
Multi Agent Systems Learn to Safely Move Indoor Environment

Martina Suppa 1,2 Sina M.H. Hajkarim 1 Prathyush P. Menon 1 Antonella Ferrara 2

Abstract— This letter presents a path-planning algorithm for
a fleet of autonomous agents operating in a bounded indoor
environment with static and moving obstacles. The proposed
algorithm uses a combination of Modified Artificial Potential
Field (MAPF) and Reinforcement Learning (RL) to determine
safe paths for the agents to their respective goal locations.
The proposed approach ensures avoiding collision with the
obstacles and among the agents. The better performance of
our proposed method, suitable for a real-world operation,
is illustrated by comparing it with multiple RL and MAPF
concepts. In addition to simulations, we carry out practical
experiments using multiple open-source flying development
platforms in an indoor VICON lab environment to demonstrate
the efficacy of the proposed approach.

Keywords: Path-Planning, Multi-Agent, Artificial Poten-
tial Field, Reinforcement Learning

Supplement Material: https://youtu.be/GgolyrrGw5Y

I. INTRODUCTION

A plethora of research exists addressing the multi-agent
path planning problem using centralised, decentralised and
distributed approaches. The prime goal in all these cases is to
determine a set of paths for multiple robotic agents such that
the paths avoid obstacles in a domain and conflict. Decen-
tralised path planning requires that a sufficiently powerful
processor is available onboard for each agent, which may
increase the agent’s weight and size. This is troublesome for
Autonomous Aerial Vehicles (AAVs), for which lightness is
often a relevant feature. Yet, the decentralised approach is
often the preferred option in outdoor applications. Distributed
methods are also becoming popular but need suitable means
for exchanging information among the agents and additional
onboard power usage.

In contrast, centralised path planning is the ideal solution
in applications such as indoor exploration, where a pow-
erful central control unit usually is available. Some indoor
applications include automated industrial facility monitoring
and management, searching enclosed spaces for survivors or
suspects, and inspecting for possible contamination in indoor
areas (e.g. Old nuclear store Sellafield, UK). Many of these
applications demand regular, repeated robotic multi-agent
system usage, yet there is a gap between theory and practice
[1]. Indeed, it allows for adopting smaller and more agile
agents to perform the exploration task. Moreover, centralised
path planning may provide improved agent coordination
and a more predictable decision-making process, making it

1 Martina Suppa, Sina M. H. Hajkarim and Prathyush P. Menon are
with The Cooperative Robotics and Autonomous NEtworks (CRANE)
lab, Centre for Future Clean Mobility, Faculty of Environment, Science,
and Economy, University of Exeter, Exeter, United Kingdom. (email:
(ms1317)(mh1004)(P.M.Prathyush)@exeter.ac.uk.)
2 Martina Suppa and Antonella Ferrara are with Department of Electrical,
Computer and Biomedical Engineering, University of Pavia, Pavia, Italy.
(email: martina.suppa01@universitadipavia.it, antonella.ferrara@unipv.it.)

scalable for managing a large number of agents at the same
time [2].

In spite of the computational power offered by a cen-
tralized implementation, the design of a reliable and highly
performing path-planning constitutes a problem that has not
yet been completely solved, although numerous solutions
with interesting performances are already available. As a
matter of fact, many conventional single path-planning al-
gorithms are suffering from trapping in local minima, being
computationally expensive, having problems with dynamic
obstacles, and lacking of scalability for the MAS. In recent
years, novel methods [3]–[6] based on machine learning
concepts, like deep Reinforcement Learning (RL), opened
the door to new solutions suitable for trajectory/path planning
in complex scenarios. Various proposals, specifically address
centralised path planning problems in multi-agent systems
[3], [4]. For example, in [7], authors propose an Integral
RL algorithm based on Artificial Potential Field (APF) to
minimize the time and energy of a MAS while reaching their
goals, so that the agents avoid collision with themselves in an
environment subject to constant or slowly varying unknown
disturbances. In this method, after the policy improvement
at each step, the full information of all agents’ states is
needed to update the control input of agents. Thus, it can
be considered a centralised system.

In this study, a new path-planning method for a MAS
autonomously flying in interior spaces with stationary and
moving objects is presented. The method, which combines
Soft Actor-Critic (SAC) and MAPF, guides the agents to
their intended targets. Specifically, the proposed algorithm
plans the path for the MAS so that no collision with static
and dynamic obstacles present in the indoor environments
occurs. The provided simulation results well illustrate the
satisfactory performance of the suggested strategy. Addition-
ally, the experimental results obtained in a multi-agent indoor
flight test demonstrate how the proposed approach is actually
usable in real-world applications.

II. PROBLEM DEFINITION

The letter focuses on developing a path-planning algorithm
for a fleet of homogeneous AAVs to navigate in a bounded
indoor environment to reach user-defined goal locations. The
environment contains static and dynamic obstacles. Since
GPS is unreliable indoors, the agents are assumed to be
equipped with depth cameras to measure local positions and
create a map of the agents’ surroundings. The agents know
their initial positions relative to each other. The proposed
algorithm uses this information and the surrounding map
to update a collision-free path at each time step and avoid
moving obstacles. At each agent level, the algorithm con-
siders other agents as moving obstacles. The path-planning

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 5364

algorithm uses a combination of MAPF and RL algorithms
to guide the agents to their respective goals, giving them a
set of waypoints to follow.

Notation: Given two integers i and j with j ≥ i, Zji
denotes the set of integer numbers from i to j, that is Zji

.
=

{i, i + 1, . . . , j − 1, j}. Given two vectors x, y ∈ Rn; and
⟨x, y⟩ denotes their standard inner product. For a vector x ∈
Rn, ∥x∥ .=

√
⟨x, x⟩ is its Euclidean norm.

III. METHODOLOGY

This letter considers the path planning of N autonomous
agents to explore an unknown compact 2-dimensional (2D)
indoor region X = [0, xmax] × [0, ymax] ⊂ R2. Let
xik := (xik, y

i
k, ψ

i
k)
T ∈ R3 and pik := (xik, y

i
k)
T respectively

indicate the pose and position vector of the ith agent in the
2D region. The orientation of the ith agent is ψik ∈ [0, 2π],
as shown in Figure 1. Two reference frames are used, of
which the inertial frame (the fixed Cartesian frame) defines
the translation coordinates of the agent in X , and the body
frame defines the coordinates of the agent’s orientation with
respect to the inertial frame as presented in Figure 1.

The agents, equipped with relevant sensors (for e.g. depth
cameras [8] and Inertial Measurement Unit (IMU)), are as-
sumed to be homogeneous and satisfy the following discrete
process model, with the interval time Ts:

xik+1 = xik + aik , i ∈ ZNi , (1)

where aik := (aix, a
i
y, a

i
ψ)
T ∈ R3 is the vector of inputs

(action vector) which guide ith agent to its next waypoint
(xk+1, yk+1) at an orientation (ψk+1). Following amplitude
constraints are imposed on the inputs:

axmin
≤ aix ≤axmax

, aymin
≤ aiy ≤aymax

, 0 ≤ aiψ ≤ 2π , (2)

The path for each agent is generated by (1). Moreover,
it is assumed that the motion constraints imposed by the
dynamics of the vehicle during the phase of path realisation
are addressed by a low-level inner-loop control scheme [9].

The agents are assumed to start their mission from N
unique known positions, P0 := { pi0 ∈ X | i ∈ ZN1 }, and to
reach the distinct goal location set Pg := { pig ∈ X\P0 | i ∈
ZN1 }. Assume that Li denotes the set of waypoints that
represent the path for the ith agent starting from pik=0 ∈ P0

and leading to the goal point pig ∈ Pg . From the perspective
of computational effort, the region X is discretised to a
grid of cells by a resolution factor δ yielding a new set
X̂ . Consider O ⊂ X̂ as a subset area of the region which
consists of all unknown static obstacles of any size or shape
at kth step. Also, Ôk ⊆ O is the subset of observed obstacles
in the FoV of β at kth step by all agents. For the dynamic
obstacles, we assume that they do not have abrupt large
changes in velocities or direction. Moreover, a path from
the start to the goal location always exists. Given Ôk, the
Euclidean distances between each point of the set and any
point x ∈ X is defined as d(x; Ôk).

Definition 1. Let A ⊂ X and x ∈ X . Suppose d(x, a) is the
set of possible distances between point a ∈ A and x which
is constrained below by 0. The largest lower bound of the

set of distances from x to a point in A is used to define the
least distance of x from set A and can be written as:

d(x;A) = inf{d(x, a) | a ∈ A}.

Assumption 1. Suppose pik=0 and pig where i ∈ ZN1 are
placed out of the areas that are occupied by the obstacles
(pi0, pig /∈ O). A generated path known as Li can be
considered as an acceptable path from pik=0 to pig if and
only if the distance of all waypoints in Li to obstacles Ôk
is greater than zero:

Li = {x ∈ X\Ôk | d(x; Ôk) > 0} (3)

The design objective is to find the shortest path for the
agents from their initial positions to reach their goals while
avoiding any static and dynamic obstacles. Existence of
healthy communication between the agents and a ground
station is assumed. The ground station gets the observations
of all the agents and generates a path for each agent, which
is based on an optimal policy. As mentioned in the prob-
lem formulation, the agents consider each other as moving
obstacles and have different observations:

sik+1 = sik + wk (4)

where wik ∼ N (0, σ2) is the observation noise and sk is the
observation vector of ith agent at the kth step of decision-
making [10]. This vector can be constructed at each step as
follows:

sik = (xik, γ
i
k, ∥qist,k∥, ∥qidyn,k∥, ∥pik − pig∥)T (5)

where xik is the pose, ∥qist,k∥ and ∥qidyn,k∥ are the norms
of gradient of the MAPF vectors for static and moving
obstacles. qist,k and qidyn,k are computed by summing the
repulsive and attractive fields and their detail is presented in
Section IV-A. ∥pik−pig∥ is the distance between the ith agent
at the kth step and its goal, and the γik an augmented angle
defined as follows:

γik = cos−1
∥pik − pik−1∥2 + ∥pik − pig∥2 − ∥pik−1 − pig∥2

2∥pik − pik−1∥∥pik − pig∥
.

(6)

where the geometrical interpretation of this angle is shown
in Figure 1, and as can be seen the closer the angle γik to π

Fig. 1: [Left] Body (green) and Inertial (red) frames and
the orientation angle ψ. [Middle] An example of the γ angle
definition. The blue line is the optimal trajectory. [Right] The
geometrical approach of vao. vo is the obstacle velocity, va
the agent velocity, vrel the relative velocity, and vao is the
projection of the relative velocity.

5365

the more optimal the path for agent becomes.
Since the proposed algorithm is centralised, all agents

can receive complete information about the other agents’
position, velocity, and the subset Ôk. In order to achieve
their objectives, agents determine the shortest path from their
starting positions while avoiding both static and dynamic
obstacles. To do so, R(sk, ak, sk+1) as the reward function
is needed to evaluate how good or bad an action aik is
in the environment at kth step. To reach the best possible
choice of action, we can train the agent to achieve the
maximum reward value. In this case, the maximum reward
value corresponds to the shortest path to the goal points
without hitting the static or dynamic obstacles.

In particular, while training, a very high positive value is
assigned every time the agent reaches its target, but it gets a
negative reward for any other possible situation. During the
planning, whenever the path of an agent hits an obstacle or
crosses the boundaries, such a path receives large negative
rewards. Likewise, whenever the distance between the agent
and the goal increases, such a path also gets a negative
reward but a relatively lower one. Based on standard RL,
the following expected sum of the reward function should be
maximized. The optimal policy π∗

i that leads the ith agent
to that maximum reward can be defined as follow:

π∗
i = argmax

π
Eτ∼π

[
kmax∑
k=1

R(sik, a
i
k, s

i
k+1)

]
. (7)

In (7), π∗
i can be estimated by a neural network (ϕ) at

each step of decision-making. Like in [11], it is assumed
that the agents can reach their respective goals in a finite
number of steps of the decision-making (kmax). The action
(aik) for determining the next optimal waypoint of Li and
the orientation of the ith agent, xik+1 in (1), is determined
as follows:

aik ∼ π∗
ϕi
(·|sik) , (8)

where aik represents a sample from the probability distri-
bution of the policy function, defined by the parameters of
neural network ϕ.

IV. PATH PLANNING FORMULATION

The proposed method consists of two key elements: ob-
stacle avoidance and path planning, as depicted in Figure 2.
For the obstacle avoidance part, it is assumed that a modified
version of APF is used to compute the APF vector described
by (13) for static and dynamic obstacles. Then the norm of
these vectors is used in the path planning phase as part of
observations of the RL algorithm. Detailed explanations of
these parts can be found in the following subsections.

A. Modified Artificial Potential Field

The traditional APF has a repulsive field (Urep), which
is often related to the static obstacles and an attractive field
(Uatt), which is associated with the goal point [12]. These

are defined as follows:

Urep(pk) =

{
krep
2

(
1

pk−po
− 1

ro

)2

, ∥pk − po∥ ≤ ro ,
0 ∥pk − po∥ > ro ,

Uatt(pk) = katt

(
pk − pg

)2
2

,

(9)

where krep is the repulsive coefficient for static obstacles,
katt is the attractive coefficient for the goal point, pk is the
position of the agent at kth step ((xk, yk) ∈ X), po ∈ Ôk is
the position of each obstacle, pg is the goal point and ro is
the safety range around the obstacle.

The classical APF can face the presence of local minima
[12]. The Black-Hole APF (BHAPF), initially proposed in
[13], can overcome this issue. In BHAPF, the traditional
attractive field is amended as follows:

Ubh(pk) =
{
−kbh2

[
rbh−

(
pk − pg

)]2 ∥pk − pg∥ ≤ rbh ,
0 ∥pk − pg∥ > rbh ,

(10)

where rbh is the radius of the black hole, and kbh is the
attractive coefficient of this new black-hole field and it has
to be be much more higher than the traditional attractive
coefficient katt.

Traditional APF considers only the obstacles’ positions,
not the velocity. Hence, the performance of the conventional
APF in the presence of dynamic obstacles could be better.
The relative velocity between the agent and the goal is
considered in [14] for this purpose. An additional repulsive
field term that accounts for the relative velocity is added with
the attractive field Uatt(pk) as follows:

Umov(pk) = kmov
vao

∥pk − pomov
∥
, (11)

where vao is the projection of the relative velocity between
the agent and moving obstacles, starting from the agent
in the direction of the obstacle (see Figure 1), and kmov
is the repulsive coefficient for moving obstacles. The total
fields related to static and dynamic obstacles are computed
separately as the summation of the attractive and repulsive

Agent 1

Agent 2

Agent

Obstacle Avoidance

MAPF

Path Planning

SAC RL

Fig. 2: A scheme of the proposed algorithm, that shows where
and how the MAPF and the RL algorithms are used.

5366

fields discussed above:

U st (pk) = Uatt (pk) +U bh (pk) +

N∑
j=1

U rep (pk)

Udyn (pk) = Uatt (pk) +U bh (pk) +

M∑
l=1

Umov (pk)

(12)

where N is the number of obstacles in Ôk and M is the
number of moving obstacles. Data from the depth cameras
(such as the position and velocity of moving obstacles
(pkomov

, vkmov) and update of Ôk set), the agents positions
pik and orientations ψik in the region X , are received at each
step (k) by the central computer. This information along with
the Modified Artificial Potential Field (MAPF) concept [13],
[14] are used to compute the gradient vectors of MAPF for
static (qistk) and dynamic (qidynk

) obstacles. Then, based on
the position of the ith agent, these vectors can be calculated
at each step of decision-making (k):

qistk(p
i
k, pg, Ôk) = −

∇Ust(pik)
∥∇Ust(pik)∥

, (13a)

qidynk
(pik, pg, p

k
omov

, vik, v
k
mov) = −

∇Udyn(pik)
∥∇Udyn(pik)∥

, (13b)

where Ust and Udyn are the MAPF for static and dynamic
obstacles, respectively.

B. Path Planning with Reinforcement Learning

The Soft Actor-Critic (SAC) algorithm [15] is considered
for this work since it applies to both continuous state and
action space. The SAC method combines some advantages
of deep Q-learning [16] and Optimal Policy algorithms [17].
The main difference with other combined methods (DDPG
[18] and TD3 [19]) is that in SAC, the entropy, i.e. the
randomness, of the choices taken is explicitly considered.
The less entropy, the less the decision is taken randomly.

The policy function π, used by the actor-network, here
defined as the optimal version π∗:

π∗ = argmaxπ Eτ∼π
[∑kmax

k=1 ξ
k (R (sk,ak, sk+1)+

αH (π (· | sk)))]
(14)

where τ is the trajectory function , ξ is the discount factor,
α > 0 is the entropy regularisation coefficient and H is the
entropy function [15].

A pseudo-code to show the main steps of the training
algorithm using SAC is presented in Algorithm 1, where:
emax is the number of training episodes, δ the resolution
factor, λπ and λQ the learning rates of the actor and critic
networks, θ1, θ2 and ϕ are the critic and actor networks
parameters and θ̃1, θ̃2 and ϕ̃ their targets. Moreover, d is
a binary variable to show the end of an episode, D the
memory buffer and β the angle to create the FoV for vision
simulation, so to update the subset Ôk at every step.

The algorithm performs the training loop on emax, which
starts with the initialization of the process model in (1) to

random values based on the region constraints. Each episode
has a limited number of steps kmax. In each step, an action
(ak) is chosen by the policy network πϕ and applied to
the environment to compute the next state sk+1, the reward
obtained rk and the new observed obstacles set Ôk. The
necessary information for updating network parameters is
saved in the memory buffer (D). The learning of NN is done
through gradient descent methods [15].

At the end of the training routine, i.e. the maximum
number of episodes is reached, the output given is the model
of the NN related to the parameters θ1, θ2, ϕ, θ̃1, θ̃2, ϕ̃.

Algorithm 1 Single Agent Training Algorithm with SAC
input: xmax, ymax, δ, pg , O, kmax, emax, λπ , λQ, β
output: θ1, θ2, ϕ, θ̃1, θ̃2, ϕ̃
for j ∈ Zemax

1 do
Initialise: k = 1, Ôk = ∅
xk, yk, ψk randomly chosen form their possible bounds
pk = [xk, yk]

T

dg,k = ∥pk − pg∥
γk = 0, ∥qst,k∥ = 0, ∥qdyn,k∥ = 0
Initialise: (pk, ψk)→ xk
while k < kmax do

ak ∼ πϕ(·|sk)
xk+1 = xk + ak
Ôk(ψk+1, β)← xk+1(3) // updating the map
pk+1 ← new position of the agent (xk+1(1, 2))
dg,k = ∥pk − pg∥
sk+1 = [pk+1, ψk, γk, ∥qst,k∥, ∥qdyn,k∥, dg,k]T
rk = R(sk, ak, sk+1) // calculating the reward
D ← D

⋃
(sk, ak, rk, sk+1, d) // storing the experi-

ence
if D has enough records then

for a random batch B ⊂ D do
train actor/critic (ϕ, θ1, θ2) and their target

networks (ϕ̃, θ̃1, θ̃2) based on [15]

if d = True then
k ← k + 1 and break while-loop

A parallelisation technique is used to simulate the MAS
on the accomplishment of training convergence. The idea is
that each agent represents a core of the parallel computation,
making the quick exchange of updated information possible.
Each core (agent) utilises the same converged model obtained
during the training phase (Algorithm 1). In order to have a
more realistic simulation, any time that an agent reaches its
goal, others can continue their steps towards their respective
goals independently without any pause in the simulation.

The simulation routine for all N agents can be synthesised
by Algorithm 2, where lmax is the simulation length. Once
the pool of the multi-parallel cores is started, the first loop
depending on lmax begins, with an inner loop depending on
kmax. Inside the while-loop, the steps are the same as those
seen in Algorithm 1 repeated for simulation of each ith agent.
Also in this case, when the done signal for the ith agent is

5367

equal to True, the episode for that agent is finished, so all
of its variables are initialised again for a new episode.

Algorithm 2 Multiple Agent Simulation Algorithm
input: pig, xmax, ymax, δ, O, β, kmax, lmax

output: θ1, θ2, ϕ, θ̃1, θ̃2, ϕ̃
Initialise: Ôk = ∅, sik, k = 1
Start Pool Process
for l ∈ Zlmax

1 on each processor do
while ki < kmax do

aik ∼ π∗
ϕ(·|sik)

xik+1 = xik + aik
Ôk(ψik+1, β)← xik+1(3) // updating the map on the
GS
pik+1 ← new position of the ith agent (xik+1(1, 2))
dig = ∥pik − pig∥
sik+1 = [pik+1, ψ

i
k, γ

i
k, ∥qist,k∥, ∥qidyn,k∥, dig,k]T

if di = True then
Initialise: sik, k

i = 1
break while-loop

ki ← ki + 1

V. RESULTS

We consider a 10m × 5m region with four obstacles
having a radius of 0.5m and height of 0.5 and 0.8 meters.
A resolution factor δ = 0.1, for the discretisation of the
map, is used. The agents are supposed to start from three
different points at (7, 3), (9, 1.8), and (2.9, 0.6) as well as
reach the goals at (1.8, 2.5), (6, 1), and (6.8, 3) respectively.
The agents flying at a constant speed of 0.3m/s and height
of 0.4m should avoid them.

In the first simulation part, a comparison between the pairs
of PPO [20], DDPG, and TD3, along with APF, BHAPF, and
MAPF, is presented for the scenario above. This comparison
shows that the proposed algorithm based on SAC+MAPF
has better results. Then, the optimal policy (π∗

ϕ) trained by
SAC+MAPF in Algorithm 1 is used along with Algorithm 2
to plan the path of the agents in the assumed map. The second
part uses the optimal policy for practical implementation in
indoor experiments.

A. Simulation Results
In addition to SAC and MAPF, several RL and PF algo-

rithms are used for comparison. Other RL algorithms applied
for comparison in our study are PPO, DDPG, and TD3. To

Fig. 3: [Left] the observed map at the initial step of moving
(Ô0). [Right] The observed map at the kth step. The red
areas show the FoV of the sensors at the respective steps.

do so, the Stable-Baselin3 library is used for the mentioned
RL methods [21]. In these methods, the actor-network gets
sik introduced in (5) and generates the action (aik). Also, the
critic network gets the pair of (sik, a

i
k) and generates a Q-

value estimation. Furthermore, each RL method is coupled
with APF, BHAPF, and MAPF and analysed. The average
of the reward value over 50,000 training loops are presented
in Table I.

From the results in the Table I, the supremacy of the
performance of SAC algorithm with MAPF is evident. Al-
gorithms DDPG and TD3 use deterministic policy and can
be trapped in suboptimal solutions, whereas PPO is not well
designed for continuous action space. On the contrary, SAC
uses a stochastic policy and can manage continuous action
spaces.

PF Methods
APF BHAPF MAPF

R
L

M
et

ho
ds PPO -1103.98 -985.58 -1270.40

DDPG -390.06 -387.68 -356.98
TD3 -253.02 -345.36 -321.85
SAC -298.95 -216.68 -125.77

TABLE I: Average reward values for pairs of RL+PF algor-
tihms

0 1 2 3 4 5 6 7 8 9 10

x axis [m]

0

1

2

3

4

5

y
 p

o
s
it
io

n
 [

m
]

Agent 1

Agent 2

Agent 3

Fig. 4: Solid lines indicate routes of agents with static
blue obstacles, and dashed lines indicate simulation results.
Starting points are shown with pink dots.

The optimal policy based on Algorithm 1 is computed by
assuming that the critic networks have 10 neurons as inputs,
two hidden layers with the size of 64 neurons using the ReLU
activation function, and 1 output neuron. Aside from that,
the actor network has 7 neurons as the input layer, 2 hidden
layers with the size of 64 neurons using the ReLU activation
function, and 3 output neurons. Also, the hyper-parameters of
Algorithm 1 are assumed as λQ = 1, λϕ = 1, and ρ = 0.05.
The FoV angle of the agent is considered as ZED camera
(β = 90o) [8], and the maximum range of observation is
considered as 4 meters. Figure 3 shows how the sensors
observe their surrounding environment and how Ôk evolves.
Moreover, 150 steps are considered the maximum number of
steps in each training episode (kmax). After 30,000 steps of
training (emax), the convergence is reached, and Algorithm
2 is used to plan the path for three agents (N = 3) in the
environment depicted in Figure 4.

As agents navigate the region, they avoid obstacles and
perceive other agents as moving obstacles. The generated

5368

paths for three agents are shown in Figure 4, where the pink
points are the goals, blue circles are the static obstacles, and
the dashed lines are the trajectories followed by the agents
at each simulation episode based on Algorithm 2.

B. Real-World Experimental Results

The agents need complete pose information obtained using
depth cameras and a communication system to implement
the algorithm. Due to space constraints, small flying robots
known as Crazyflies [22] are used. The position and attitude
of the Crazyflies are measured using a VICON motion
capture system that utilizes multiple synchronized cameras
to capture 2D images and calculate 2D positions using
triangulation. The lab has 16 Vicon Vero cameras in a 5×15
meter space, and three Crazyflies are used for the experiment.
The Crazyflies communicate with a PC through a Crazyradio
PA module, and the PC receives each agent’s attitude and
position data from the Vicon system.

In the lab, the same region with obstacles is replicated
as in the simulation. It is assumed that the agents fly at
a constant height (0.4 [m]) and speed. and the vision of
the agents for detecting the obstacles are simulated in the
ground station computer based on the real-time position of
the agents measured by the Vicon system. Also, it is assumed
that the sampling time for path planning is 0.5 seconds
(Ts = 0.5 [s]). As can be seen, in Figure 5 and 4, the
agents start their mission from initial position approximately
similar to the ones considered in the simulation and they
avoid static obsolesces as well as themselves and reach their
goals. Similar to the simulation results depicted in Figure 4,
the paths agent 1 and 2 have an intersection; however, they
get close but do not collide due to the MAPF used in the
proposed algorithm for dynamic obstacles. This can be seen
in the video of the experiment, available to watch on here.

VI. CONCLUSION AND FUTURE WORKS

This letter presents a new path-planning algorithm for a
multi-agent system combining RL and MAPF methods. Even
if the algorithm, by virtue of its centralised nature, was
conceived for indoor exploration in the presence of static and
moving obstacles, it can also be applied to outdoor environ-
ments without modifications. The results of simulations and
experiments, obtained by relying on a fleet of small drones
named Crazyflies, show the overall performance is excellent.

Agent 3 Agent 1Agent 2

Fig. 5: A long exposure photo of the experimental results for
three agents. Green circles show the starting point, red ones
show the goal points, and dashed curves show the path of
each agent.

Future work will be devoted to further improving the method
to provide faster convergence and smoother trajectories. The
extension of the validity to more complex environments
using X500 v2 with ZED2 will also be investigated.

REFERENCES

[1] K. Groves, E. Hernandez, A. West, T. Wright, and B. Lennox, “Robotic
exploration of an unknown nuclear environment using radiation in-
formed autonomous navigation,” Robotics, vol. 10, no. 2, p. 78, 2021.

[2] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[3] H. Qie, D. Shi, T. Shen, X. Xu, Y. Li, and L. Wang, “Joint optimization
of multi-uav target assignment and path planning based on multi-agent
reinforcement learning,” IEEE access, vol. 7, pp. 146 264–146 272,
2019.

[4] D. Le and E. Plaku, “Multi-robot motion planning with dynamics via
coordinated sampling-based expansion guided by multi-agent search,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 1868–1875,
2019.

[5] M. Rubagotti, B. Sangiovanni, A. Nurbayeva, G. P. Incremona, A. Fer-
rara, and A. Shintemirov, “Shared control of robot manipulators with
obstacle avoidance: A deep reinforcement learning approach,” IEEE
Control Systems Magazine, vol. 43, no. 1, pp. 44–63, 2023.

[6] B. Sangiovanni, G. P. Incremona, M. Piastra, and A. Ferrara, “Self-
configuring robot path planning with obstacle avoidance via deep
reinforcement learning,” IEEE Control Systems Letters, vol. 5, no. 2,
pp. 397–402, 2020.

[7] C. He, Y. Wan, Y. Gu, and F. L. Lewis, “Integral reinforcement
learning-based multi-robot minimum time-energy path planning sub-
ject to collision avoidance and unknown environmental disturbances,”
IEEE Control Systems Letters, vol. 5, no. 3, pp. 983–988, 2020.

[8] “Zed 2 - ai stereo camera,” https://www.stereolabs.com/zed-2/.
[9] D. E. Rivera, M. Morari, and S. Skogestad, “Internal model control:

Pid controller design,” Industrial & engineering chemistry process
design and development, vol. 25, no. 1, pp. 252–265, 1986.

[10] S. Thrun, “Probabilistic robotics,” Communications of the ACM,
vol. 45, no. 3, pp. 52–57, 2002.

[11] N. Thumiger and M. Deghat, “A multi-agent deep reinforcement
learning approach for practical decentralized uav collision avoidance,”
IEEE Control Systems Letters, vol. 6, pp. 2174–2179, 2021.

[12] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Proceedings. 1985 IEEE International Conference on
Robotics and Automation, vol. 2. IEEE, 1985, pp. 500–505.

[13] Q. Yao, Z. Zheng, L. Qi, H. Yuan, X. Guo, M. Zhao, Z. Liu, and
T. Yang, “Path planning method with improved artificial potential
field—a reinforcement learning perspective,” IEEE Access, vol. 8, pp.
135 513–135 523, 2020.

[14] X. Fan, Y. Guo, H. Liu, B. Wei, and W. Lyu, “Improved artificial
potential field method applied for auv path planning,” Mathematical
Problems in Engineering, vol. 2020, p. 6523158, Apr 2020. [Online].
Available: https://doi.org/10.1155/2020/6523158

[15] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2018.

[16] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[18] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” 2015.

[19] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function
approximation error in actor-critic methods,” 2018.

[20] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[21] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and
N. Dormann, “Stable-baselines3: Reliable reinforcement learning
implementations,” Journal of Machine Learning Research, vol. 22,
no. 268, pp. 1–8, 2021. [Online]. Available: http://jmlr.org/papers/
v22/20-1364.html

[22] “Crazyflie 2.1,” https://www.bitcraze.io/products/crazyflie-2-1/, 2022,
[Online; accessed 19-Oct-2022].

5369

