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Abstract— This paper addresses the challenge of network
synchronization under limited communication, involving het-
erogeneous agents with different dynamics and various network
topologies, to achieve a consensus. We investigate the distributed
adaptive control for interconnected unknown linear subsystems
with a leader and followers, with the presence of input-output
disturbance. We enhance the communication within multi-agent
systems to achieve consensus under the leadership’s guidance.
While the measured variable is similar among the followers, the
incoming measurements are weighted and constructed based on
their proximity to the leader. We also explore the convergence
rates across various balanced topologies (Star-like, Cyclic-like,
Path, Random), featuring different numbers of agents, using
distributed first and high-order tuners. Moreover, we conduct
several numerical simulations across various networks, agents
and tuners to evaluate the effects of sparsity in the interaction
between subsystems using the L2−norm and L∞−norm. Some
networks exhibit a trend where an increasing number of agents
results in smaller errors, although this is not universally the
case. Additionally, patterns observed at initial times may not
reliably predict overall performance across different networks.
Finally, we demonstrate that the proposed modified high-order
tuners outperform its counterpart, and we provide related
insights along with our conclusions.

I. INTRODUCTION

Multi-agent systems (MAS), spanning areas from robotics,
including unmanned ground [1], aerial [2], and underwater
vehicles [3], to large-scale societal dynamics [4], have at-
tracted considerable interest. The scope of challenges these
systems face extends from internal issues like achieving
consensus among agents for coordinated control and stabil-
ity, to external threats such as disturbances, environmental
uncertainties, or attacks [5]. Furthermore, the interconnected
nature of networked systems necessitates insights from graph
theory. This is underscored by [6], which examines the limits
and trade-offs in networks facing stochastic disturbances,
and by [7], which explores how denser networks (with more
links) affect the number of agents.

In this paper, we explore distributed adaptive control as
a foundational element of MAS, sharing similarities with
distributed Model Reference Adaptive Control (MRAC). This
topic spans from theoretical frameworks aimed at achieving
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consensus [8], [9] in complex networks to practical appli-
cations in large-scale systems [10], [11]. The distributed
adaptive control in this paper is adaptable to various agent
dynamics, influencing diverse control laws among agents, as
closely discussed in [12], [13]. Moreover, specific studies
have proposed solutions for nonlinear MAS and neural
network-based challenges [14], [15]. Furthermore, inspired
from the distributed optimization [16], our study incorporates
high-order tuners as adaptive laws to update the gains.

A newly developed algorithm for high-order tuners has
been introduced to optimize convex loss functions with
time-varying regressors in identification problems. This al-
gorithm leverages Nesterov’s method principles, ensuring
that parameter estimations stay within predefined bounds
when confronted with time-varying regressors [17]. It also
accelerates the convergence speed of the tracking error
in scenarios where the regressors are constant [18]. With
the growing interest in advancing tuners, we have adapted
high-order tuners for graph-related problems [18], [19],
achieving marginally better outcomes compared to gradient-
based methods. Furthermore, we offer insights on designing
network weights and selecting parameters in the tuners.

This paper makes the following four main contributions.
First, we integrate the concept of adaptive control into net-
worked problems with multiple agents, extending its appli-
cability to complex interconnected systems such as star-like,
cyclic-like, path, and random networks. Second, we address
the challenge of coordinating an arbitrary number of agents
with disturbances to follow a designated leader, similar to
distributed MRAC. Third, we compare the performance of
three distinct tuning algorithms: the gradient descent and two
accelerating tuners, providing a comprehensive evaluation
of their effectiveness in networked control systems (NCS).
Finally, we not only evaluate the effects of sparsity in sub-
system interactions using performance measures (L2−norm
and L∞−norm) across various network configurations and
tuners but also demonstrate that our proposed modified
high-order tuners significantly outperform the gradient-based
tuner, offering novel insights for future research in NCS.

Notations. Rp is the p−dimensional Euclidean space and
C− refers the open left-half of the complex plane. A symbol
(s) shows the Laplace variable. Ip denotes the identity matrix
of size Rp and P = diag{pi} is the diagonal matrix with
entries pi,∀i. 1p = [1, . . . , 1]⊤ is the vector of all ones in
Rp. ⊗ denotes the Kronecker product and the operators of
tr[A], |A|, ∥A∥2, and ∥A∥F define the trace, the absolute
value, the Euclidean and the Frobenius norm of matrix A
respectively.
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. System Setup

We consider an interconnected network of subsystems
shown in Fig. 1, which consists of a leader and m unknown
unstable subsystems/agents. Let the unknown subsystems for
the followers be defined as follows,

Wi(s) ∼

{
ẋi(t) = Aixi(t) +Bi(ui(t) + vui ),

yi(t) = kpiCixi(t) + vyi ,
(1)

where xi ∈ Rn is the state vector, and ui, yi ∈ R denote
the input and output, respectively, for i = 1, 2, . . . ,m. The
control input ui and the output measurement yi are disturbed
by the unknown yet constant vui , v

y
i ∈ Ω ⊂ R. The transfer

function from ui to yi is denoted by Wi(s). The dynamic of
the leader as the reference model is written as,

Wℓ(s) ∼

{
ẋℓ(t) = Aℓxℓ(t) +Bℓr(t),

yℓ(t) = kℓCℓxℓ(t),
(2)

in which r is the reference signal and that is a piecewise-
continuous function while xℓ ∈ Rnℓ and yℓ ∈ R represent the
reference state and output. Note that Ai, Bi, Ci, Aℓ, Bℓ, Cℓ

are constant real matrices with appropriate dimensions
whereas kpi

and kℓ are the high frequency gains. The goal
is to design local control input ui so that the outputs yi,∀i
follow that of the known stable leader yℓ.

Assumption 1. The dynamics (1) are unknown and unstable
while (2) and the signs of kpi

are known. The numerators
of Wi(s),∀i have roots in C− while the denominators of
Wi(s),∀i and Wℓ(s) are monic with relative degree nd = 1.

B. Communication Network

We describe the m followers and a leader ℓ connected via
weighted digraph G := {V = {1, 2, . . . ,m} ∪ {ℓ}, E , w(·)}
where V , E , and w(·) represent the set of nodes, directed
edges, and the weight function in turn. For simplicity, we
denote w(i, j) = wij where (i, j) ∈ E . We call the induced
subgraph on m followers as Gm and the leader itself as Gℓ.
Also, we assume that there is a directed path from the leader
ℓ to all followers. The layering colors indicate the q−th group

Fig. 1: An example (random graph) of an interconnected network
of leader ℓ and m = 9 unknown unstable subsystems/followers.

of systems from the leader, where the least is the closest, as
example shown in Fig. 1 with q = {1, 2, 3}. The incoming
arrows for i−th system represent the measured neighborhood
j with respected weight wij . Note that, the measurement
collected to system i from its neighbors j is designed to be
1, where wi =

∑
j wij = 1, so that the degree matrix for

the whole agents is D := diag{D1, . . . , Dm} = Im. The
measured errors in Gm are represented as linear operation of
its outputs ȳ multiplied by the Laplacian-like matrix of Gm,
written as Lm := D − Am, and subtracted by the leader ȳℓ
using Aℓ, with later definition of ȳ and ȳℓ. The matrices of
Lm and Aℓ are formulated as follows,

w1 w12 · · · w1m

w21 w2 · · · w2m

...
...

. . .
...

wm1 wm2 · · · wm


︸ ︷︷ ︸

Lm:=D−Am

and


w1ℓ 0 · · · 0
0 w2ℓ · · · 0
...

...
. . .

...
0 0 · · · wmℓ


︸ ︷︷ ︸

Aℓ|wiℓ:=0,∀q>1

in which, Am denotes the adjacency matrix of Gm whereas
Aℓ ∈ Rm×m = diag{w1ℓ, . . . , wmℓ} is the diagonal matrix
containing the weights from the leader to the subsystems in
q = 1. Therefore, the error for system i is formulated as,

ei(t) :=

m∑
j=1

wij [yi(t)− yj(t)]− wiℓyℓ(t) (3)

and the goal is to ensure the boundedness of the errors in
Gm, where limt→∞ ē→ 0, ē = [e1, . . . , em]⊤, leading to the
perfect tracking to the leader Gℓ.

Remark 1 (Threshold of network). The leader weight matrix
is positive semi-definite Aℓ ⪰ 0, having the eigenvalues
ranging from 0 to 1, denoted as λℓi = [0, 1],∀i = 1, . . . ,m,
and ∃λℓj ̸= 0 for 1 ≤ j ≤ m. The Laplacian-like matrix of
Gm is positive definite Lm ≻ 0, ensuring λmi > 0,∀i.

Remark 2 (Communication network). The proposed network
is balanced (Lm − Aℓ)1m = 0. There is always a directed
path from the leader Gℓ to all followers in Gm, otherwise
either ∃λℓi = 0,∀i = 1, . . . ,m or ∃λmj = 0 for 1 ≤ j ≤ m,
violating Remark 1.

III. DISTRIBUTED ADAPTIVE CONTROL

We consider the disturbed interconnected systems in (1)
be,

W(s) ∼

{
˙̄x(t) = Ax̄(t) +B (ū(t) + νu) ,

ȳ(t) = kpCx̄(t) + νy,
(4)

where x̄ = [x⊤1 , . . . , x
⊤
m]⊤ ∈ Rn̄ with n̄ = n × m defines

the set of the states, while ū = [u1, . . . , um]⊤ ∈ Rm and
ȳ = [y1, . . . , ym]⊤ ∈ Rm represent the set of inputs and
outputs respectively. The matrices

A = diag{A1, . . . , Am}, B = diag{B1, . . . , Bm},
C = diag{C1, . . . , Cm}, kp = diag{kp1 , . . . , kpm},

(5)

are diagonal blocks of Gm with high frequency gains kp.
The transfer function version of Gm is denoted as W(s) =
diag{W1(s), . . . ,Wm(s)}. We design so that the persistent
excitation of ν̄ = [νu⊤, νy⊤]⊤, να = [vα1 , . . . , v

α
m]⊤, with

α = {u, y} are less than that of the reference r̄, where
sup(ν̄) < r̄. We also expand the leader Gℓ in (2) as follows,

Wℓ(s) ∼

{
˙̄xℓ(t) = Aℓx̄ℓ(t) +Bℓr̄(t),

ȳℓ(t) = kℓCℓx̄ℓ(t),
(6)



where x̄ℓ = 1m ⊗ xℓ, ȳℓ = 1m ⊗ yℓ and r̄ = 1m ⊗ r denote
the set of states, outputs and references of Gℓ while Aℓ, Bℓ,
and Cℓ are the diagonal matrices in the forms of,

Aℓ := Im ⊗Aℓ, Bℓ := Im ⊗Bℓ, Cℓ := Im ⊗ Cℓ, (7)

with the similar dimensions to A, B, and C respectively.
Likewise, the transfer function of Gℓ is defined as Wℓ(s) =
Im ⊗Wℓ(s) with high frequency gains kℓ = Im ⊗ kℓ.

It is obvious that if Gm is known, then the control input ū
satisfying limt→∞ ē := [e1, . . . , em]⊤ = 0 is to choose ū =
M(s)(1m ⊗ r), where M(s) = Wℓ(s)W

−1(s). However,
for the unknown Gm, the engineering for unknown constant
kp, the zeros and the poles of W(s) is required to be solved.
Here, we divide the problem into two parts:

1) the unknown kp of W(s)
2) the unknown kp, zeros and poles of W(s)

Regarding the first part, we assume W(s) = kpWα(s) and
Wℓ(s) = kℓWα(s), where Wα(s) is the transfer function
of Aℓ,Bℓ,Cℓ. The optimal estimate for the unknown kp is
k∗ = kℓk

−1
p and with control input ū = (k∗ + k̃)(1m ⊗ r),

then the tracking errors ē := Lmȳ − Aℓȳℓ for the unknown
kp only of Gm are formulated as follows,

ē(t) =
[
LmkpWα(s)(k

∗ + k̃)− AℓkℓWα(s)
]
(1m ⊗ r(t))

= LmkpWα(s)k̃(1m ⊗ r(t)), (8)

and due to D = Im =: wi,∀i, then (Lm − Aℓ)1m = 0. As
for the second case, we need the Meyer-Kalman-Yakubovic
lemma to opt the adaptive laws and guarantee the stability.

Lemma 1. Consider the networked system in (4) where the
pairs (A,B) and (A,C) are stabilizable and detectable,
assuming the strictly positive realness of the transfer function
Wβ(s) ≜ C(sIn̄ −A)−1B. Moreover, let the controller be
ū := Θ⊤(t)η̄(t) where ηi : R+ → Rp, η̄ = [η⊤1 , . . . , η

⊤
m]⊤,

and ȳ : R+ → Rm be the measured time-varying functions
while Θ ∈ Rp̄×m with p̄ = p×m be the adaptive term of,

Θ̇⊤(t) = − sign(kp)ȳ(t)η̄
⊤(t), (9)

then the equilibrium (x̄,Θ) := 0 is uniformly stable in large.

Proof. Since Wβ(s) is strictly positive real (SPR), then
∃Q = Q⊤ ≻ 0, P = P⊤ ≻ 0 such that,

A⊤P + PA = −Q, PB = C⊤, (10)

and choosing the positive definite Lyapunov function of
V (x̄,Θ) > 0 leads to the negative semi-definite function of
its time derivative V̇ (x̄,Θ) ≤ 0, as written in the following,

V = x̄⊤(t)Px̄(t) + tr
[
Θ(t)|k−1

p |Θ⊤(t)
]

V̇ = x̄⊤(t)
[
A⊤P + PA

]
x̄(t) + 2x̄⊤(t)PBΘ⊤(t)η̄(t)

− 2 tr
[
η̄(t)ȳ⊤(t)|k−1

p |Θ⊤(t)
]
=: −x̄⊤(t)Qx̄(t) ≤ 0,

considering (10) and if we choose Θ̇⊤ as in (9). Note that,
it is required to show that Wβ(s) be SPR.

Now, for the unknown kp, zeros and poles of Gm, let us
define (N(s),D(s)), (Nℓ(s),Dℓ(s)) be the diagonal matri-

ces containing the set of numerators and denominators of Gm

and Gℓ in turn,

N(s) = diag{n1(s), . . . , nm(s)}, Nℓ(s) = Im ⊗ nℓ(s),

D(s) = diag{d1(s), . . . , dm(s)}, Dℓ(s) = Im ⊗ dℓ(s),

where the transfer functions are W(s) = kpN(s)D−1(s)
and Wℓ(s) = kℓNℓ(s)D

−1
ℓ (s). The feed-forward and

feedback mechanism to adjust the unknown N(s) and the
unknown D(s) are written as follows,

Ψ∗⊤
d H [ū(t) + νu] = Ψ∗⊤

d z̄(t) (11)[
Φ∗⊤

d H+ T ∗
d

]
ȳ(t) = Φ∗⊤

d ω̄(t) + T ∗
d ȳ(t) (12)

where the optimal matrices of Ψ∗⊤
d = diag{ψ∗⊤

1 , . . . , ψ∗⊤
m },

Φ∗⊤
d = diag{ϕ∗⊤1 , . . . , ϕ∗⊤m }, and T ∗

d = diag{τ∗1 , . . . , τ∗m}
show the adaptive terms with ψ∗

i , ϕ
∗
i ∈ Rn−1, τ∗i ∈ R,∀i.

The known systems H(s) are defined as,

H(s) = (sIm(n−1) − Λm(n−1))
−1ϑm(n−1) (13)

in which the pair matrices of Λm(n−1) = Im ⊗ Λn−1 and
ϑm(n−1) = Im⊗ϑn−1 are the stable systems where the pair
(Λn−1, ϑn−1) is of order n − 1,∀i. Note that, the vectors
z̄ ∈ Rq̄ = [z⊤1 , . . . , z

⊤
m]⊤ and ω̄ ∈ Rq̄ = [ω⊤

1 , . . . , ω
⊤
m]⊤

with q̄ = (n− 1)×m can be also represented as,

˙̄z(t) = Λm(n−1)z̄(t) + ϑm(n−1) [ū(t) + νu] , (14)
˙̄ω(t) = Λm(n−1)ω̄(t) + ϑm(n−1)ȳ(t), (15)

therefore, the control is then defined as,

ū(t) = Θ⊤(t)η̄(t) (16)

where η̄ = [η⊤1 , . . . , η
⊤
m]⊤, ηi = [ri, z

⊤
i , ω

⊤
i , yi]

⊤,∀i =
1, . . . ,m. Now, we need to show that ē, z̄, w̄ are bounded
such that by considering (4), (11)-(16) and the parameter
error Θ = Θ∗ + Θ̃, the outputs of Gm are denoted as,

˙̄xa(t) = Aax̄a(t) +Ba

[
Θ̃⊤(t)η̄(t) + k∗(t)r̄(t)

]
,

ȳ(t) = Cax̄a(t),
(17)

where x̄a = [x̄⊤ z̄⊤ ω̄⊤]⊤ and,

Aa =

A+BT ∗
d k

∗C BΨ∗⊤
d BΦ∗⊤

d

ϑT ∗
d k

∗C Λ + ϑΨ∗⊤
d ϑΦ∗⊤

d

ϑk∗C 0 Λ

 ,
Ba =

[
B⊤ ϑ⊤ 0

]⊤
, Ca =

[
k∗C 0 0

]
.

(18)

It also follows that the leader of Gℓ can be constructed using
the optimal gains of k∗, Ψ∗

d, Φ∗
d, and T ∗

d , such that it is equal
to ȳℓ := kℓCℓ(sIn̄ −Aℓ)

−1Bℓ, therefore

˙̄x∗a(t) = Aax̄
∗
a(t) +Bak

∗(t)r̄(t), ȳℓ(t) = Cax̄
∗
a(t) (19)

in which by considering the state error ēa = L̂mx̄a − Âℓx̄
∗
a

and the output error ē := Lmȳ−Aℓ(yℓ ⊗ 1m), where L̂m =
diag{(Lm ⊗ In), Iq̄, Iq̄} and Âℓ = diag{(Aℓ ⊗ In), Iq̄, Iq̄},

˙̄ea = Aaēa(t) + L̂mBaΘ̃
⊤(t)η̄(t) (20a)

ē = LmCa(sIa −Aa)
−1Ba

[
Θ̃⊤(t)η̄(t) + k∗(t)r̄(t)

]



− AℓCa(sIa −Aa)
−1Bak

∗(t)r̄(t) (20b)

= LmCa(sIa −Aa)
−1BaΘ̃

⊤(t)η̄(t) = Caēa(t). (20c)

We can generate the adaptive laws using Lemma 1 in which
∃Qa = Q⊤

a ≻ 0, Pa = P⊤
a ≻ 0 such that, A⊤

a Pa +PaAa =
−Qa, and PaBa = C⊤

a since Wγ(s) ≜ Ca(sIa−Aa)
−1Ba

is SPR. The stability can be guaranteed from the following
Lyapunov function V (ēa, Θ̃),

V = ē⊤a (t)P ēa(t) + tr
[
Θ̃(t)Γ−1

a Θ̃⊤(t)
]

(21a)

V̇ = −ē⊤a (t)Qaēa(t) + 2ē⊤a (t)PaL̂mBaΘ̃
⊤(t)η̄(t)

− 2 tr
[
η̄(t)ē⊤(t)LmΓaΓ

−1
a Θ̃⊤(t)

]
(21b)

= −ē⊤a (t)Qaēa(t) ≤ 0 (21c)

if we design the adaptive laws as follows,

Θ̇⊤(t) = − sign(kp)ΓaL⊤
mē(t)η̄

⊤(t). (22)

Remark 3. The matrix Ca makes Lm in (20c) sufficient to
capture ēa(t) containing L̂m in (20a). Also, the cancellation
in (21b) occurs due to the fact that ē⊤a (t)PaL̂mBa =
ē⊤a (t)L̂mC⊤

a = ē⊤(t)Lm, considering PaBa = C⊤
a . Given

nd = 1 in Assumption 1, and since H(s) is stable and strictly
proper, ν̄ is cancelled out and (17) is valid. This is due to
a pole in the feedforward transfer function at s = 0, where
the disturbance-term decays exponentially to zero.

Furthermore, we provide one lemma and three theorems
with some remarks so that the outputs (4) and the errors ē
of the balanced connected networks are bounded while (17)
has a solution and guarantees the tracking of the leader Gℓ.

Lemma 2. Let the stable systems (13) be shown as H(s) :=
NΛ(s)D

−1
Λ (s), where N⊤

Λ (s) = diag{n⊤λ1
(s), . . . , n⊤

λm
(s)}

and DΛ(s) = diag{dλ1(s), . . . , dλm(s)}. There exist the
optimal gains k∗, Ψ∗

d, Φ∗
d, and T ∗

d , so that the following
matching condition is achieved, where

Ψ∗⊤
d NΛD+

(
Φ∗⊤

d NΛ + T ∗
dDΛ

)
kpN

= DΛ

[
D− k∗ (kℓNℓD

−1
ℓ

)−1
kpN

]
.

(23)

Proof. The complete proof is given in the arXiv [20].

Theorem 1. Given k∗, Ψ∗
d, Φ∗

d, and T ∗
d satisfying (23) and

Θ ≡ Θ∗ in (22), then the controller ū = Θ∗⊤η̄ ensures the
boundedness of all the signals in the closed-loop form and

ē := Lmȳ(t)− Aℓȳℓ(t) = 1m ⊗ ϵ0 (24)

where ϵ0 denotes the exponentially decaying initial condition.

Proof. Considering the stable systems of both DΛ and N,
and operating both sides of (23) with Lmȳ, then

Lmū(t) = LmΨ∗⊤
d Hū(t) + LmΦ∗⊤

d Hȳ(t) + LmT
∗
d ȳ(t)

+ Lmk∗W−1
ℓ ȳ(t) + (1m ⊗ ϵ1), (25)

and let Θ ≡ Θ∗, then ū = Θ∗⊤η̄, such that by adding the
zero term (Lm − Aℓ)k

∗r̄ := 0 into (25), we have

k∗W−1
ℓ (s) [Lmȳ(t)− Aℓȳℓ(t)] + (1m ⊗ ϵ1) = 0. (26)

Since Wℓ is stable and using (4), then ȳ ∈ L∞, ū ∈ L∞,
while z̄ and ω̄ are bounded.

Let Γa ∈ Rm×m ≻ 0, Qa = Q⊤
a ≻ 0, and Pa = P⊤

a ≻ 0
such that A⊤

a Pa+PaAa = −Qa, and PaBa = C⊤
a then the

following theorem holds.

Theorem 2. Consider the networked system (4) of Gm and
(6) of Gℓ with the Laplacian-like Lm and the leader weight
Aℓ satisfying Remarks 1 and 2 along with the disturbance-
term in Remark 3. The pair (A,B) is stabilizable satisfying
Assumption 1 and let the controller be ū := Θ⊤(t)η̄(t) where
ηi : R+ → Rp, η̄ = [η⊤1 , . . . , η

⊤
m]⊤, and ȳ : R+ → Rm be

the measured time-varying functions while Θ ∈ Rp̄×m with
p̄ = p ×m be the adaptive term of the form (22), then the
boundedness of ē, z̄, ω̄ in Gm is guaranteed, leading to the
asymptotic tracking to the leader Gℓ.

Proof. Using (4), (14), (15), (16), and the parameter error
Θ = Θ∗ + Θ̃, then (17) is obtained to describe Gm while
Gℓ is defined in (19), showing the perfect matching of (4)-
(5), using ū∗ as in (23). Considering the errors of ēa =
L̂mx̄a − Âℓx̄

∗
a and ē := Lmȳ − Aℓȳℓ, then (20a)-(20c) is

bounded, proven by (21a)-(21c) if the adaptive law in (22)
is chosen.

IV. DISTRIBUTED HIGH-ORDER TUNERS

We discuss two common errors in adaptive system, the
tracking error ē between the leader Gℓ and the followers Gm

and the parameter estimation error Θ̃ = Θ−Θ∗. We propose
two high-order tuners, Θ1,Θ2 ∈ Rmpi×m inspired by [18],
against the gradient-based tuner in (22). The two tuners come
from the Bregman Lagrangian L(Θ⊤

j , Θ̇
⊤
j , t) in the form of,

L(·) = eᾱj−γ̄j

[
Db(f(Θ

⊤
j ),Θ

⊤
2 )− eβ̄jL(Θ⊤

j )
]

(27)

where f(Θ⊤
j ) = Θ⊤

j +e−ᾱj Θ̇⊤
j and the Bregman divergence

is denoted as Db(y, x) = b(y)− b(x)− tr
[
(y − x)∇b(x)⊤

]
with b(x) = 0.5∥x∥2F for all j = 1, 2. Moreover, L(·) defines
the time-varying loss function from (20a), where

L(·) = 1

2

(
d

dt
ē⊤a (t)Paēa(t) + ē⊤a (t)Qaēa(t)

)
(28)

resulting the update laws for specific Θ̇⊤
j as Γγ∇Θj

L(Θj).
Given Γγ := γIm,Γβ := βIm ∈ Rm×m ≻ 0 such that
tr [Γγ ] := γ × m = γm, tr [Γβ ] := β × m = βm and the
normalization N = 1 + µη̄⊤η̄, such that by substituting
ᾱ1 = ln(ΓβN−1), ᾱ2 = 0, β̄1 = ln(ΓγΓ

−1
β N−1), β̄2 =

ln(ΓγΓβN−1), and

γ̄1 =

∫ t

t0

ΓβN ds, γ̄2 = Γβ(t− t0) (29a)

then we have,

L1(·) = eγ̄1

(
1

2
Γ−1
β N−1∥Θ̇1(t)∥2F − ΓγL(Θ1(t))

)
(30a)

L2(·) = eγ̄2

(
1

2
∥Θ̇2(t)∥2F − ΓγΓβN−1L(Θ2(t))

)
. (30b)



The Lagrangian functions in (30a)-(30b) act as the basis of
high-order tuners in this letter. Using a cost function J(Θj)
as the integral of the functions for some time interval tθ, the
Euler-Lagrangian equation of d

dt∇Θ̇j
L(·) = ∇Θj

L(·) and
neglecting the time derivative of the normalization Ṅ , the
high-order tuners yield in,

Θ̈⊤
1 (t) + ΓβN Θ̇⊤

1 (t) = −ΓγΓβN∇Θ1
L(Θ1(t)) (31a)

Θ̈⊤
2 (t) + ΓβΘ̇

⊤
2 (t) = −ΓγΓβN−1∇Θ2

L(Θ2(t)) (31b)

or similarly for (31a), we can rewrite it in the following
fashion using a new variable Ξ1,

Θ̇⊤
1 (t) = −ΓβN

[
Θ⊤

1 (t)− Ξ⊤
1 (t)

]
. (32)

Remark 4. The normalization N in (31a)-(31b) is required
for stability proof with µ ≥ 2(γm/βm)∥B⊤

a L̂mPa∥2F while
Γβ and Γγ show the damping and the forcing term of the
methods, respectively. Also, ∃Qa = Q⊤

a ⪰ 2Ia that solves
A⊤

a Pa + PaAa = −Qa and PaBa = C⊤
a .

Theorem 3. Using the followers Gm in (17), the leader Gℓ

in (19), the adaptive laws of Ξ̇1 = Θ̇ in (22) and (32),
and the controller (16) for the given N , µ,Γβ ,Γγ , Qa, in
Remark 4 results in bounded solutions ēa ∈ L∞, ē ∈ L∞,
Ξ̃1 := (Ξ1−Θ∗

1) ∈ L∞, (Θ1−Ξ) ∈ L∞ for arbitrary initial
conditions with limt→∞ ēa = 0. Also, if η, η̇ ∈ L∞, then
limt→∞ Ξ̇1 = 0, limt→∞ Θ̇1 = 0, and limt→∞ Θ1−Ξ1 = 0.

Proof. Let us introduce (22) into different fashion as follows,

Ξ̇⊤
1 (t) = − sign(kp)ΓγL⊤

mē(t)η̄
⊤(t). (33)

and by defining Θ̃1 := Θ1 − Θ∗
1 and Ξ̃1 = Ξ1 − Θ∗

1, then
using tuner in (32), the Lyapunov candidate V (ēa,Θ1,Ξ1)
is chosen as,

V = ē⊤a (t)P ēa(t) + tr
[
Θ̃1(t)Γ

−1
γ Θ̃1(t)

⊤
]

(34)

having the time derivative along the trajectory of (20a)-(20c),

V̇ ≤ −
(
∥ēa∥ − 2∥B⊤

a L̂mPa∥F ∥(Θ1 − Ξ1)
⊤η̄∥F

)2

− ∥ēa∥2 −
2βm
γm

∥(Θ1 − Ξ1)
⊤∥2F ≤ 0 (35)

using Cauchy–Schwarz inequality ∥AB∥F ≤ ∥A∥F ∥B∥2. It
concludes that the boundedness in Theorem 3 holds. The
complete proof is given in the arXiv version [20].

Remark 5. A complementary proof for (31b) using Ξ̇2 =
−ΓγN−1∇L(Ξ̃2), N−1 = Nm and modifying (20a) to
accommodate N , with V2(ēa,Θ2,Ξ2) similar to (34), results
in bounded solutions in which the time derivative of (34)
along the trajectory of (20a)-(20c) using Ξ2, yields in V̇2 ≤
NmV̇ ≤ 0. Also, given the tuners of Θ1 and Θ2 in (31a)
and (31b), the values of Γβ and Γγ should be chosen larger
as systems becoming far away (q > 2) from the leader Gℓ.

V. NUMERICAL SIMULATIONS AND FINDINGS

In this section, we simulate four different networks as
shown in Fig. 1 and Fig. 3, namely: Random, Star-like,
Cyclic-like, and Path, with m numbers of agents where m ∈
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Fig. 2: (a) Performance measures of various m in Fig. 3; and (b)
Random graph given by Fig. 1 with various tuners.

TABLE I: L2−norm and L∞−norm of the random graph in Fig. 1.

L2-Norm L∞-Norm

Θ Θ1 Θ2 Θ Θ1 Θ2

Random Graph 104.76 97.72 98.26 58.45 37.61 39.79

{1, 3, 5, 7, 9, 11, 13}. The leader ℓ has a transfer function
Wℓ(s) and meanwhile, the m followers are characterized by
individual unstable transfer functions, each Wi(s) defined as:

Wℓ(s) :=
3s+ 3

s2 + 5s+ 6
, Wi(s) :=

s+ k + 4

(s− 1− k)(s− 2− k)

where i = 1, 2, . . . ,m, when m = 1, k = 9i is used; when
m = 3, k = 4i−3 is used; when m = 5, k = 2i−1 is used;
when m = 7, k = (4i − 1)/3 is used; when m = 9, k = i
is used; when m = 11, k = (4i + 1)/5 is used; and when
m = 13, k = (2i+1)/3 is used. We design the weights wij

for the incoming measurements of node i from its neighbors
j based on the level of q where agents in q := 1 gain more
weights than those of q = {2, 3, . . . }, with the disturbances
να = [5, 0.5]⊤ ⊗ 1m, α = {u, y}.

For m = 1, this is the classic adaptive problem with
weights of Lm = Aℓ = Im while for other m, we simulate
three networks (Star-like, Cyclic-like, and Path) because they
are comparable and the topologies are unchanged for various
m. Furthermore, we compete three methods of tuners; first-
order tuner Θ in (22), high-order tuners Θ1 in (31a) and Θ2

in (31b). One should note that, due to Remark 5, we adjust
the constants of Γβ and Γγ to be higher as Wi becomes worse
for the three tuners. Finally, we discuss the results using
L2−norm and L∞−norm of the forms, ∥f∥22 =

∫
T |f(t)|

2 dt
and ∥f∥∞ = supt∈T |f(t)|, in three different parts; (a) Fig. 4
for m = 9; (b) Fig. 2a for various m; and (c) Fig. 2b and
Table. I for three tuners.

Part (a). Among the networks, Star is the best since the
whole agents connect directly to the leader with wiℓ = 0.5,∀i
and wij = 0.25,∀j ̸= ℓ weights. Regarding random graph,
the performance lies in the closeness to the leader (level of
q) and the weights, with the most outer agents as the worst.
It is confirmed for cyclic-graph that W4, W5, and W6 are the
worst and the latest to reach the consensus with the largest
q. Furthermore, Path-graph has the highest L∞−norm since
the consensus should wait for the preceding agents to be the



Fig. 3: Three connected (not strongly connected) balanced networks
(D = Im) used in the simulations (in addition to the graph in Fig. 1).
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Fig. 4: Simulation results from four graphs with m = 9.

same as leader Wℓ. However, the highest L∞−norm happens
for some initial time, and does not guarantee the the overall
performance, ensured by the better L2−norm for various m.

Part (b). For m = 1, any networks define the classic
MRAC problem, resulting the same errors. For the Star, it is
interesting as m is increasing, it yields the smaller L2−norm
because the systems in between (W1,W9) are becoming less
apart which do not happen to the other networks. Regarding
Path, even though for some initial time the L∞−norm for
Path is more than that of the Cyclic, the L2−norm for various
m of Path outperforms its counterpart. This is due to the
fact that the measurement gained for Wi is wij = 1 from
the starting Wℓ while for the Cyclic, the consensus is slightly
slower due to many communications from non-leader agents.

Part (c). The advantages of high-order tuners (HT) lies
in 1) the stability with time-varying regressors and 2) an
accelerated method with O(1/

√
ϵ) for a convex loss function,

as opposed to the classic gradient descent O(1/ϵ) [19]. The
result shows that the modified high-order tuners, Θ1 and Θ2,
perform better than the standard gradient-based Θ. Note that,
for Parts (a) and (b), we use Θ in (22).

VI. CONCLUSION AND FUTURE WORK

We study the distributed adaptive control with network
perspective using different agents and tuners. We provide the

mathematical foundation, the designs, and the comparative
illustrations. The results conclude some interesting trends
based on the topologies and the increasing agents. There ex-
ists a stable network in Star-like while the highest L∞−norm
of Path does not reflect the overall performance, outperform-
ing Cyclic-like with lower L2−norm. Moreover, we also
show that the modified high-order tuners outperform the
gradient-based method. Finally, the future research focuses
on adding the delays using the control-oriented learning [21].

REFERENCES
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