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Abstract— Online advertising is typically implemented via
real-time bidding, and advertising campaigns are then defined
as extremely high-dimensional optimization problems. Advertis-
ers often define a campaign by an order consisting of multiple
lines. Campaign delivery constraints may be imposed on the
order as a whole and on each ad line. E.g., there may be budget
and cost per click constraints on the order and on each line
individually. Furthermore, the sum of line budgets may exceed
the order budget, and the cost per click constraint on lines may
differ. This leaves room for cross-line budget optimization; i.e.,
budget may be shifted across lines to maximize the advertising
value without violating the constraints. This paper derives the
optimal bidding mechanism for a large family of constrained
optimization problems. It is shown how the optimal bidding
strategy can be implemented as scalable non-cooperating agents
on the order and the individual lines.

Index Terms — Optimization, Real-time Bidding, Program-
matic Advertising

I. INTRODUCTION

The business model of many Internet companies is cen-
tered around online advertising, where ad impressions, which
are views of ads, are traded on open exchanges. A De-
mand Side Platform (DSP) is a particular business model
that serves as the middleman between an advertiser and
impression exchanges. The DSP provides bid optimization
as a service and helps advertisers to spend their advertising
budgets optimally. A scalable implementation of this opti-
mization involves feedback control as a key component.

It is common that an advertiser strives to reach multiple
audiences (sometimes with different ad creatives), but with
a finite total budget. Managing the advertising objective for
each audience is handled by introducing the concepts of
order and line, where an order consists of multiple lines. An
order constraint dictates a constraint that must be satisfied
across lines (e.g. a total budget), while line constraints
prescribe constraints pertaining only to a line (e.g. a line
budget). The advertiser would like to maximize the total
advertising profit or value of the campaign, but with the
caveat that delivery constraints may be imposed on the order
or on the individual lines. Historically, this allocation of
budget to lines has been handled manually by experienced
account managers, or by some non-feedback based planner.
However, these approaches are typically suboptimal since
they do not efficiently learn from mistakes.

There is a rich literature in constrained optimization of
display advertising. Simple constraints with unrealistic as-
sumptions are treated in [1], [2]. Bid optimization involves
estimating e.g. click-through rate (CTR) and conversion rate
(CVR), e.g. [3], [4], [5] and many others; as well as feedback
control-based bid adjustments to ensure various ad campaign
constraints are satisfied [6], [7], [8], [9], [10]. Whenever the
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impressions are sold based on a first price cost model, the
optimization also involves bid shading [11], [12], [13], [14].

The most similar work to the current paper is [15], which
deals with non-hierarchical advertiser specified optimization
constraints, and with a variation published in [16] to incorpo-
rate a DSP specified cost per bid constraint. Our contribution
is the generalization of the result in [15] to support campaign
constraints configured hierarchically, and the novelty lies in
the modularization of the bidding strategy that enables the
solution being implemented as non-cooperating agents on the
order and the individual lines.

The article is organized as follows. Section II introduces
key notation while Section III defines the problem that
is solved later and Section IV introduces some additional
notation. The key contribution and the optimal bidding
mechanism is presented in Section V. Section VI describes
how the theoretical results justify an architecture involving
four non-cooperating subsystems. The architecture is made
clear with help of an example in Section VII, and conclusions
and ideas of future work are discussed in Section VIII.

II. SETUP AND NOTATION

The optimization problem considered in this paper is for
a specific ad campaign, and the objective is to derive the
optimal strategy for real time bidding on impressions. Each
impression is awarded to the highest bidder, and the winning
bidder is charged according to a first or second price cost
model [17]. The cost model for each impression opportunity
is decided by the seller of the impression and is known to the
bid engine (the DSP) before a bid is computed and submitted
to the auction. For a first price impression the winner pays
an amount equal to its own bid, whereas for a second price
impression the winner pays an amount equal to the second
highest bid. Key notation used in the paper is:

• The campaign is defined by an order, which is com-
posed of lines ℓ = 1, . . . , ℓmax.

• The bid price bℓ,i ∈ [0,∞), i ∈ Ωℓ, ℓ = 1, . . . , ℓmax, is
the bid amount submitted by line ℓ for the ith impression
opportunity, and the set of all bℓ,i are decision variables
of the optimization problem.

• The set of impression opportunities that line ℓ may bid
on is denoted Ωℓ, whereas the set of all impression
opportunities is denoted Ω0; i.e., Ω0 =

⋃ℓmax

ℓ=1 Ωℓ.
Suppose Ωℓ ∩ Ωk = ∅, if 0 ̸= ℓ ̸= k ̸= 0, which
means no two lines within the campaign compete over
the same impressions. Furthermore, assume Ωℓ may be
partitioned into subsets Ωℓ

1 and Ωℓ
2 denoting impression

opportunities sold based on a first and second price cost
model, respectively. Let Ωℓ

1 ∩ Ωℓ
2 = ∅ and Ωℓ

1 ∪ Ωℓ
2 =

Ωℓ. In practice, some web publishers sell all their ad
impressions based on a first price cost model (i ∈ Ωℓ

1),
while others sell all impressions based on a second price
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cost model (i ∈ Ωℓ
2). The cost model for a specific

impression is known ahead of time. However, the car-
dinality of Ωℓ

1 and Ωℓ
2 are not a priori known since they

reflect the future Internet traffic (the aggregate number
web site visits by Internet users).

• The uppercase of a Roman letter denotes a random
variable, while a lowercase represents its expected value
(future event) or realization (historical event).

• The context of impression opportunity i is information
available to the bidder to be used to calculate a bid. It
may include e.g. the website and placement of the ad,
the type of devise where the impression request origins,
and various demographic information about the user.

• The highest competing bid of impression i is a random
variable B⋆

i ∈ R>0, and b⋆i denotes its realized value.
Impression i ∈ Ωℓ is awarded to line ℓ if bℓ,i ≥ b⋆i .

• The cumulative distribution function (CDF) of B⋆
i ,

given the context, is FB⋆
i
(b), while the probability

density function (PDF) is fB⋆
i
(b) = dFB⋆

i
(b)/db, which

is assumed to be continuous. See Figure 1 of [15] for
a few examples. Note, FB⋆

i
(b) is typically not known

ahead of time, but must be predicted based on historical
data. Exactly what data can be used for this prediction
depends on what auction data is shared by the exchange
after the auction for an impression is completed.

• The ad cost, Cℓ,i, of an awarded impression i ∈ Ωℓ is
the amount ad line ℓ is charged for the impression. It
follows from the definition of the two cost models that
Cℓ,i = bℓ,i, if i ∈ Ωℓ

1, and Cℓ,i = B⋆
i , if i ∈ Ωℓ

2.
• The event count Nℓ,j,i ∈ N is the number of events

of type j ∈ {1, . . . , jmax} following an impression i
awarded to line ℓ, where jmax is the number of event
types under consideration. Examples of event types are
impressions, clicks, and conversions (product sales).

• The impression value Vℓ,i ∈ R>0 is the advertising
value attributed to the ith impression, if awarded. It
encodes branding and/or performance value, and is
typically a function of one or more of the event counts.

• The line-level total number of j-events, Nℓ,j , the total
value, Vℓ, and the cumulative ad cost, Cℓ, are

Nℓ,j =
∑
i∈Ωℓ

Nℓ,j,iI{bℓ,i≥B⋆
i }, j = 1, . . . , jmax (1)

Vℓ =
∑
i∈Ωℓ

Vℓ,iI{bℓ,i≥B⋆
i }, (2)

Cℓ =
∑
i∈Ωℓ

Cℓ,iI{bℓ,i≥B⋆
i }; (3)

where IA is the indicator function satisfying IA = 1,
if A = true, and IA = 0, otherwise, and the campaign
(aka, order-level) total event count, value, and cost are

N0,j =

ℓmax∑
ℓ=1

Nℓ,j , (4)

V0 =

ℓmax∑
ℓ=1

Vℓ, (5)

C0 =

ℓmax∑
ℓ=1

Cℓ. (6)

• The expected impression value and event count, given
the context, are EVℓ,i = vℓ,i and ENℓ,j,i = pℓ,j,i
(breaking from the convention that suggests the notation
nℓ,j,i). Typically, Nℓ,j,i is a binary random variable,
which makes pℓ,j,i a probability, or success rate, be-
tween zero and one. Event type j = 1 is without loss of
generality an impression, which implies that pℓ,1,i = 1,
for ℓ = 1, . . . , ℓmax and for all i ∈ Ω.

• The random variables Nℓ,j,i and B⋆
i , as well as, the

random variables Vℓ,i and B⋆
i are assumed conditionally

independent, given the context.
Finally, without explicitly mentioning it later, all expected
values throughout the paper are conditioned on the context.

III. PROBLEM FORMULATION

The objective is to solve an advertiser-specified optimiza-
tion problem, e.g. to maximize the return on investment
on an advertising campaign subject to a fixed budget. A
general such problem is to maximize the expected campaign-
aggregate total cost-discounted profit EV0 − αEC0, for cost
discount parameter α ≥ 0. Parameter α is defined by the
advertiser based on their preference towards value or profit.
The campaign is defined by an order consisting of ℓmax

ad lines. The order (ℓ = 0) as a whole and each line
(ℓ = 1, . . . , ℓmax) separately are subject to constraints on
total ad cost (spend), effective cost per event (eCPX), events
per impression rate (ER), specified by ξℓ,1, ξℓ,2,j , ξℓ,3,j ≥ 0;
and a max bid constraint, bmax > 0, also referred to as
“max bid,” where j denotes the event type (e.g. click or
conversion). The problem is mathematically defined by

maximize
{bℓ,i|0 ≤ bℓ,i ≤ bmax, ∀i ∈ Ωℓ, ℓ = 1, . . . , ℓmax}

EV0 − αEC0 (7)

subject to

ECℓ ≤ ξℓ,1 (spend) (8)
ECℓ ≤ ξℓ,2,jENℓ,j (eCPX) (9)

ξℓ,3,jENℓ,1 ≤ ENℓ,j (ER, j ̸= 1) (10)

where the constraints are defined for ℓ = 0, 1, . . . , ℓmax

and j = 1, 2, . . . , jmax. Note, j = 1, by convention,
corresponds to an impression event. Hence, Nℓ,1 represents
the total number of awarded impressions, which renders (10)
meaningless for j = 1. The cardinality of Ω0 =

⋃ℓmax

ℓ=1 Ωℓ

is in the order of millions or billions making the problem
extremely high-dimensional. Moreover, the cardinality of
Ω0, the impression value vℓ,i, the event rate pℓ,j,i, and the
minimum bid to win b⋆i are a priori unknown. This makes it
impractical to solve (7)-(10) using a centralized method.

IV. PRELIMINARIES

Define constraint vector
ξ̄ℓ = [ξℓ,1, ξℓ,2,1, · · · , ξℓ,2,jmax

, ξℓ,3,2, · · · , ξℓ,3,jmax
]T ,

Lagrange multiplier vector
λ̄ℓ = [λℓ,1, λℓ,2,1, · · · , λℓ,2,jmax

, λℓ,3,2, · · · , λℓ,3,jmax
]T ,

and impression value vector
v̄ℓ,i = [vℓ,i, pℓ,2,i, pℓ,3,i, · · · , pℓ,jmax,i]

T where i ∈ Ωℓ

and ℓ = 0, . . . , ℓmax. Vector ξ̄ℓ contains order/line-level
constraints; vector λ̄ℓ is composed of multipliers, which in
an implementation are used as tuning knobs and adjusted
gracefully over time toward their optimal values; and vector
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v̄ℓ,i consists of the expected impression value and event rates
(e.g. click-through rate). Furthermore, define helper functions

g0(v̄ℓ,i, ξ̄ℓ, λ̄ℓ) = vℓ,i +

jmax∑
j=1

pℓ,j,iξℓ,2,jλℓ,2,j

+

jmax∑
j=2

(pℓ,j,i − ξℓ,3,j)λℓ,3,j ,

g1(λ̄ℓ) = α+ λℓ,1 +

jmax∑
j=1

λℓ,2,j .

The above notation is next used in the proof of the main
result of the paper, which are conditions for optimal bidding.

V. OPTIMAL BIDDING MECHANISM

The following theorem states necessary conditions for
optimal bidding, and justifies a decomposition of the bid
calculation into a solution that involves 1 + ℓmax non-
cooperating feedback controllers.

Theorem 5.1: The optimal bid prices boptℓ,i , for all
i ∈ Ωℓ and ℓ = 1, . . . , ℓmax, satisfy boptℓ,i =

bmaxI{g0(v̄ℓ,i,ξ̄ℓ,λ̄ℓ)≥0}, if g1(λ̄ℓ) = 0, and

boptℓ,i = argmax
0≤b≤bmax

ES̃ℓ,i(b; b
u
ℓ,i); (11)

otherwise, where surplus per bid response, S̃ℓ,i, and
adjusted impression value, buℓ,i, are defined by

S̃ℓ,i(b; b
u
ℓ,i) =

(
buℓ,i − Cℓ,i(b)

)
I{b≥B⋆

i }, (12)

buℓ,i =
g0(v̄ℓ,i, ξ̄ℓ, λ̄ℓ)

g1(λ̄ℓ)
; (13)

where, for all values of ℓ and j, inequalities (8)-
(10) hold, as well as, λℓ,1 ≥ λ0,1 ≥ 0,
λℓ,2,j ≥ λ0,2,j ≥ 0, λℓ,3,j ≥ λ0,3,j ≥ 0; and
λ0,1(EC0 − ξ0) = (λℓ,1 − λ0,1)(ECℓ − ξℓ) =
λ0,2,j(EC0− ξ0,2,jEN0,j) = (λℓ,2,j −λ0,2,j)(ECℓ−
ξℓ,2,jENℓ,j) = λ0,3,j(ξ0,3,jEN0,1 − EN0,j) =
(λℓ,3,j − λ0,3,j)(ξℓ,3,jENℓ,1 − ENℓ,j) = 0.

Proof: The Lagrangian of (7)-(10) is
L = EV0 − αEC0 −

∑ℓmax

ℓ=0 λ̃ℓ,1(ECℓ −
ξℓ,1) −

∑ℓmax

ℓ=0

∑jmax

j=1 λ̃ℓ,2,1(ECℓ − ξℓ,2,jENℓ,j) −∑ℓmax

ℓ=0

∑jmax

j=2 λ̃ℓ,3,1(ξℓ,3,jENℓ,1 − ENℓ,j). If there exist
bℓ,i, λ̃ℓ,1, λ̃ℓ,2,j , λ̃ℓ,3,j ≥ 0, ∀i ∈ Ωℓ, ℓ = 0, . . . , ℓmax,
and j = 1, 2, . . . , jmax, such that the bℓ,i’s maximize
L, bℓ,i ≤ bmax, the inequalities (8)-(10) are satisfied,
and λ̃ℓ,1(ECℓ − ξℓ) = λ̃ℓ,2,j(ECℓ − ξℓ,2,jENℓ,j) =
λ̃ℓ,3,j(ξℓ,3,jENℓ,1−ENℓ,j) = 0; then, due to the Lagrangian
sufficiency theorem [18], these values of bℓ,i solve (7)-
(10). Use relationships (4)-(6), and rearrange the terms to
obtain L = E(

∑ℓmax

ℓ=0 λ̃ℓ,1ξℓ,1 +
∑ℓmax

ℓ=1 Vℓ − α
∑ℓmax

ℓ=1 Cℓ −∑ℓmax

ℓ=1 (λ̃0,1+ λ̃ℓ,1)Cℓ−
∑ℓmax

ℓ=1

∑jmax

j=1 (λ̃0,2,j+ λ̃ℓ,2,j)(Cℓ−
ξℓ,2,jNℓ,j) −

∑ℓmax

ℓ=1

∑jmax

j=2 (λ̃0,3,j + λ̃ℓ,3,j)(ξℓ,3,jNℓ,1 −
Nℓ,j)).

Define λ0,1 = λ̃0,1, λℓ,1 = λ̃0,1 + λ̃ℓ,1, λℓ,2,j = λ̃0,2,j +
λ̃ℓ,2,j , and λℓ,3,j = λ̃0,3,j + λ̃ℓ,3,j ; and collect all terms of
Vℓ, Cℓ, Nℓ,j . It follows that L =

∑ℓmax

ℓ=0 (λℓ,1 − λ0,1)ξℓ,1 +∑ℓmax

ℓ=1 E(Vℓ+
∑jmax

j=1 λℓ,2,jξℓ,2,jNℓ,j+
∑jmax

j=2 λℓ,3,j(Nℓ,j−
ξℓ,3,jNℓ,1)− (α+ λℓ,1 +

∑jmax

j=1 λℓ,2,j)Cℓ).
Substitute for Nℓ,j , Vℓ, and Cℓ, as given in (1)-(3), and

swap the order of summation over i and expectation.
L =

∑ℓmax

ℓ=0 (λℓ,1 − λ0,1)ξℓ,1 +
∑ℓmax

ℓ=1

∑
i∈Ωℓ E(Vℓ,i +∑jmax

j=1 λℓ,2,jξℓ,2,jNℓ,1,i +
∑jmax

j=2 λℓ,3,j(Nℓ,j,i −
ξℓ,3,jNℓ,1,i)− (α+ λℓ,1 +

∑jmax

j=1 λℓ,2,j)Cℓ,i)I{bℓ,i≥B⋆
i }.

Random variables Nℓ,j,i and Vℓ,i are by assumption
conditionally independent of B⋆

i , given the context
(see Section II), which implies E(Nℓ,j,iI{bi≥B⋆

i }) =
E(Nℓ,j,i)E(I{bi≥B⋆

i }) = pℓ,j,iE(I{bi≥B⋆
i }) and

E(Vℓ,iI{bi≥B⋆
i }) = E(Vℓ,i)E(I{bi≥B⋆

i }) = vℓ,iE(I{bi≥B⋆
i }).

Moreover, pℓ,1,i ≡ 1. Using helper functions g0(v̄ℓ,i, ξ̄ℓ, λ̄ℓ)
and g1(λ̄ℓ) introduced in Section IV, it follows after a
simple rearrangement that L =

∑ℓmax

ℓ=0 (λℓ,1 − λ0,1)ξℓ,1 +∑ℓmax

ℓ=1

∑
i∈Ωℓ E(g0(v̄ℓ,i, ξ̄ℓ, λ̄ℓ)− g1(λ̄ℓ)Cℓ,i)I{bℓ,i≥B⋆

i }.
For fixed values of λℓ,1, λℓ,2,j , and λℓ,3,j , the Lagrangian

L may be optimized for each i independently by finding
the bi ∈ [0, bmax] that maximizes Lℓ,i, where Lℓ,i =
E(g0(v̄ℓ,i, ξ̄ℓ, λ̄ℓ)− g1(λ̄ℓ)Cℓ,i)I{bℓ,i≥B⋆

i }.
Next, consider g1(λ̄ℓ) = 0 and g1(λ̄ℓ) > 0 separately.
Case 1: If g1(λ̄ℓ) = 0, then Li =

E
(
g0(v̄ℓ,i, ξ̄ℓ, λ̄ℓ)I{bℓ,i≥B⋆

i }
)

= g0(v̄ℓ,i, ξ̄ℓ, λ̄ℓ)FB⋆
i
(bi),

which is a non-decreasing function of bℓ,i whenever
g0(v̄ℓ,i, ξ̄ℓ, λ̄ℓ) ≥ 0, and is a non-increasing function
otherwise. Therefore, boptℓ,i = bmaxI{g0(v̄ℓ,i,ξ̄ℓ,λ̄ℓ)≥0}.

Case 2: If g1(λ̄ℓ) > 0, then Li = g1(λ̄ℓ)E
(
(buℓ,i −

Cℓ,i(bℓ,i))I{bℓ,i≥B⋆
i }
)

= g1(λ̄ℓ)ES̃ℓ,i(bℓ,i; b
u
ℓ,i), where buℓ,i

and S̃ℓ,i are defined in (13) and (12). Finally, note that Lℓ,i

and ES̃ℓ,i are maximized for the same value of b, hence,
boptℓ,i = argmax

0≤b≤bmax

ES̃ℓ,i(b; b
u
ℓ,i), which completes the proof.

Theorem 5.1 justifies how problem (7)-(10) can be de-
composed and solved as a multi-agent non-cooperative game,
where each agent solves a much simpler problem.

VI. APPLICATION

An ad campaign has a budget, a flight time, and a goal that
encodes performance and/or branding objectives. The goal
is defined by a profit function and by delivery constraints
that are related to e.g. spend, cost per click, or the ratio of
impressions served to users from a particular demographic.
The objective is to bid optimally on impression opportunities
that become available throughout the flight of the campaign.

To better understand how the optimal bid as described
in Theorem 5.1 is obtained from the solution to a multi-
agent non-cooperative game, consider the four main parts
of the bid calculation (aka, players): an estimator of v̄ℓ,i,
a feedback controller estimating λ̄0, a feedback controller
estimating λ̄ℓ for ℓ = 1, . . . , ℓmax, and an optimizer solving
boptℓ,i = argmax0≤b≤bmax

ES̃ℓ,i(b; b
u
i ). Each player solves a

specific sub-problem different from (7)-(10), without coordi-
nation with other players. However, if all players solve their
own problem adequately, then the necessary conditions for
optimality of the original problem are satisfied. In general,
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(7)-(10) is a non-convex problem; however, in many practical
scenarios with only a modest number of constraints, any bid-
ding strategy satisfying the necessary conditions is optimal
or near-optimal. This result and the sufficiency conditions
for optimal bidding is outside the scope of this paper.

Figure 1 provides a visual depiction of the interconnected

Fig. 1. The interconnected optimization system shown as a block diagram
to illustrate how the subsystems are interconnected to compute a bid price
bℓ,i for each impression opportunity. Signals ξ̄0, ξ̄ℓ, λ̄0, λ̄ℓ, and , v̄ℓ,i are
vector-valued.

system involving the four types of players. Pay attention to
the feedback loops indicating the algorithmic components
that are naturally implemented as feedback controllers. The
block diagram demonstrates how, in a modularized fashion,
to compute a bid price bℓ,i for each impression opportunity.
The practical value of the result is how it justifies imple-
menting the bidding strategy across order and lines as non-
cooperating subsystems.

A. Impression Valuation

This player of the game consumes historical impression
data and corresponding context information, as well as, labels
indicating the realized impression value. The information is
used to train a prediction model for incoming new impression
opportunities. The training typically takes place offline, e.g.
once per day, using logistic regression, deep learning, or
some other big data machine learning technique; whereas,
computing the prediction of v̄ℓ,i for a specific impression
opportunity is implemented via a real time scoring scheme
based on context information available in the impression
request before a bid is submitted [3], [4], [5].

B. Order (ℓ = 0) Controller

This player ingests the order-level constraint vector ξ̄0,
and order-level delivery feedback consisting of time-series
observations of c0 and n0,j for all j. The objective is to
update λ̄0 so that it converges to its optimal value, where the
corresponding Lagrangian conditions are satisfied. Note that
feedback from individual impressions or lines is not needed
(illustrating the non-cooperation). The controller is typically
implemented as an adaptive discrete-time error feedback
controller. Adaptation is needed since the effective plant
gain (and potentially also the plant delay/dynamics) depends
on environmental factors and varies across campaigns and
over time. The system may be identified using e.g. as
a standard recursive least squares estimator [10], [15]. A
layman interpretation of λ̄0 is as a vector of break pedals. If
a constraint is violated it typically means the corresponding
element of λ̄0 needs to increase, and if the constraint is not
binding but larger than zero, then it needs to decrease.

C. Line ℓ Controller

This player operates similar to order controller, but is
based on line ℓ data (constraints ξ̄ℓ and feedback cℓ, nℓ,j for
all j) to update λ̄ℓ and is subject to lower bounds λ̄ℓ ≥ λ̄0.
That is, line ℓ controller seeks to find the value of λ̄ℓ for
which the corresponding Lagrangian conditions are satisfied.
Similar to order controller, λ̄ℓ can be interpreted as a set of
break pedals, and Theorem 5.1 states that no line should use
less “break force” than order controller.

The alternative would be to estimate all of λ̄0 and λ̄ℓ

for ℓ = 1, . . . , ℓmax simultaneously, which is a much
higher dimensional control problem. Another consequence of
Theorem 5.1 reducing possible complex dynamic interaction
between order and line controller relates to the determinants
of updates of λ̄ℓ. If a particular line constraint is not
binding, then the corresponding element of λ̄ℓ inherits the
corresponding element in λ̄0 no matter how noisy the line
level feedback signal is. Similarly, if line controller must
adjust an element of λ̄ℓ above its lower bound in order to
avoid a constraint violation, then updates to this element
is determined fully by line level feedback no matter how
noisy the order level feedback signal is and even if the
corresponding element of λ̄0 is somewhat volatile.

D. Bid Shading Optimization

This player (subsystem) consumes historical bids i′, ℓ, the
corresponding adjusted impression value buℓ,i′ and context
information. It trains a prediction model that is used for
each incoming impression opportunity to directly compute
boptℓ,i = argmaxb s̃i(b

u
ℓ,i, b) [13], or indirectly via boptℓ,i =

argmaxb(b
u
ℓ,i−b)FB⋆

i
(b) [11], [12], [14], depending on what

information is available for model training. Note, FB⋆
i
(b) is

typically not known ahead of time, but must for the indirect
method be predicted based on historical data.

VII. EXAMPLE

The goal is to apply Theorem 5.1 on a toy example to illus-
trate how a basic hierarchical multi-constraint optimization
problem can be solved using non-cooperating components.
It is not the intent to offer a comprehensive assessment or
to make the setup particularly realistic.

A. Problem Setup

Consider an ad campaign defined by an order consisting
of three lines. The campaign objective is to maximize the
expected campaign-aggregate total value (e.g. the total value
of sold goods triggered by ad impressions awarded to the
campaign). The order and the three lines are subject to daily
spend constraints ξ0, ξ1, ξ2, and ξ3; and are managed by a
discrete-time control system with a sampling time of 1/60
hours. The implementation is defined by equidistant time
points indexed t = 1, 2, . . . , tmax; where tmax is the number
of time intervals in the optimization window (one day); hence
tmax = 24 · 60 = 1440. Mathematically, the problem is

maximize
{bℓ,i|∀i ∈ Ωℓ, ∀ℓ ∈ {1, 2, 3}}

EV0

subject to EC0 ≤ ξ0, EC1 ≤ ξ1, EC2 ≤ ξ2, EC3 ≤ ξ3. The
campaign flight is 12 days long and is broken down into four
intervals, each with a different set of spend constraints:
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Interval Time Daily Daily Daily Daily
number interval order line 1 line 2 line 3

(hr) budget budget budget budget
1 [0,72) $70 $70 $10 $5
2 [72, 144) $60 $20 $10 $30
3 [144, 216) $100 $10 $20 $10
4 [216, 288] $50 $30 $30 $20

The sum of the line budgets exceed the order budget in
intervals 1 and 4, equals the order budget in interval 2, and is
less than the order budget in interval 3. Assume solutions to
impression valuation [3], [4], [5], and bid shading optimiza-
tion [11], [12], [13], [14] are implemented and operational
(see Figure 1). It remains to implement and commission the
order and line controllers (one per line). It is reasonably easy
to prove that EVℓ and ECℓ by necessity are non-increasing
functions of λ̄ℓ ≡ λℓ ∈ R; and that the optimal solution
corresponds to the smallest values of λℓ ≥ λ0 ≥ 0 for which
no constraint is violated.

B. Control Problem and Methodology
Let Ωℓ(t) and cℓ(t) denote the number of impression

opportunities and the realized spend for line ℓ in time interval
t, respectively. The corresponding value for the order are
Ω0(t) =

∑ℓmax

ℓ=1 Ωℓ(t) and c0(t) =
∑ℓmax

ℓ=1 cℓ(t). Summing
Ωℓ(t) and cℓ(t) over t from 1 to tmax yield Ωℓ and cℓ,
respectively. The values of Ωℓ(t) and cℓ(t) are a priori
unknown, and cℓ(t) depends on λℓ(t), which is the estimate
of λℓ used to compute bids in time interval t.

The objective is to adjust λ0(t) ≥ 0 and λℓ(t) ≥ λ0(t),
for ℓ = 1, 2, 3, toward the smallest constant values for which
the constraints (8)-(10) are not violated. Define error signal
eℓ(t), for ℓ = 0, 1, 2, 3, where eℓ(t) = ξℓ/tmax − cℓ(t).
Constraints (8)-(10) are satisfied if

∑
t eℓ(t) for all ℓ are

non-negative. Order and line level controllers achieve this
by using error feedback control to update λℓ(t).

The plant is defined by the map from λℓ(t) to cℓ(t),
for ℓ = 0, 1, 2, 3; which in real applications is nonlinear,
dynamic, time-varying, and stochastic [10]. Typically, the
plant is approximately linear near each operating point.

C. Control Design
Inspired by the online dual decomposition method, con-

sider pure integral (I) error feedback control to update control
signals λℓ(t) for each ℓ separately. Recall that λ0(t) ≥ 0 and
λℓ(t) ≥ λ0(t), for ℓ = 1, 2, 3. Since λℓ(t) depends on λ0(t)
it is natural to update λ0(t) before updating λℓ(t). Integrator
wind-up protection is obtained automatically by using λℓ(t),
for ℓ = 0, 1, 2, 3, as the states of the controller and updating
them as

λ0(t) = max
(
λ0(t− 1)− k0e0(t), 0

)
, (14)

λℓ(t) = max
(
λℓ(t− 1)− kℓeℓ(t), λ0(t)

)
, ℓ = 1, 2, 3,(15)

where k0, kℓ ∈ R>0 are the controller I gains selected to
yield a loop gain equal to 0.05 for each controller. Hence, the
I gains depend on the plant gains, which may be estimated
online. This estimation is outside the scope of this paper, but
two approaches are discussed in [10].

D. Plant Model
The static plant of line ℓ is defined by the relationship

between λℓ and ECℓ. For the sole purpose of simulating a
closed loop system, assume ECℓ, on a per day basis, can be

described by ECℓ = γℓΓ(1/λℓ|αℓ, βℓ), where γℓ is the daily
spend potential of the line, and Γ(u|α, β) denotes the CDF
of a gamma distribution parameterized in terms of a shape
parameter α and an inverse scale parameter β. This model
is used of convenience for the simulation study to capture
basic properties of the real plant (non-negative, monotonic,
and bounded). The detailed plant model is irrelevant to the
control system since the only thing of importance is the plant
gain, which is estimated online (see above).

Parameters γℓ, αℓ, and βℓ encode all relevant information
related to vℓ,i, Ωℓ(t), and FB⋆

i
(b); which define impression

value, impression supply, and competitive landscape. The
line-specific parameters are provided in the following table:

Line ℓ γℓ αℓ βℓ

1 $100 2 0.5
2 $100 2 0.12
3 $100 2 0.1

All three lines have the same overall spend potential (equal
to $100), but line 1 is able to spend more budget at larger
values of λℓ than lines 2 and 3 can. It can be shown that an
ad budget that is spent when λℓ is large yield impressions
for which vℓ,i/cℓ,i is large. Such impressions are referred
to as high return on investment (ROI) impressions. The
larger the ROI of awarded impressions, the more does each
dollar in ad spend contribute towards the campaign objective.
Although all three lines have access to both low and high
ROI impressions, line 1 is able to spend more budget on high
ROI impressions than what lines 2 and 3 are capable of.

The above relationships are known only to an oracle, and
the control system must instead rely on observations c0(t)
and cℓ(t) to update λ0(t) and λℓ(t). These observations are
assumed available at negligible system delay. The control
system is implemented with controller I gains selected using
an adaptive scheme to maintain a desired loop gain, stability,
and acceptable performance. The details of the adaptation
and gain selection are outside the scope of the paper.
Moreover, the controller is initialized by λ0(0) = λ1(0) =
λ2(0) = λ3(0) = 0.1.

E. Simulation Results

Figure 2 shows the closed loop result of a noise-free
simulation of the above set-up. The left subplots show the
order- and line-level control signals λ0, λ1, λ2, and λ3 versus
time, and the right subplots show the order- and line-level
spend and budget versus time. Budget and spend numbers in
the plots are shown per sampling interval (one minute).

Note, how no budget constraint at steady-state is ever
violated; i.e. c0(t) ≤ ξ0/tmax and cℓ(t) ≤ ξℓ/tmax, for
ℓ = 1, 2, 3. Next, consider each time interval separately.

In interval 1 (0 ≤ t < 72), ξ1 + ξ2 + ξ3 ≥ ξ0, which
means at least one line cannot deliver its budget in full. In
order for the Lagrangian condition (λℓ−λ0)(ECℓ− ξℓ) = 0
to hold for that (one or more) ad line, it is necessary that
λℓ = λ0. We confirm from the figure that Line 1 exhibits the
property of not spending the budget in full and that λ1 = λ0.
Moreover, since the order-level spend potential is larger than
ξo, the order level control signals λ0 ≈ 0.27 settles on a
strictly positive number to prevent spending too much on the
order-level. Line 2 and 3 spend their budgets in full using
λ2 ≈ 0.94 and λ3 ≈ 1.41 strictly larger than λ0.
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Fig. 2. Closed loop simulation result. Left: Control signals λ0, λ1, λ2,
and λ3. Right: Spend signals c0(t), c1(t), c2(t), and c3(t); and budgets.
Top row: Order result. Rows 2-4: Line 1-3 results.

In interval 2 (72 ≤ t < 144), ξ1 + ξ2 + ξ3 = ξ0,
which means cross-line budget optimization is not possible.
Hence, the line-level controllers ensure the order level spend
constraint is never violated. Each line controller manages its
own objective with no concern about the other lines. Since all
three lines have spend potentials that exceed their budgets,
there exist values λ1 ≈ 0.60, λ2 ≈ 0.94, and λ3 ≈ 0.46
for which the lines spend their budgets in full. But since the
order budget equals the sum of line budgets, this implies that
the order budget is also spent in full.

In interval 3 (144 ≤ t < 216), the constraints satisfy
ξ1 + ξ2 + ξ3 ≤ ξ0, which again means cross-line budget
optimization is impossible. The line controllers ensure the
order constraint is never violated and λ0 therefore stays
at, or converges to, zero. Each line controller manages its
own objective and since their spend potentials exceed their
budgets, there exist values λ1 ≈ 0.94, λ2 ≈ 0.61, and
λ3 ≈ 0.94 for which the lines spend their budgets in full.
However, the order budget exceed the sum of line budgets,
consequently, the order leaves budget on the table.

In interval 4 (216 ≤ t ≤ 288), where ξ1 + ξ2 + ξ3 ≥ ξ0, it
turns out no line is able to deliver their budget in full, and for
that reason λ1 = λ2 = λ3 = λ0. On the other hand, since
the spend potential of the order exceeds the order budget
λ0 ≈ 0.68 settles on a strictly positive value.

VIII. CONCLUSIONS AND FUTURE WORK

Advertisers often define an ad campaign by an order
consisting of multiple lines with campaign delivery con-
straints imposed hierarchically across order and lines. We
have derived necessary conditions for the optimal bidding
strategy that solves a large family of constrained optimization
problems. The results show how the bidding strategy can

be implemented as non-cooperating feedback control-based
agents on the order and on individual lines. This reduces the
number of control signals each individual feedback controller
must compute and greatly simplifies the control design.

Real ad campaign plants are uncertain and approximately
24 hour periodic, and they are subject to significant non-
additive stochastic noise [10]. The immediate next steps is
therefore to develop algorithms for multi-input multi-output
system identification. Future work also includes designing
multi-input multi-output feedback controllers that can be
used on the order and line level of a campaign.
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