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Abstract— This letter focuses on the modeling and control
of a piezoelectric actuator that is designed to manipulate
objects. This research considers both the non-linearity caused
by the hysteresis of the actuator and the deformation of the
object being manipulated. To approximate the hysteresis, a
classical Bouc-Wen model is used. To stabilize the force-tracking
error, we propose a novel control approach combining three
advanced methodologies: an output-feedback method based on
a nonlinear observer, a Barrier-Lyapunov function design, and
bounded control based on saturation functions. Combining
these three powerful techniques produces a bounded and
highly robust controller that can effectively reject aggressive
disturbances while maintaining the tracking error inside a
predefined set. Under such a scenario, it is demonstrated that
the equilibrium point of the closed-loop system is asymptotically
stable. The effectiveness of the proposed control method is
validated through extensive numerical simulations.

I. INTRODUCTION

Thanks to their high resolution, high bandwidth, and force
density, lead-zirconate-titanate (PZT) piezoelectric materials
are widely used for actuators in high-precision and rapidity
applications. They are used in applications such as diesel
injection, miniaturized drones, atomic force microscopy, and
medical micro-robotics [1]. Recently, we have used three
piezoelectric actuators to construct a robotic hand devoted
to manipulating sensitive objects [2], as displayed in Fig.1-
a.
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Fig. 1: (a): robotic hand and its three piezoelectric actuators.
(b) and (c): one piezoelectric actuator. (d): the system.

Although the above features, PZT piezoelectric actuators
exhibit strong hysteresis that can substantially degrade the
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overall performances of the tasks. Such hysteresis can even
lead to instability if not adequately accounted for. Therefore,
modeling and controlling hysteresis in these actuators has
raised numerous works in the literature, which can be cate-
gorized as feed-forward control and feedback control. Feed-
forward control is only used when it is impossible to use
sensors for feedback. Its main limitation is the lack of robust-
ness against model uncertainties and external disturbances.
Regarding feedback control, they can be sub-categorized as
model-based and non-model-based techniques. Model-based
techniques explicitly use a hysteresis model to synthesize the
controller. Its advantage is that we have more knowledge of
the hysteresis non-linearity, allowing us to demonstrate the
stability of the closed-loop formally and to potentially ensure
prescribed performances. In [2], the classical Bouc-Wen
hysteresis model was used to design a robust output feedback
controller for piezoelectric actuators in robotic hands. A
generalized Bouc-Wen model was afterward employed for
synthesizing a model predictive control in [3] and then
a finite-time stabilization controller in [4]. However, all
these controllers were devoted to the position control of the
actuator, and no manipulation force was considered.

This letter proposes to model and control the force while
manipulating objects with a piezoelectric actuator in the
robotic hand. It complements the above works, which fo-
cused on position control. In fact, for better object manipu-
lation, one (resp. two) of the three actuators can be controlled
in position while two (resp. one) are controlled in force. In
the past, force control of piezoelectric actuators has raised a
few works [5], [6]. In these, the force controller was based
on linear models and did not fully consider the hysteresis
non-linearity. The features of this letter are, therefore: i)
the force control during the manipulation of an object by
a piezoelectric actuator, ii) the explicit consideration of the
hysteresis non-linearity in the controller design by using
the classical Bouc-Wen model, and iii) the consideration
of the deformation of the object during manipulation. Fur-
thermore, the designed controller has the important property
of rejecting aggressive disturbances while maintaining the
tracking error inside a predefined set, as long as the initial
conditions lie on that set. The robustness is achieved thanks
to the combination of saturated control terms consisting of a
proportional-error term, a barrier term, and a feed-forward
term obtained through an exponential observer. They are
combined to accomplish the results above.

The remainder of this letter is as follows. In Section II,
the modeling and the problem statement are presented. In
Section III, we expose the design of 1) a nonlinear observer,
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2) a Barrier-Lyapunov-function and saturation-based control,
and 3) an output feedback control. Section IV concludes
this letter by including supplementary material with a set
of simulations.

II. PROBLEM SETTING

Let Fig.1-b be one of the three piezoelectric actuators
of the robotic hand. It furnishes a displacement ϱ when
subjected to a driving voltage. However, during the manip-
ulation task, the actuator is in contact with the object, and
an interaction force F is involved, Fig.1-c. Our target is,
therefore: first to derive a model that links the voltage with
the manipulation force (Fig.1-d), and then to design the force
controller.

A. Governing equations

The model that links the driving voltage u(t) and the
output displacement ϱ(t) of the piezoelectric actuator is:{

α2
dϱ
dt + α1ϱ = dpu− h− pF

dh
dt = Abw

du
dt −Bbw

∣∣du
dt

∣∣h− Γbw
du
dt |h|

(1)

where F (t) is the force that is applied by the actuator to any
external object, h(t) is the hysteresis state variable, and αi

(i ∈ {1, 2}) are dynamics parameters. On the other hand, dp
is a piezoelectric coefficient, p is the compliance coefficient,
while Abw, Bbw and Γbw are the parameters that define the
hysteresis shape and amplitude.

Regarding the manipulated object, we assume that it is
deformable under a first-order system’s behavior,

cob
dϱ

dt
+ kobϱ = F (2)

where F is the same force as in (1) when the object is in
contact with the actuator. Parameters cob and kob are the
damping and stiffness coefficients of the object deformation.

B. Model for control design and problem statement

Combining the actuator’s model in (1) and the object
deformation model in (2), we yield a nonlinear force model:{

e2
dF
dt + e1F = f2

du
dt + f1u− g2

dh
dt − g1h+ e2δ(t)

dh
dt = Abw

du
dt −Bbw

∣∣du
dt

∣∣h− Γbw
du
dt |h|

(3)
where e2 = α2 + pcob, e1 = α1 + pkob, f2 = dpcob, f1 =
dpkob, g2 = cob and g1 = kob. We always have: ei > 0,
fi > 0 and gi > 0. Notice that we added an extra signal δ(t)
in the above model, which lumps any disturbances during the
object manipulation, for instance, those produced when the
other actuators move the object. For simplicity, we rewrite
system (3) as follows,

ḟ = −a1f + a2u̇+ a3u− a4ḣ− a5h+ δ(t) (4a)
ḣ = Abwu̇−Bbw|u̇|h− Γbwu̇|h| (4b)

Σ :

 δ̇ = fδ(t) (4c)
y = f (4d)

where f = F , ḟ = dF
dt , u̇ = du

dt , ḣ = dh
dt , and parameters

are: a1 = e1
e2

, a2 = f2
e2

, a3 = f1
e2

, a4 = g2
e2

, and a5 = g1
e2

.

Assumption 1. Functions δ(t) in (4a) and fδ(t) in (4c)
are unknown. Besides, δ(t) is differentiable with bounded
derivative.

Problem 1. Consider system Σ in (4). We need to solve the
tracking problem for the force f , i.e. f → fd considering
that:

1. The desired trajectory fd(t) : R≥0 → R is of class C1.
2. The hysteresis h(t) and unknown disturbance δ(t) are

given by the solutions of (4b) and (4c), respectively.
3. The only available state is the force f ; see (4d).
4. All the system parameters are known.
5. The control input u must be bounded and smooth.
6. Force f(t) must respond smoothly. Moreover, the track-

ing error e = f − fd must be enclosed in a predefined
set given by |e(t)| < l with small l ∈ R>0 for all t ≥ t0.

III. NONLINEAR OUTPUT FEEDBACK STRATEGY

The control strategy consists of three steps: 1) designing a
high-gain observer responsible for estimating the hysteresis
and disturbances to use as feedback elements, 2) designing a
robust barrier-Lyapunov-function and saturation-based con-
troller to ensure that the control is bounded and effectively
rejects disturbances and maintains the tracking error enclosed
in the predefined set exposed in point 6 of the Problem 1,
and 3) combining the above two points in an output feedback
scheme where the disturbance is directly rejected.

A. Observer design

To simplify the observer design and study the system’s
observability, let us represent system Σ as,

ẋ = Λx+ g(x, u̇, u) +Bu̇+∆(t)

y = Cx
(5)

where,

Λ =

 0 lo 0
0 0 1
ko 0 0

 , ∆(t) =

 0
0

fδ(t)

 , C =
(
1 0 0

)
,

B =

 a2
Abw

0

 , g(x, u̇, u) =

−a1f + a3u− a4
d
dth− a5h+ δ − loh

−Bbw|u̇|h− Γbwu̇|h| − δ
−kof


(6)

with ko, lo ∈ R>0 to be defined in the observer design. No-
tice that now the extended state vector is x =

(
f h δ

)⊺
.

Assumption 2 ( [7]–[9]). The disturbance vector ∆(t) in
(6) is bounded as follows,

∥∆(t)∥ = |fδ(t)| ≤ ρ∥ε∥, with ρ ∈ R>0 (7)

and ε is the error observer defined in (20).

Lemma 1. The system (5) [and hence Σ] is observable.

Proof. The observability matrix

O =

 C
CΛ
CΛ2

 =

1 0 0
0 lo 0
0 0 ko

 (8)

has a full rank for lo and ko different of zero.
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Lemma 2. The function f(h, u̇) = −Bbw|u̇|h− Γbwu̇|h| in
(6) is global Lipschitz with respect to h uniformly in u̇ for
all reals Bbw,Γbw except both zero.

Proof. The function is f(h, u̇) = −Bbw|u̇|h− Γbwu̇|h| and
we want to prove that |f(h1, u̇)− f(h2, u̇) ≤ L|h1−h2| for
a Lipschitz constant K > 0. Then, computing the left-hand
side of the previous inequality, it follows that,∣∣∣−Bbw|u̇|h1 − Γbwu̇|h1|+Bbw|u̇|h2 + Γbwu̇|h2|

∣∣∣ =∣∣∣−Bbw|u̇| (h1 − h2)− Γbwu̇ (|h1| − |h2|)
∣∣∣ (9)

and since |ab| = |a||b| for a, b ∈ R, (9) is reduced to,∣∣∣− 1
∣∣∣∣∣∣Bbw|u̇| (h1 − h2) + Γbwu̇ (|h1| − |h2|)

∣∣∣ ≤∣∣∣Bbw|u̇| (h1 − h2)
∣∣∣+ ∣∣∣Γbwu̇ (|h1| − |h2|)

∣∣∣ (10)

where we have used the triangle inequality |a+b| ≤ |a|+ |b|.
Since

∣∣∣|a|−|b|
∣∣∣ ≤ |a−b|, the previous inequality is expressed

as, ∣∣∣Bbw|u̇|
∣∣∣∣∣∣ (h1 − h2)

∣∣∣+ ∣∣∣Γbwu̇
∣∣∣∣∣∣h1 − h2

∣∣∣ ≤
(|Bbw|+ |Γbw|)︸ ︷︷ ︸

K

|u̇| |h1 − h2|

(11)
and then K = |Bbw| + |Γbw| > 0 is positive as long as
Bbw ̸= 0 or Γbw ̸= 0.

Assumption 3. The vector function g(x, u̇, u) in (6) is global
Lipschitz with respect to x uniformly in u̇ and u.

Assumption 3 makes sense when we consider Assumption
1, Lemma 2, and conditions 1, 2, 5, and 6 of Problem 1.

Lemma 3. Let matrices Λ and C be defined as in (6), and
I ∈ R3×3 is the identity matrix. Also, let,

θ > 0, ko > 0, and 0 < l0 <
θ3

ko
, (12)

then, the solution of the Lyapunov-like equation,

θS + Λ⊺S + SΛ− C⊺C = 0, (13)

is given by S ≻ 0 ∈ R3×3, i.e., it is positive definite.

Proof. A simple computation follows that,

S−1 =

 3θ 3 θ2

lo
1
lo

(
θ3 + 2kolo

)
3 θ2

lo
1
l2o

(
5θ3 − 2kolo

)
1
l2o

(
2θ4 + koloθ

)
1
lo

(
θ3 + 2kolo

)
1
l2o

(
2θ4 + koloθ

)
1
l2o

(
2θ4 + koloθ

)
θ4+2koloθ
2θ3+kolo

 .

(14)
Recall that a symmetric matrix is positive definite if and only
if all its leading principal minors are positive [10]. Thus, by
computing the principal minors of S−1 one can deduce if
S−1 is positive definite. Now, notice that the first leading
principal minor is positive when θ > 0, while the second
leading principal minor is positive when 3θ

l2o

(
5θ3 − 2kolo

)
−

9θ4

l2o
> 0, which holds when (12) is fulfilled. One arrives at

the same conditions by computing the third leading principal
minor. Therefore, all the leading principal minors are positive

as long as inequalities (12) hold, and thus S−1 is positive
definite. One concludes the proof by recalling that the inverse
of a positive definite matrix is also a positive definite.

Lemma 4. The matrix
(
Λ− S−1C⊺C

)
is Hurwitz for ko >

0, lo > 0 and θ > 1
2

3
√
kolo.

Proof. We know that all the eigenvalues of a Hurwitz matrix
have strictly negative real parts. Thus, to verify that, we
compute the eigenvalues of,

Λ− S−1C⊺C =

 3θ lo 0

−3 θ2

lo
0 1

ko − 1
lo

(
θ3 + 2kolo

)
0 0

 (15)

given by,λ1

λ2

λ3

 =

 −θ + 3
√
−kolo

−θ − 1
2

3
√
−kolo + i

√
3
2

3
√
−kolo

−θ − 1
2

3
√
−kolo − i

√
3
2

3
√
−kolo

 (16)

where i =
√
−1. Notice that the real part of eigenvalues λ2

and λ3 are always negative, but this is not the case with the
real part of λ1. In that case, using Euler’s formula,

λ1 = −θ + 3
√
−kolo = −θ +

1

2
3
√
kolo + i

√
3

2
3
√
kolo, (17)

and then, the real part of λ1 is negative when ko > 0, lo > 0
and θ > 1

2
3
√
kolo and the proof is complete.

Remark 1. In the proof of Lemma 4, we got the inequality
for θ given by θ > 1

2
3
√
kolo whereas in Lemma 3 we get

θ > 3
√
kolo which is a condition to S be positive definite.

Both results are in accordance, and hereafter we maintain
the condition of θ given in (12), i.e., θ > 3

√
kolo.

Corollary 1. The matrix SΛ − C⊺C is Hurwitz under
conditions of Lemma 4.

Proof. From Lemma 4, Λ−S−1C⊺C is Hurwitz. When we
premultiply such a matrix by the positive definite matrix S,
the result is SΛ − C⊺C, 1. From (13) it follows that each
side of

−θI = (Λ− S−1C⊺C) + S−1Λ⊺S (18)

is negative definite. Thus, −θS = (SΛ − C⊺C) + Λ⊺S
is also negative definite, where Λ⊺ described in (6) has
a positive eigenvalue, and then matrix above Λ⊺S is not
negative definite nor Hurwitz. From the previous discussion,
and especially since

(
Λ− S−1C⊺C

)
is Hurwitz, the matrix

(S)
(
Λ− S−1C⊺C

)
= SΛ − C⊺C is also Hurwitz as long

as inequalities of Lemma 4 hold.

We are ready to present the first main result.

Theorem 1 (Nonlinear state and disturbance observer).
Consider that Assumptions 1, 2, and 3 are satisfied. Let us
define the system,

˙̂x = Λx̂+ g(x̂, u̇, u) +Bu̇− S−1C⊺(Cx̂− y), x̂ ∈ R3

(19)

1Generally, a Hurwitz matrix that is pre or post-multiplied by a positive
definite matrix is not Hurwitz.
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with elements as in (6), and S the solution of the Lyapunov
equation (13) satisfying inequalities (12) with parameter θ ≥
max

{
3
√
kolo, [r + Lg + ρ]λmax{S}

λmin{S}

}
for r, Lg ∈ R>0 defined

in the proof. Then, (19) is a global exponential observer for
system (5), and its dynamics can be made arbitrarily fast.

Proof. Let us begin by defining the error observer as

ε = x̂− x (20)

whose dynamics are given by,

ε̇ =
(
Λ− S−1C⊺C

)
ε+g(x̂, u̇, u)−g(x, u̇, u)−∆(t). (21)

Consider the candidate Lyapunov function W = 1
2ε

⊺Sε
where S = S⊺ is computed from (13). The first time-
derivative of W is computed as,

Ẇ = ε⊺S
[(
Λ− S−1C⊺C

)
ε+ g(x̂, u̇, u)− g(x, u̇, u)−∆

]
= ε⊺S

(
Λ− S−1C⊺C

)
ε+ ε⊺S(g(x̂, u̇, u)− g(x, u̇, u))

− ε⊺S∆(t).
(22)

After considering Assumption 2 and 3 with Lipschitz con-
stant Lg as, ∥g(x̂, u̇, u) − g(x, u̇, u)∥ ≤ Lg∥ε∥, it follows
that,

Ẇ ≤ ε⊺ (SΛ− C⊺C) ε+ Lg∥Sε∥∥ε∥+ ρ∥Sε∥∥ε∥
≤ −ε⊺ (θS + Λ⊺S) ε+ Lg∥Sε∥∥ε∥+ ρ∥Sε∥∥ε∥.

(23)

Claiming Corollary 1 it follows that SΛ−C⊺C is Hurwitz,
and from (13) the matrix Q = −θS − Λ⊺S is also Hurwitz.
Notice that −Λ⊺S disturbs the contribution of the negative
definite matrix −θS in Q but not as much to lose the property
of Q of being a Hurwitz matrix in (23). Thus, we can assume
that −εΛ⊺Sε ≤ r∥Sε∥∥ε∥ with r > 0. Then,

Ẇ ≤ −θε⊺Sε+ (r + Lg + ρ) ∥Sε∥∥ε∥. (24)

Since S is a symmetric positive definite matrix, it can be
diagonalized by an orthogonal matrix D, such that S =
DLD⊺, where L is a diagonal matrix with the eigenvalues of
S on the diagonal. Let v = D⊺ε be a change of coordinates
that transforms ε into v. Then we have ε = Dv, and ε⊺ =
v⊺Lv =

∑3
i=1 λi{S}v2i where λi{S} is the i-th eigenvalue

of S, and vi is the ith component of v. Let the smallest
and largest eigenvalues of S be represented by λmin{S}
and λmax{S}, respectively. After simple computations, it
follows that 2|W | ≤

∑3
i=1 λi{S}|v2i | ≤ λmax{S}

∑3
i=1 |v2i |.

Also note that v⊺v = ∥ε∥2, since QQ⊺ = I for all
the orthogonal matrices such as D. On the other hand,∑3

i=1 λi{S}v2i ≥ λmin{S}
∑3

i=1 v
2
i = λmin{S}v⊺v. Thus,

after simple computations and since 2|W | = ∥Sε∥|ε∥, (24)
is expressed as,

Ẇ ≤ −2

(
θ − [r + Lg + ρ]

λmax{S}
λmin{S}

)
︸ ︷︷ ︸

ϖ

W (25)

with θ chosen as in Theorem 1. Finally, since W is radially
unbounded, the exponential stability of the error observer
ε = 0 is achieved, and the proof is complete.

B. Barrier-Lyapunov-function and saturation-based con-
troller

Lemma 5. Let Abw, Bbw and Γbw be constant parameters
such that Bbw > |Γbw| holds. Also, consider that the first-
time derivative of the control input u̇ is bounded. Then, the
hysteresis subsystem (4b) is bounded.

Proof. Let H = |h| a candidate Lyapunov function for
the hysteresis system with time derivative evaluated in the
trajectories of (4b) as follows,

Ḣ = sgn (h) (Abwu̇−Bbw|u̇|h− Γbwu̇|h|)
≤ |Abw||u̇| −Bbw|u̇||h|+ |Γbw||h||u̇|
≤ −|u̇| (Bbw − |Γbw|) |h|+ |Abw||u̇|.

(26)

when we choose Bbw > |Γbw| as in the conditions of the
present lemma, it follows that

Ḣ ≤ −φ1H+ φ2, (27)

where |u̇| (Bbw − |Γbw|)︸ ︷︷ ︸
φ1

≥ 0, and |Abw||u̇| ≤ φ2 by

hypothesis, where φ1, φ2 ∈ R>0 when u̇ ̸= 0. Notice that
when u̇ = 0, Ḣ = 0 and the hysteresis h(t) remains bounded
as desired. Following a similar procedure as Lemma 1 in
[11], the hysteresis h is bounded.

Remark 2. Lemma 5 is essential since the hysteresis h
in (4b) is not directly controllable, and we aim to design
a controller for the force equation (4a) without indirectly
controlling the hysteresis behavior, in contrast to [2]–[4].
Thus, Lemma 5 gives us information about the hysteresis
behavior under bounded control inputs as designed in this
letter.

Let us introduce a fundamental concept of saturation
function proper to design bounded controls2.

Definition 1. Consider L,M ∈ R>0 with L ≤ M . A linear
saturation function for (L,M) is given by σ : R → R being
continuous and non-decreasing satisfying: 1) sσ(s) > 0 for
all s ̸= 0; 2) σ(s) = s when |s| ≤ L; and 3) |σ(s)| ≤ M
for all s ∈ R.

Before presenting our second main result, we define the
tracking error by,

e = f − fd(t) (28)

where fd(t) is the desired force fulfilling the conditions of
Problem 1. The dynamics of (28) is given by,

ė = −a1(e+fd(t))+a2u̇+a3u−a4ḣ−a5h+δ(t)− ḟd(t).
(29)

In (29), there is the control u and its first-time derivative
u̇. For convenience, we chose the latter one for the control
design. Then, one must integrate u̇ to get the real control
input u.

Assumption 4. The initial conditions of the error force
differential equation (29) lie in the set e(t0) = f(t0) −
fd(t0) ∈ (−l, l), where l ∈ R>0 and t0 is the initial time.

2For more details about these functions, refer to [12].
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Theorem 2 (Barrier-Lyapunov-function and saturation-based
controller). Consider that system Σ satisfies Assumption
4, and that h(t) is bounded under bounded inputs as
demonstrated in Lemma 5. Also assume that σ1 and σ2

are saturation functions as in Definition 1 with parameters
(L1,M1) and (L2,M2); and where k1, k2 ∈ R>0. Besides,
consider that δ(t) is available for feedback. Then, the control
algorithm,

u̇ =
1

a2

(
−σ1

(
[l2 − e2][k1e]

)
− σ2

(
k2e

l2 − e2

)
+ a1f − a3u+ a4ḣ+ a5h− δ(t)

) (30)

exponentially stabilizes the origin for all initial conditions
e(t0) ∈ (−l, l), where l ∈ R>0. Moreover, l limits the
maximum permissible error during all the evolution of the
closed-loop system, i.e., |e(t)| ≤ l for all t ≥ t0.

Proof. Let V = 1
2 log

(
l2

l2−e2

)
a Barrier Lyapunov function

[13] with time-derivative along the trajectories of (29):

V̇ =
eė

l2 − e2
=

(
e

l2 − e2

)(
−a1(e+ fd(t)) + a2u̇+ a3u

− a4ḣ− a5h+ δ(t)− ḟd(t)
)
.

(31)
By substituting the control (30) in (31) the result is

V̇ =

(
e

l2 − e2

)(
−σ1

(
[l2 − e2][k1e]

)︸ ︷︷ ︸
arg(σ1)

−σ2

(
k2e

l2 − e2

)
︸ ︷︷ ︸

arg(σ2)

)
.

(32)
Let us define the following pair of sets, S1 = {e : |e| ≤ L1},
and S2 = {e : |e| ≤ L2} where we assume that L1 ≤ L2

and M1 ≤ M2 without loss of generality. Now, consider
that the arguments of the saturation functions are out of the
linear region: e /∈ S2 and e /∈ S1. Also, for the particular
saturation functions and their particular arguments, notice
that sgn (arg(σi)) = sgn (e) for i = {1, 2} holds as long
as e ∈ (−l, l). Then, in the above scenario, by definition
of saturation function (Definition 1) and signum function
definition, it follows that Li sgn (arg(σi)) ≤ σi(arg(σi))
since, in the present scenario, the saturation function is
greater than the bound Li that delimits the linear region.
And then, −σi(arg(σi)) ≤ −Li sgn (arg(σi)) = −Li sgn e.
With the above expression, (32) results in

V̇ =

(
e

l2 − e2

)(
−L1 sgn e− L2 sgn e

)
≤ − (L1 + L2)

l2 − e2
|e| < 0, ∀e ∈ (−l, l).

(33)

A consequence of V̇ < 0 is that after a finite time, e enters
in S2, and then,

V̇ =

(
e

l2 − e2

)(
−L1 sgn e−

k2e

l2 − e2

)
≤ − L1

l2 − e2
|e| − k2e

2

(l2 − e2)2
< 0.

(34)

Again, since V̇ < 0, after a finite time e ∈ S1 and finally,

V̇ = −k1e
2 − k2e

2

(l2 − e2)2
≤ −V, ∀e ∈ (−l, l) (35)

and one gets exponential stability as long as e ∈ (−l, l).

Remark 3. Condition of Assumption 4 is easily achieved by
choosing a proper initial condition of the reference trajectory
fd(t), the positive value of l, and the initial condition of the
system (4a). Thus, we have at least two variables that we can
play of it to accomplish Assumption 4. Notice that l can be
selected equal to the maximal range of manipulation force
fdmax , generally.

Remark 4. The term −σ2(
k2e

e2−l2 ) assures that |e| < l since
when |e| approaches l, −σ2(·) → ±∞ making that e → 0
quickly. However, having unbounded terms in the controller
is undesirable. For that, we implemented saturation functions
in the controller, and thus, we can preset how much the effect
of −σ2(·) impacts the control effort.

In Theorem 2, we assume we know disturbance δ(t),
hysteresis h, and its first-time derivative. In reality, it is
unfeasible to measure those variables. Then, we combine
our previous results to get an output feedback scheme given
next.

Theorem 3 (Output feedback barrier-Lyapunov-function and
saturation-based controller). Let us consider error systems
(21) and (29) with conditions given Theorems 1 and 2. Then,
the output feedback law,

u̇(f̂ , ĥ, δ̂,
˙̂
h) =

1

a2

(
−σ1

(
[l2 − (f̂ − fd)2][k1(f̂ − fd)]

)
− σ2

(
k2(f̂ − fd)

l2 − (f̂ − fd)2

)
+ a1f̂ − a3u+ a4

˙̂
h+ a5ĥ− δ̂(t)

)
(36)

asymptotically stabilizes the origin e = 0, ε = (0, 0, 0)⊺ as
long as e(t0) ∈ (−l, l). Furthermore, |e(t)| ∈ (−l, l) ∀t ≥
t0.

Proof. The structure of the output feedback control (36) is
the same as the full state feedback control (30). First, we
define the change of coordinates by using the tracking and
observer errors as follows,

ξ = e+ ε1 = f̂ − fd ∈ R, with ε1 =
(
1 0 0

)
ε. (37)

We rewrite the tracking error dynamics (29) and observer
error dynamics (21) equations in closed-loop form with
output feedback control (36) as follows,

ė = Gt(e, u̇(ξ), t) ∈ R
ε̇ = Fo(ε, u̇(ξ), t) ∈ R3,

(38)

where Gt(·) is the RHS of tracking error system (29), and
Fo(·) is the RHS of observer error system (21). Considering
the above notation and the change of coordinates (37), the
system (38) can be rewritten as follows,

ξ̇ = Gt (ξ − ε1, u̇(ξ), t) + Fo,1(ε, u̇(ξ), t) ∈ R1

ε̇ = Fo(ε, u̇(ξ), t) ∈ R3.
(39)
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where Fo,1 =
(
1 0 0

)
Fo. To prove that the origin

(ξ, ε) = 0 ∈ R4 of (39) converges to zero, let us propose
the candidate Lyapunov function, E(ξ, ε) = κV (ξ) +W (ε),
where κ ∈ R>0 and W (·), V (·) are defined as in the proofs
of Theorems 1 and 2, respectively. The time derivative of
E(ξ, ε) along the trajectories of (39) is given by,

Ė = κ
∂V (ξ)

∂ξ
ξ̇ + Ẇ (ε)

= κ
∂V (ξ)

∂ξ

[
Gt (ξ − ε1, u̇(ξ), t) + Fo,1(ε, u̇(ξ), t)

]
+ Ẇ (ε)

= κ
∂V (ξ)

∂ξ
Gt (ξ − ε1, u̇(ξ), t) + κ

∂V (ξ)

∂ξ
Fo,1(ε, u(ξ), t)

+κ
∂V (ξ)

∂ξ
Gt (ξ, u̇(ξ), t)− κ

∂V (ξ)

∂ξ
Gt (ξ, u̇(ξ), t)︸ ︷︷ ︸

0

+Ẇ (ε)

= κ
∂V (ξ)

∂ξ
Gt (ξ, u̇(ξ), t) + κ

∂V (ξ)

∂ξ

[
Fo,1(ε, u̇(ξ), t)

+Gt (ξ − ε1, u̇(ξ), t)−Gt (ξ, u̇(ξ), t)
]
+ Ẇ (ε).

(40)
Due to Assumption 3, it follows that ∥Gt (ξ − ε1, u̇(ξ), t)−
Gt (ξ, u̇(ξ), t) ∥ ≤ LG∥ε1∥ with LG ∈ R>0. Also,
∥Fo,1(ε, u̇(ξ), t) − Fo,1(0, u̇(ξ), t)∥ ≤ LF ∥ε1∥ with LF ∈
R>0 since ε̇1 = Fo,1(0, u̇(ξ), t) = 0 when ε1 = 0. Therefore
(40) is expressed as,

Ė ≤ κ
∂V (ξ)

∂ξ
Gt (ξ, u̇(ξ), t) + Ẇ (ε)

+ κ

∥∥∥∥∂V (ξ)

∂ξ

∥∥∥∥ [(LF + LG)∥ε1∥
]
.

(41)

Furthermore, ∂V (ξ)
∂ξ Gt (ξ, u̇(ξ), t) ≤ −ϱ4∥ξ∥2 follows from

(35), with ϱ4 ∈ R>0. Besides, according to [14], it follows
that,

∥∥∥∂V (ξ)
∂ξ

∥∥∥ ≤ ϱ5∥ξ∥ with ϱ5 ∈ R>0. Therefore, consider-
ing the above, (41) can be simplified to,

Ė(ξ, ε) ≤ −κϱ4∥ξ∥2 −ϖε⊺Sε+ κϱ5(LF + LG)∥ξ∥∥ε1∥,
(42)

where ϖ is defined in (25). Then, by choosing κ <
4ϱ4ϖ

[(ϱ5)(LF+LG)]2 it follows that Ė(ξ, ε) is negative definite.
Thus, following the procedure similar to [15] and [16], it
follows that the output feedback control u̇(f̂ , ĥ, δ̂, ˙̂h) asymp-
totically stabilizes the origin e = 0, ε = (0, 0, 0)⊺ as long
as e(t0) ∈ (−l, l) assuring that |e(t)| ∈ (−l, l) ∀t ≥ t0.

IV. CONCLUSIONS

A. Supplementary material

This letter has a comprehensive set of simulation experi-
ments with the Simulink Matlab files, which are available
through the link: https://github.com/gfloresc/
Force_Barrier_Bouc-Wen

B. Final remarks

We have presented a robust force control strategy for
a piezoelectric actuator in a robotic hand manipulating an
object. Using a model that links the driving voltage to the

manipulation force, our approach accurately accounts for
the actuator’s hysteresis and the object’s deformation. We
have demonstrated the effectiveness of our output feedback
barrier-Lyapunov-function and saturation-based controller in
ensuring the closed-loop system’s asymptotic stability while
rejecting aggressive and high-magnitude disturbances. More-
over, our controller guarantees that the tracking error is
enclosed in a predefined small set. The results of our
simulations confirm the theoretical aspects of our work. We
plan to conduct experimental benchmarks for future work
using piezoelectric stacks and the self-sensing technique
[17]. These experiments will allow us to validate the efficacy
of our force control strategy in a practical setting and further
improve its performance.
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