability
(GAS) in [6] and (non-incremental) IOSS in [7], albeit
under the condition that external signals (e.g., time-varying
parameters, disturbances) of the system take values in a
compact set. Converse Lyapunov theorems for the incremen-
tal “L2-to-L∞” versions of GAS and input-to-state stability
(ISS) were considered in [8] and [9], respectively, where
the condition of compactness could be weakened by using
a dissipation inequality in integral form along with relaxing
the requirement of smoothness of the Lyapunov function to
mere continuity.

Time-discounted variants of i-IOSS were proposed in [10],
[11] for discrete-time systems, where it was shown that
discounting past disturbances appears very natural and even
without loss of generality. A corresponding converse Lya-
punov result is provided in [11], which is structurally easier
and more intuitive to establish with such a discount factor
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than without, as is the case in, e.g., [6]–[9]. Moreover, i-IOSS
with time-discounting and its associated Lyapunov function
are crucial for recent results in the field of optimization-based
state estimation for discrete-time systems, cf., e.g., [3]–[5].

Inspired by these works, we propose a discrete-time in-
tegral (“L2-to-L∞”) variant of i-IOSS for continuous-time
systems, namely i-iIOSS (Section II). As the main contribu-
tion, we show that i-iIOSS is equivalent to the existence
of a continuous i-iIOSS Lyapunov function (Section III),
where an exponential decay can be used without loss of
generality (cf. Remark 1). Our proofs use similar tools as
in previous works on incremental integral ISS [9] and i-
IOSS in the discrete-time setting [11]; however, we point
out that the presented results do not straightforwardly follow
from them. In particular, continuity of the Lyapunov function
candidate is shown by replacing the standard local Lipschitz
assumption on the dynamics f by a global property involving
the Osgood condition [12], which is quite novel in the context
of control systems. As a byproduct, based on this assumption,
we formally prove global existence and uniqueness of system
trajectories by adapting the results from [13], [14] to the
generic class of inputs considered here.

As second contribution, we propose a time-discounted
integral “L2-to-L∞” variant of robust global asymptotic
stability and show necessity of i-iIOSS for a system to
admit a general observer mapping satisfying this property
(Section IV). Asking such a stability property from an
observer is advantageous for several reasons: first, it can
be seen as accounting for the disturbance energy under
fading memory and thus allows for a physical interpreta-
tion; second, it directly implies an L∞ error bound and
thus combines the advantages of classical and integral ISS
properties. In combination, we provide a general framework
for a Lyapunov-based robust stability analysis of observers
in continuous-time. This is an essential tool in the context of
moving horizon estimation in [15], where we also provide
constructive conditions for i-iIOSS Lyapunov functions that
can be efficiently verified in practice.

Notation: Let R≥0 denote the set of all non-negative real
values. By |x|, we indicate the Euclidean norm of the vector
x ∈ Rn. For a measurable, essentially bounded function z :
R≥0 → Rn, the essential sup-norm is defined as ‖z‖ =
ess supt≥0 |z(t)|, and for the restriction of z to an interval
[a, b] with a, b ≥ 0 by ‖z‖a:b = ess supt∈[a,b] |z(t)|. We
recall that a function α : R≥0 → R≥0 is of class K if it
is continuous, strictly increasing, and satisfies α(0) = 0; if
additionally α(s) =∞ for s→∞, it is of class K∞.
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II. SETUP AND PRELIMINARIES

We consider continuous-time systems of the form

ẋ(t) = f(x(t), u(t), d(t)), (1a)
y(t) = h(x(t), u(t), d(t)) (1b)

with states x ∈ X ⊆ Rn (0 ∈ X ), outputs y ∈ Y ⊆ Rp
(0 ∈ Y), and time t ≥ 0. The input u and the time-varying
parameter d are measurable, locally essentially bounded
functions taking values in U ⊆ Rm and D ⊆ Rq with
0 ∈ U ,D, and we denote the set of such functions as
MU and MD, respectively. The solution of (1a) at t ≥ 0
with initial state χ ∈ X and input signals u ∈ MU and
d ∈ MD is denoted by x(t, χ, u, d), and the output signal
by y(t, χ, u, d) := h(x(t, χ, u, d), u(t), d(t)).

Assumption 1: The function f : X ×U ×D → X satisfies
f(0, 0, 0) = 0 and

|f(x1, u1, d1)− f(x2, u2, d2)|
≤ κ1 (|(x1, u1, d1)− (x2, u2, d2)|) (2)

for all x1, x2 ∈ X , all u1, u2 ∈ U , and all d1, d2 ∈ D, where
κ1 : R≥0 → R≥0 is continuous, non-decreasing, κ1(0) = 0,
κ1(s) > 0 for all s > 0, and∫ 1

0

ds

κ1(3s)
=∞,

∫ ∞
1

ds

κ1(3s)
=∞. (3)

Assumption 2: The function h satisfies

|h(x1, u1, d)−h(x2, u2, d)| ≤ κ2(|(x1, u1)− (x2, u2)|) (4)

for some κ2 ∈ K∞, for all x1, x2 ∈ X and all u1, u2 ∈ U
uniformly in d ∈ D.

Assumption 1 is essential for proving the converse Lya-
punov theorem below (the factor 3 in (3) is required for
technical reasons). It replaces the usual assumption of f
being locally Lipschitz (which is not suitable in our case,
cf. Remark 3 in the appendix) and ensures global existence
and uniqueness of solutions of (1). Inequality (2) together
with the first equation in (3) is similar to the so-called
Osgood condition, which was originally proposed in [12]
to establish local uniqueness of solutions without employing
a Lipschitz property. The second equation in (3) ensures that
these solutions exist globally in time. (A similar condition
is, in fact, necessary for the global existence of solutions
to the scalar differential equation v̇ = κ1(v), cf. [16].)
Valid functions that satisfy Assumption 1 are, e.g., s 7→ s,
s 7→ s ln(s + 1), cf. also [12], [13], [16]. While especially
the second condition in (3) may be a limitation, we point
out that global existence of solutions is often assumed in the
literature and significantly facilitates the exposition.

The main properties are summarized in the following
proposition; the proof is shifted to the appendix (cf. Sec-
tion A) and requires a straightforward extension of the results
from [13], [14] by addressing the generic class of inputs
considered here.

Proposition 1: Let Assumption 1 hold. Then, (1a) admits
a unique solution defined on R≥0 for all χ ∈ X , all u ∈MU ,
and all d ∈MD.

The topic of this paper is a notion of nonlinear detectabil-
ity in terms of the following notion.

Definition 1 (i-iIOSS): The system (1) is incrementally
integral input/output-to-state stable (i-iIOSS) if there exist
some α, αx, αu, αy ∈ K∞, and λ ∈ [0, 1) such that

α(|x∆(t)|) ≤ αx(|χ∆|)λt

+

∫ t

0

λt−τ
(
αu(|u∆(τ)|) + αy(|y∆(τ)|)

)
dτ (5)

for all t ≥ 0, all χ1, χ2 ∈ X , all u1, u2 ∈ MU , and all
d ∈ MD, where z∆ = z1 − z2 for z = {χ, x, u, y} with
xi(t) = x(t, χi, ui, d) and yi(t) = y(t, χi, ui, d), i = 1, 2.

We additionally propose the following equivalent (cf. The-
orem 1 below) Lyapunov function characterization.

Definition 2 (i-iIOSS Lyapunov function): A function U :
X × X → R≥0 is an i-iIOSS Lyapunov function if it is
continuous and there exist functions α1, α2, σw, σy ∈ K∞
and a constant λ ∈ [0, 1) such that

α1(|χ∆|) ≤ U(χ1, χ2) ≤ α2(|χ∆|), (6a)
U(x1(t), x2(t)) (6b)

≤ U(χ1, χ2)λt +

∫ t

0

λt−τ
(
σu(|u∆(τ)|) + σy(|y∆(τ)|)

)
dτ

for all t ≥ 0, all χ1, χ2 ∈ X , all u1, u2 ∈ MU , and all
d ∈ MD, where z∆ = z1 − z2 for z = {χ, x, u, y} with
xi(t) = x(t, χi, ui, d) and yi(t) = y(t, χi, ui, d), i = 1, 2.

The integral form of (5) and (6b) together with the conti-
nuity of U is motivated by [8], [9], originally employed to
allow for a non-compact input set D, where smooth converse
Lyapunov theorems usually fail, cf. [8, Rem. 2.4], [6, Sec. 8].
The exponential decrease in (5) and (6b) is motivated by
recent results in the discrete-time literature, where this is
crucial to develop full information and moving horizon esti-
mation schemes with suitable stability properties, cf. [4], [5].
In [15], we showed that this carries over to the continuous-
time setting, where we also provide sufficient conditions for
the construction of i-iIOSS Lyapunov functions for special
systems classes.

Remark 1: Considering an exponential decrease in Lya-
punov coordinates is without loss of generality; one can
straightforwardly show that (6b) is equivalent to a dissipation
inequality in the form of U(x1(t), x2(t)) − U(χ1, χ2) ≤∫ t

0
(−α3(|x∆(τ)|)+σu(|u∆(τ)|)+σy(|y∆(τ)|))ds with α3 ∈

K∞, which follows by application of the standard compari-
son lemma and [17, Prop. 13], similar to, e.g., [1, Lem. 10].

Remark 2: A key advantage of the discrete-time i-IOSS
counterpart is that discounted summation and discounted
maximization are in some sense equivalent, cf. [10], [11].
This does not carry over to the continuous-time setting (the
discounted integral in (5) could indeed be transferred to
a discounted L∞-norm bound, but not vice versa, unless
strong regularity assumptions on u are enforced). As a result,
the proposed notion from Definition 1 implies i-IOSS in an
“L∞-to-L∞” sense with time-discounting (similar to [11,
Def. 2.4]) and without discounting [1, Def. 22], cf. [15,
Prop. 1]. Investigating some converse implications may be
subject of future research.
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III. CONVERSE LYAPUNOV THEOREM FOR I-IIOSS
We now show equivalence between the proposed i-iIOSS

characterizations from Definitions 1 and 2.
Theorem 1: Let Assumptions 1 and 2 hold. The system (1)

is i-iIOSS if and only if there exists an i-iIOSS Lyapunov
function.

Proof: Part I (Sufficiency): The implication follows by
applying the bounds (6a) to (6b), which directly yields (5).

Part II (Necessity): The proof uses and combines similar
arguments as in previous converse theorems and Lyapunov
function constructions, in particular [11], [18]; continuity
of the Lyapunov function is proven in a different fashion
invoking Assumptions 1 and 2, cf. Claim 1 below and
Appendix B.

For arbitrary χ1, χ2 ∈ X , we consider the following
i-iIOSS Lyapunov function candidate1

U(χ1, χ2)

:= sup
t≥0,u1,u2,d

λ−t/2
(
α(|x(t, χ1, u1, d)− x(t, χ2, u2, d)|)

−
∫ ∞

0

λt−τ2αu(|u1(τ)− u2(τ)|)dτ

−
∫ t

0

λt−ταy(|y(t, χ1, u1, d)− y(t, χ2, u2, d)|)dτ
)

(7)

and start by establishing the bounds (6a). For the term
α(|x(t, χ1, u1, d) − x(t, χ2, u2, d)|) in (7), we can directly
use the estimate from i-iIOSS (5), which yields
U(χ1, χ2)≤ sup

t≥0,u1,u2,d
αx(|χ1 − χ2|)λt/2 = αx(|χ1 − χ2|),

i.e., the upper bound in (6a) with α2 = αx. The lower bound
follows by considering the candidate inputs u1 = u2 and
t = 0, leading to α1 = α in (6a).

The following claim is proven in Appendix B.
Claim 1: The function U in (7) is continuous on X ×X .

It remains to establish the dissipation inequality (6b). To this
end, consider ζ1, ζ2 ∈ X , u1, u2 ∈ MU , d ∈ MD, yielding
the trajectories zj(t) := x(t, ζj , uj , d) with j = 1, 2 for t≥ 0.
We obtain
U(z1(t), z2(t)) (8)

= sup
t̄≥0,ū1,ū2,d̄

λ−t̄/2
(
α(|x(t̄, z1(t), ū1, d̄)− x(t̄, z2(t), ū2, d̄)|)

−
∫ ∞

0

λt̄−τ2αu(|ū1(τ)− ū2(τ)|)

−
∫ t̄

0

λt̄−ταy(|y(τ, z1(t), ū1, d̄)− y(τ, z2(t), ū2, d̄)|)dτ
)
.

For two functions ū, u defined on [0,∞), let ū]tu denote
their concatenation at some fixed time t ≥ 0, i.e.,

ū]tu(τ) :=

{
u(τ), τ ∈ [0, t]

ū(τ − t), τ ∈ (t,∞).

Hence, in (8), we can infer that
α(|x(t̄, z1(t), ū1, d̄)− x(t̄, z2(t), ū2, d̄)|) (9)

=α(|x(t̄+ t, ζ1, ū1]tu1, d̄]td)− x(t̄+ t, ζ2, ū2]tu2, d̄]td)|).

1The inputs u1, u2, d in (7) are maximized over the sets MU and MD ,
respectively, which is omitted throughout this paper for brevity.

Similarly,∫ ∞
0

λt̄−τ2αu(|ū1(τ)− ū2(τ)|)dτ

=

∫ ∞
0

λt̄+t−τ2αu(|ū1]tu1(τ)− ū2]tu2(τ)|)dτ

−
∫ t

0

λt̄+t−τ2αu(|u1(τ)− u2(τ)|)dτ (10)

and ∫ t̄

0

λt̄−ταy(|y(τ, z1(t), ū1, d̄)− y(τ, z2(t), ū2, d̄)|)dτ

=

∫ t̄+t

0

λt̄+t−ταy(|y(t̄+ t, ζ1, ū1]tu1, d̄]td)

− y(t̄+ t, ζ2, ū2]tu2, d̄]td)|)dτ (11)

−
∫ t

0

λt̄+t−ταy(|y(τ, ζ1, u1, d)− y(τ, ζ2, u2, d)|)dτ.

Now define t̂ := t̄ + t. Consequently, U(z1(t), z2(t)) in (8)
can be bounded using the substitutions from (9)–(11) and the
fact that λ ≤

√
λ ∈ [0, 1) as

U(z1(t), z2(t))

≤ sup
t̂≥0,û1,û2,d̂

λ(−t̂+t)/2
(
α(|x(t̂, ζ1, û1, d̂)− x(t̂, ζ2, û2, d̂)|)

−
∫ ∞

0

λt̂−τ2αu(|û1(τ)− û2(τ)|)dτ

−
∫ t̂

0

λt̂−ταy(|y(t̂, ζ1, û1, d̂)− y(t̂, ζ2, û2, d̂)|)dτ
)

+

∫ t

0

λt−τ
(
2αu(|u1(τ)− u2(τ)|)

+ αy(|y(τ, ζ1, u1, d)− y(τ, ζ2, u2, d)|)
)
dτ

≤
√
λ
t
U(ζ1, ζ2) +

∫ t

0

√
λ
t−τ(

2αu(|u1(τ)− u2(τ)|)

+ αy(|y(τ, ζ1, u1, d)− y(τ, ζ2, u2, d)|)
)
dτ,

which establishes the dissipation inequality (6b) by a suitable
redefinition of λ and hence concludes this proof.

IV. NONLINEAR DETECTABILITY

In this section, we establish necessity of i-iIOSS for the
existence of an observer mapping satisfying an ISS-like
robust stability property in a time-discounted “L2-to-L∞”
sense. In this context, we let u include all unknown signals
(such as process disturbances and measurement noise) and
d known exogenous signals (such as control inputs). Let the
set MY contain all measurable, locally essentially bounded
functions defined on [0,∞) taking values in Y . For a function
z defined on [0,∞) and any t ≥ 0, we denote by zt the
truncated signal given by zt(τ) := z(τ), τ ∈ [0, t) and
zt(τ) := 0, τ ∈ [t,∞).

Definition 3 (State observer): The mapping

P : R≥0 ×X ×MU ×MD ×MY → X (12)

is a robustly globally asymptotically stable (RGAS) observer
for the system (1) if there exist functions β, βx, βu, βy ∈ K∞
and a constant η ∈ [0, 1) such that the estimate

x̂(t) = P (t, χ̄, ūt, dt, ȳt), x̂(0) = χ̄ (13)
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satisfies
β(|x(t)− x̂(t)|) ≤ βx(|χ− χ̄|)ηt (14)

+

∫ t

0

ηt−τ
(
βu(|u(τ)− ū(τ)|) + βy(|y(τ)− ȳ(τ)|)

)
dτ

for all t ≥ 0, all χ, χ̄ ∈ X , u, ū ∈MU , d ∈MD, ȳ ∈MY ,
where x(τ) = x(τ, χ, u, d), y(τ) = y(τ, χ, u, d), τ ∈ [0, t].

Definition 3 implies that at any time t ≥ 0, P causally
reconstructs the state of system (1) using (the past values
of) some nominal disturbance ū, some measured signal ȳ,
the parameter d, and some initial estimate χ̄. Considering
ȳ 6= y provides an additional degree of robustness and
accounts for the case where the output model h in (1b)
is not exact, e.g., when the data are first transformed or
traverse additional networks not captured by h, cf. [10]
for a more detailed discussion. Note that for the classical
case with ū ≡ 0 and ȳ = y, the estimate (14) reduces to
β(|x(t)−x̂(t)|) ≤ βx(|χ−χ̄|)ηt+

∫ t
0
ηt−τβu(|u(τ)|)dτ . The

integral term in this bound can be viewed as the energy of
the true disturbance signal u under fading memory and thus
has a reasonable physical interpretation, compare also [2],
[17]. Moreover, the discount factor permits a direct derivation
of an “L∞-to-L∞” error bound (cf., [15, Prop. 1]) and
thus combines the advantages of classical and integral ISS
properties: it is applicable for both unbounded disturbances
that have small energy and persistent, bounded disturbances
with infinite energy, and furthermore, directly implies that
|x(t) − x̂(t)| → 0 if |u(t)| → 0 for t → ∞. Note
also that the mapping (12) covers full-order state observers,
but in particular observers that do not admit a convenient
state-space representation, such as moving horizon and full
information estimators, cf. [15] and compare also [11] for a
similar discussion in a discrete-time setting. The following
proposition proves necessity of i-iIOSS for the existence of
an observer mapping (12) satisfying (14).

Proposition 2: The system (1) admits an RGAS observer
mapping in the sense of Definition 3 only if it is i-iIOSS.

Proof: This proof follows similar lines as in [11,
Prop. 2.6], [10, Prop. 3]. Consider χ1, χ2 ∈ X , u1, u2 ∈
MU , and d ∈ MD yielding xi(t) = x(t, χi, ui, d) and
yi(t) = y(t, χi, ui, d), i = 1, 2 for all t ≥ 0. Suppose that
the observer P (13) is designed to reconstruct the trajectory
x2 using χ̄ = χ2, ū = u2, ȳ = y2. By application of (14),
it follows that αx(|x2(t) − x̂(t)|) = 0 for all t ≥ 0. Now
assume that this certain design of P is used to reconstruct
the trajectory x1. Then, since x̂(t) = x2(t) for all t ≥ 0,
the estimate (14) directly yields (5) with α = β, αx = βx,
αu = βu, αy = βy; because χ1, χ2, u1, u2, d were arbitrary,
system (1) is i-iIOSS, which finishes this proof.
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APPENDIX

A. Proof of Proposition 1
We first derive a bound on the difference of trajectories on

a fixed time interval by adapting the results from [13], [14].
This will also be crucial in proving Claim 1 in Section B.

Lemma 1: Let Assumption 1 hold. Then, there exists
some ρ ∈ K∞ such that for each χ1, χ2 ∈ X , u1, u2 ∈MU ,
and d1, d2 ∈MD, there exists T > 0 such that
|x(t, χ1, u1, d1)− x(t, χ2, u2, d2)| ≤ ρ−1(ρ(c)et) (15)

for all t ∈ [0, T ) with
c := |χ1−χ2|+ Tκ1(3‖u1−u2‖0:T ) + Tκ1(3‖d1−d2‖0:T ).

(16)
Proof: Consider arbitrary χ1, χ2 ∈ X , u1, u2 ∈ MU ,

d1, d2 ∈ MD. The existence of the trajectories xi(t) =
x(t, χi, ui, di), t ∈ [0, ti(χi, ui, di)) is ensured for some
ti(χi, ui, di) > 0, i = 1, 2 by continuity of f (Assumption 1)
and Peano’s existence theorem (cf., e.g., [19, Th. 2.1]). Let
T := mini∈1,2{ti(χi, ui, di)}. Then, for all t ∈ [0, T ), the
trajectories x1 and x2 satisfy
x1(t)− x2(t) = χ1 − χ2

+

∫ t

0

(f(x1(τ), u1(τ), d1(τ))− f(x2(τ), u2(τ), d2(τ)))dτ.
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Define v(t) = |x1(t) − x2(t)|, u∆ = u1 − u2, and d∆ =
d1 − d2. By applying (2), the triangle inequality, and the
fact that κ1 is positive definite and non-decreasing, we can
deduce that

v(t) ≤ v(0) +

∫ t

0

(κ̄1(v(s)) + κ̄1(|u∆(s)|) + κ̄1(|d∆(s)|))ds
(17)

with κ̄1(s) := κ1(3s). Note that∫ t

0

(κ̄1(|u∆(s)|) + κ̄1(|d∆(s)|))ds

≤ T (κ̄1(‖u∆‖0:T ) + κ̄1(‖d∆‖0:T )). (18)

By combining (17), (18), and the definition of c from (16),
we obtain

v(t) ≤ c+

∫ t

0

κ̄1(v(s))ds. (19)

We first assume that c > 0. Denote by U(t) the right-hand
side of (19). Then, U(0) = c and

U̇(t) = κ̄1(v(t)) ≤ κ̄1(U(t)). (20)

Now consider G(s) :=
∫ s

1
dr

κ̄1(r) for s > 0. By Assumption 1,
lims→0+ G(s) = −∞ and lims→∞G(s) =∞. Furthermore,
from the Leibniz integral rule, it follows that

d

dt
G(U(t)) =

d

dt

∫ U(t)

1

dr

κ̄1(r)
=

U̇(t)

κ̄1(U(t))
. (21)

The combination of (20) and (21) yields d
dtG(U(t)) ≤ 1. An

integration on [0, t] leads to
G(U(t))−G(U(0)) ≤ t⇔ eG(U(t)) ≤ eG(U(0))et. (22)

Now define ρ(s) := eG(s) for all s > 0 and ρ(0) := 0. It
follows that ρ ∈ K∞ (and thus ρ−1 ∈ K∞). Since v(t) ≤
U(t) for all t ∈ [0, T ) and U(0) = c, from (22) and the
definition of ρ we can conclude that v(t) ≤ ρ−1(ρ(c)et) for
all t ∈ [0, T ).

It remains to show that (15) also applies for c = 0.
Performing the same steps as before with ε > 0 instead of
c leads to v(t) ≤ ρ−1(ρ(ε)et). Letting ε → 0 recovers (15)
for c = 0 and thus concludes this proof.

Proof of Proposition 1: Proposition 1 is an immediate
consequence of Lemma 1. First, we claim that solutions
exist globally in time. Indeed, suppose not. Then, there exist
χ ∈ X , u ∈ MU , d ∈ MD, and some finite time T1 > 0
such that limt→T1 |x(t)| = ∞, where x(t) = x(t, χ, u, d).
Applying Lemma 1 with χ1 = χ, u1 = u, d1 = d, and
χ2 = 0, u2 ≡ 0, d2 ≡ 0, (15) yields |x(t)| ≤ ρ−1(ρ(|χ| +
T1(κ̄1(‖u‖0:T1

))+κ̄1(‖d‖0:T1
))et) for t ∈ [0, T1). The right-

hand side is bounded for t → T1, which contradicts finite
escape time and hence implies that solutions exist globally
on R≥0.

It remains to show uniqueness of solutions. To this end,
assume that x1(t) = x(t, χ, u, d) and x2(t) = x(t, χ, u, d)
represent two solutions of (1a) on the interval [0, T2] for
T2 > 0 with the same initial conditions χ ∈ X and inputs
u ∈ MU and d ∈ MD. It follows that c = 0 in (16) and
|x1(t)− x2(t)| = 0 for all t ∈ [0, T2] by (15), which proves
uniqueness of solutions on [0, T2] and hence concludes this
proof.

B. Proof of Claim 1

To prove continuity, we first need an additional lemma.
Lemma 2: Let Assumptions 1 and 2 hold. For every

T, rχ, ru > 0, there exist constants Rx(T, rχ, ru) > 0 and
R(T, rχ, ru) > 0 such that

|x(t, χ1, u1, d)− x(t, χ2, u2, d)| ≤ Rx(T, rχ, ru),

|y(t, χ1, u1, d)− y(t, χ2, u2, d)| ≤ Ry(T, rχ, ru)

for all t ∈ [0, T ], all χ1, χ2 ∈ X satisfying |χ1−χ2| ≤ rχ, all
u1, u2 ∈ MU satisfying

∫∞
0
η−sα(|u1(s)− u2(s)|)ds ≤ ru

for some α ∈ K∞ with α(s) ≥ κ1(3s) for all s ≥ 0 and
η ∈ [0, 1), and all d ∈MD.

Proof: For i = 1, 2, let xi(t) = x(t, χi, ui, d) and
yi(t) = x(t, χi, ui, d), t ≥ 0, where we note that Proposi-
tion 1 applies due to satisfaction of Assumption 1. Define
u∆ := u1−u2. We can invoke the same arguments as in the
proof of Lemma 1, where (18) can be replaced by∫ t

0

κ1(3|u∆(s)|)ds ≤
∫ ∞

0

η−sα(|u∆(s)|)ds ≤ ru,

exploiting that η−s ≥ 1 for all s ≥ 0. Consequently, we
obtain c = rχ + ru in (16), which by (15) implies that

|x1(t)− x2(t)| ≤ ρ−1(ρ(rχ + ru)eT ) =: Rx(T, rχ, ru)

uniformly for all t ∈ [0, T ]. For the second part, the
application of (1b) in combination with Assumption 2 leads
to
|y1(t)− y2(t)| ≤ κ2(|(x1(t), u1(t))− (x2(t), u2(t))|)

≤ κ2(2|x1(t)− x2(t)|) + κ2(2|u1(t)− u2(t)|)
≤ κ2(2Rx(T, rχ, ru)) + κ2(2ru) =: Ry(T, rχ, ru)

for all t ∈ [0, T ], which finishes this proof.
Proof of Claim 1: The proof uses mostly similar

arguments as in [11, Th. 3.5], with variations due to the
continuous-time setting and the class of inputs considered (in
particular, Lemmas 1 and 2). It consists of two parts. First,
we show that choosing (χ1, χ2) in a compact set implies
that the right-hand side of (7) is the same when restricting
t, (u1, u2) to suitable sets; then, we use this property to
establish continuity of U .

Part I. Define B(C) := {(χ1, χ2) ∈ X ×X : 1/C ≤ |χ1−
χ2| ≤ C} for C ≥ 1 and consider (χ1, χ2) ∈ B(C). Then,
for any ε > 0, there exist inputs uε1, u

ε
2 ∈ MU , dε ∈ MD,

and a time tε ≥ 0 such that

α(|χ∆|) ≤ U(χ1, χ2) (23)

≤ ε+ λ−t
ε/2
(
α(|x(tε, χ1, u

ε
1, d

ε)− x(tε, χ2, u
ε
2, d

ε)|)

−
∫ ∞

0

λt
ε−τ2αu(|uε1(τ)− uε2(τ)|)dτ

−
∫ tε

0

λt
ε−ταy(|y(tε, χ1, u

ε
1, d

ε)− y(tε, χ2, u
ε
2, d

ε)|)dτ
)

≤ ε+ λ−t
ε/2
(
αx(|χ∆|)λt

ε

−
∫ ∞

0

λt
ε−ταu(|uε1(τ)− uε2(τ)|)dτ

)
, (24)

where χ∆ = χ1 − χ2 and the last inequality follows from
i-iIOSS (5). Consequently,

α(|χ∆|) ≤ ε+ λt
ε/2αx(|χ∆|). (25)
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Choose ε ≤ ε̄(C) := α(1/C)/2 and recall that 1/C ≤
|χ∆| ≤ C. Thus, (25) yields α(1/C)/2 ≤ λt

ε/2αx(C),
which leads to

tε ≤ 2 logλ

(
α(1/C)

2αx(C)

)
=: T (C), (26)

where 0 < α(1/C)
2αx(C) < 1. From (24) and the fact that ε ≤ ε̄(C),

we also obtain∫ ∞
0

λt
ε−ταu(|uε1(τ)− uε2(τ)|)dτ

≤ αx(C)λt
ε

− 1

2
α(1/C)λt

ε/2 ≤ αx(C).

Since tε ∈ [0, T (C)], it follows that λt
ε ≥ λT (C); hence,∫ ∞

0

λ−ταu(|uε1(τ)−uε2(τ)|)dτ ≤ αx(C)λ−T (C) =: ru(C).

As a result, we can infer that (uε1, u
ε
2) ∈ Bu(C) :=

{(u1, u2) ∈MU ×MU :
∫∞

0
λ−ταu(|uε1(τ)− uε2(τ)|)dτ ≤

ru(C)}.
Part II. Now consider some χ̃1, χ̃2 ∈ X with χ̃1 6= χ̃2. Set

C = 2 max{|χ̃1− χ̃2|, 1/|χ̃1− χ̃2|} ≥ 1. From the first part
of this proof, for (χ1, χ2) ∈ B(C), there exist ε ∈ (0, ε̄(C)],
(uε1, u

ε
2) ∈ Bu(C), dε ∈ MD, and tε ∈ [0, T (C)] such that

(24) holds. Define

x1(t) := x(t, χ1, u
ε
1, d

ε), x2(t) := x(t, χ2, u
ε
2, d

ε),

x̃1(t) := x(t, χ̃1, u
ε
1, d

ε), x̃2(t) := x(t, χ̃2, u
ε
2, d

ε),

y1(t) := y(t, χ1, u
ε
1, d

ε), y2(t) := y(t, χ2, u
ε
2, d

ε),

ỹ1(t) := y(t, χ̃1, u
ε
1, d

ε), ỹ2(t) := y(t, χ̃2, u
ε
2, d

ε)

for all t ∈ [0, T (C)]. The trajectories x̃1(t) and x̃2(t) satisfy

U(χ̃1, χ̃2) ≥ λ−t
ε/2
(
α(|x̃1(tε)− x̃2(tε)|) (27)

−
∫ ∞

0

λt
ε−τ2αu(|uε1(τ)− uε2(τ)|)dτ

−
∫ tε

0

λt
ε−ταy(|ỹ1(τ)− ỹ2(τ)|)dτ

)
.

The combination of (23) and (27) yields

U(χ1, χ2)− U(χ̃1, χ̃2) (28)

≤ ε+ λ−t
ε/2
(
α(|x1(tε)− x2(tε)|)− α(|x̃1(tε)− x̃2(tε)|)

+

∫ tε

0

λt
ε−τ (αy(|ỹ1(τ)−ỹ2(τ)|)−αy(|y1(τ)−y2(τ)|))dτ

)
.

Without loss of generality, we assume that2 αu(s) ≥
κ1(3s) for all s ≥ 0. By Lemma 2, there exist Rx, Ry > 0
such that

max{|x1(t)−x2(t)|, |x̃1(t)−x̃2(t)|} ≤ Rx(T (C), C, ru(C))

=: RCx ,

max{|y1(t)−y2(t)|, |ỹ1(t)−ỹ2(t)|} ≤ Ry(T (C), C, ru(C))

=: RCy

2If this is violated, simply replace αu in (5) by a suitable ᾱu ∈ K∞
that majorizes both αu and κ1(3s).

uniformly for all t ∈ [0, T (C)]. Recall that α, αy in (28)
are continuous; hence, they are uniformly continuous on the
compact sets [0, RCx ] and [0, RCy ], respectively. From [20,
Prop. 20], there exist α̂, α̂y ∈ K∞ such that

|α(s1)− α(s2)| ≤ α̂(|s1 − s2|), s1, s2 ∈ [0, RCx ], (29)

|αy(s1)− αy(s2)| ≤ α̂y(|s1 − s2|), s1, s2 ∈ [0, RCy ]. (30)

Evaluating the absolute value of the right-hand side of (28),
using the triangle inequality, applying (29) and (30) followed
by the reverse triangle inequality and then the standard one
lead us to
U(χ1, χ2)− U(χ̃1, χ̃2) (31)

≤ ε+ λ−t
ε/2
(
α̂
(
|x1(tε)− x̃1(tε)|+ |x2(t)− x̃2(tε)|

)
+

∫ tε

0

λt
ε−τ(α̂y(|y1(τ)− ỹ1(τ)|+ |y2(τ)− ỹ2(τ)|

))
dτ
)
.

By applying Lemma 1 and similar steps as in the proof of
Lemma 2, it follows that
|xi(t)− x̃i(t)| ≤ ρ−1(ρ(|χi − χ̃i|)eT (C)), i = 1, 2, (32)

|yi(t)− ỹi(t)| ≤ κ2(ρ−1(ρ(|χi − χ̃i|)eT (C))), i = 1, 2
(33)

for all t ∈ [0, T (C)]. Hence, from (31), using that α(|a +
b|) ≤ α(2a) + α(2b) for any α ∈ K and a, b ≥ 0 in
conjunction with the bounds from (32) and (33) and the facts
that λ−t

ε/2 ≤ λ−T (C)/2 and
∫ tε

0
λt
ε−τdτ ≤ −1/ lnλ, we

can infer that there exist γx, γy ∈ K satisfying
U(χ1, χ2)−U(χ̃1, χ̃2)≤ ε+ γx(|χ1− χ̃1|) + γx(|χ2− χ̃2|)

+ γy(|χ1− χ̃1|) + γy(|χ2− χ̃2|)
≤ ε+ γ(|χ1− χ̃1|) + γ(|χ2− χ̃2|)

where γ(s) := γx(s)+γy(s) for all s ≥ 0. Letting ε→ 0 and
applying a symmetric argument (recall that (χ̃1, χ̃2) ∈ B(C)
by the definition of C) lets us conclude that
|U(χ1, χ2)−U(χ̃1, χ̃2)| ≤ γ(|χ1−χ̃1|)+γ(|χ2−χ̃2|). (34)

Since B(C) contains all pairs (x1, x2) within a neighborhood
of (χ̃1, χ̃2), (34) implies that U is continuous at each
(χ̃1, χ̃2) ∈ X × X for χ̃1 6= χ̃2. It remains to show that
U is also continuous at (χ̃, χ̃). To this end, consider any
(χ1, χ2) ∈ X × X ; since U(χ̃, χ̃) = 0, it follows that
|U(χ1, χ2)−U(χ̃, χ̃)| = U(χ1, χ2) ≤ αx(|χ1−χ2|)

≤αx(|χ1−χ̃|+ |χ̃−χ2|)≤αx(2|χ1−χ̃|) +αx(2|χ2−χ̃|),
which implies that U is continuous at (χ̃, χ̃). Hence, U is
continuous on X × X , which finishes this proof.

Remark 3: Part I of the proof of Claim 1 gives rise to the
fact that (uε1, u

ε
2) ∈ Bu(C), i.e., the inputs uε1 and uε2 are

such that the weighted “energy” of its difference is located
in a ball of radius ru centered at the origin. However, this
implies no information about the absolute range of u1 and
u2, which prevents the use of a local Lipschitz property of f
to bound the evolution of the difference of state trajectories
in the proof of Claim 1 below (28) and in (32). In contrast,
the global nature of Assumption 1 allows the derivation of
such a bound, and the conditions in (3) ensure that it is finite
for any finite t.
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