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Abstract— Freight drivers of electric trucks need to design
charging strategies for where and how long to recharge the
truck in order to complete delivery missions on time. Moreover,
the charging strategies should be aligned with drivers’ driving
and rest time regulations, known as hours-of-service (HoS)
regulations. This letter studies the optimal charging problems of
electric trucks with delivery deadlines under HoS constraints.
We assume that a collection of charging and rest stations is
given along a pre-planned route with known detours and that
the problem data are deterministic. The goal is to minimize the
total cost associated with the charging and rest decisions during
the entire trip. This problem is formulated as a mixed integer
program with bilinear constraints, resulting in a high computa-
tional load when applying exact solution approaches. To obtain
real-time solutions, we develop a rollout-based approximate
scheme, which scales linearly with the number of stations while
offering solid performance guarantees. We perform simulation
studies over the Swedish road network based on realistic truck
data. The results show that our rollout-based approach provides
near-optimal solutions to the problem in various conditions
while cutting the computational time drastically.

I. INTRODUCTION

Vehicle electrification is becoming mainstream globally to
reduce carbon emissions and achieve sustainable transporta-
tion [1]. In particular, road freight electrification is crucial for
reducing greenhouse gas emissions caused by diesel-powered
trucks in freight operations, which are responsible for around
25% of vehicle-related carbon emissions in Europe [2].
However, the process of freight truck electrification today is
lagging far behind that of electric passenger vehicles [3]. A
major concern with electrifying trucks, among others, is their
limited driving ranges, known as range anxiety. Currently,
the average travel range of a commercial electric truck on a
full battery varies between 200 and 600 kilometers, depend-
ing on diverse truckloads and battery capacities [4]. This
is typically insufficient to sustain trucks to complete their
delivery missions without stopping and refilling batteries,
especially for long-haul journeys. To diminish range anxiety,
increase electric truck adoption, and accelerate road freight
electrification, reliable and efficient charging strategies are
needed. In addition to charging batteries, truck drivers also
need to stop and take rests during trips to avoid driving
fatigue. The so-called hours-of-service (HoS) regulations [5]
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address exactly this issue and put restrictions on how long
one can drive consecutively without rest, as well as during
one day. As a result, charging strategies for electric trucks
should be designed not only for mission completion but also
to align with the HoS regulations.

To date, there have been extensive works developing
viable charging strategies. A majority of these approaches
integrate charging stops into conventional routing problems
and minimize the travel time or energy required on the
route, as in [6], [7], [8]. The authors in [9] propose an
optimal driving and charging strategy for electric vehicles. It
includes the driving speed as an additional control variable
when minimizing the total travel time. However, none of
these works incorporates the HoS regulations in optimal
charging problems. To the best of our knowledge, [10] is the
first to incorporate today’s HoS regulations in their charging
strategy, which is obtained via a genetic algorithm. Our
work differs from the approach in [10] in two major ways.
Firstly, we model the route and optimal charging problem in
a more general framework, allowing for multiple rests within
the maximum daily driving time before delivery deadlines.
Secondly, we develop an online solution scheme that allows
real-time optimization to deal with travel time uncertainties
or model mismatches, as opposed to the genetic algorithm,
which is offline and time-consuming.

To enable a real-time solution, we rely on the idea of
rollout, which refers to the process of simulating a known
solution. Proposed first in [11] for addressing backgammon,
rollout has since been extended for combinatorial optimiza-
tion [12] and trajectory-constrained problems [13], to name
a few. Our scheme is modified from the methods introduced
in [13] and [14, Section 3.4], where an improved solution
is computed based on a known solution. As shown in [14],
the rollout scheme can be viewed as one step of Newton’s
method applied to solve the optimization problem with the
initial guess supplied by the known solution. In view of
the fast convergence rate of Newton’s method, the solution
provided by rollout has substantial improvement from the
known solution, which is consistent with many empirical
studies [14, p. 136].

In this letter, we study the optimal charging strategy for
electric trucks with realistic HoS regulations. In particular,
we consider an electrified transportation system where every
electric truck has a pre-planned route for a delivery task.
With the knowledge of a collection of charging and rest
stations available along the route, the truck driver could
design an optimal charging strategy to determine where and
how long to recharge the truck and take rests so that the
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Fig. 1. A simplified route model of electric trucks, where each charging
and rest station, denoted by Sk , provides both charging and rest services.
Each ramp in the route leading to Sk with the shortest detour is denoted
by rk and shown by a grey node, where k=0, . . . , N−1.

extra operational costs due to the charging and rest decisions
are minimized. The main contributions of this letter are: i)
we model the optimal charging problems of electric trucks
as mixed integer programs with bilinear constraints that
incorporate the delivery deadlines and HoS regulations; ii)
a rollout-based approximate solution method, as well as its
variants, is developed for addressing the problem, through
which the computational demands required by exact solution
approaches are significantly decreased while offering solid
performance guarantees. Simulation studies performed over
the Swedish road network using realistic truck data illustrate
the effectiveness of the developed method.

II. PROBLEM FORMULATION

A. Route Model

We consider simplified route models of electric trucks. As
illustrated in Fig. 1, given a pre-planned route of a truck
between its origin O and destination D, we assume that
N charging and rest stations are available along the route,
denoted as Sk, k=0, . . . ,N−1. The ramp along the pre-
planned route leading to station Sk with the shortest detour
is denoted as rk. For simplicity, the destination is referred to
as ramp rN . The travel time required for the truck to take a
detour between its ramp rk and the station Sk (one-way) is
denoted as dk. Moreover, in the pre-planned route, the travel
time on the route segment connecting rk and rk+1 is denoted
by τk+1,k=0, . . . , N−2. Particularly, the truck’s travel times
from its origin to its first ramp r0, and from its ramp rN−1

to the destination are denoted by τ0 and τN , respectively.
Note that in our route model, each station provides both

charging and rest services, allowing drivers to take a rest
while the truck is charging. This is aligned with the charging
infrastructure building plans nowadays [15] as it saves time
in logistics. Nevertheless, our problem formulation and solu-
tion approach to be introduced later also apply to other cases
where some stations provide only charging or rest service.

B. Battery Energy and Consecutive Driving Time

Given the travel and detour times on route, the initial
battery energy, and the delivery deadline, a truck driver
could design a charging strategy to complete the delivery
mission on time subject to the HoS regulations. The decisions
involved in the charging strategy include: (i) whether to
charge the truck at Sk, k = 0, . . . , N − 1; (ii) whether to
rest at Sk, k=0, . . . , N−1; and (iii) how long to charge the
truck at Sk once decided to charge there. These decisions
can be represented by the variables

bk, b̃k∈{0, 1}, tk∈ℜ+, k = 0, . . . , N−1, (1)

Fig. 2. The consecutive driving time when first arriving at rk+1.

where bk = 1 means charging at Sk and 0 otherwise, tk is
the planned charging time at Sk if bk=1, and ℜ+ contains
nonnegative reals. Similarly, b̃k=1 means resting at Sk and 0
otherwise. These decisions affect how the battery energy and
the consecutive travel time vary when arriving at different
ramps, as we introduce next.

To describe the battery dynamics, we denote by ek ∈ℜ+

the remaining energy in the battery of the truck when it first
arrives at rk, k=0, . . . , N . In addition, let eini be the initial
energy in the battery at the origin, and P̄ be the battery
consumption of the truck on route per travel time unit. The
remaining energy ek can then be characterized as

ek+1 = ek + bk∆ek − P̄
(
2b̄kdk+τk+1

)
, (2a)

b̄k = bk ∨ b̃k, (2b)

for k=0, . . . , N−1, with e0=eini−P̄ τ0. In (2b), b̄k reflects
whether the truck visits Sk for charging or rest, where ∨ is
logical or operator. In (2a), ∆ek denotes the charged energy
at Sk. As a linear approximation to the charging process, as
adopted in [16], ∆ek is modeled as

∆ek = tk min
{
Pk, Pmax

}
, k = 0, . . . , N−1, (3)

where Pk denotes the charging power provided by Sk, and
Pmax is the maximum charging power that can be accepted
by the battery of the truck.

To ensure that the HoS regulations are followed under the
designed strategy, we also keep track of consecutive driving
time upon arriving at each ramp. For this purpose, let us
denote by ck, k=0, . . . ,N , the consecutive driving time when
arriving at rk for the first time. Its dynamics are given by

ck+1 = τk+1 + b̄kdk +
(
1− b̃k

)(
ck + bkdk

)
, (4)

for k= 0, . . . , N−1, with c0 = τ0. Here, τk+1+ b̄kdk is the
driving time from Sk to rk+1 when b̄k=1. If the driver takes
a rest at Sk (i.e., b̃k = 1), Sk becomes the start of a new
consecutive driving period. Thus, the previous accumulated
driving time ck will not be accounted for, as illustrated by the
yellow lines in Fig. 2(a). Otherwise (i.e., b̄k=1, b̃k=0), the
accumulated travel time upon arriving at rk will be taken
into account when computing the accumulated travel time
at rk+1, and a round-way detour between rk and Sk will be
taken, as illustrated by the red and yellow lines in Fig. 2(b). If
the driver neither drive to nor rest at Sk (i.e., b̃k=0, bk=0),
the consecutive driving time ck+1 is then shown in Fig. 2(c).
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C. Constraints on the Problem
In what follows, we introduce the constraints imposed

on the charging strategy due to the battery dynamics, HoS
regulations, and the delivery deadline.

1) Battery Constraints: Let ef be the energy of a truck
with a full battery. Due to the capacity limitation, the total
energy that the truck can be charged at Sk is restricted by

0 ≤ ∆ek ≤ ef −
(
ek − P̄ dk

)
, k = 0, . . . , N−1, (5)

where ek− P̄ dk is the remaining energy in the battery when
the truck arrives at Sk.

Furthermore, to ensure that there is sufficient energy for
reaching Sk, each ek with k = 0, . . . , N shall fulfill

ek ≥ es + P̄ dk, k = 0, . . . , N−1, eN ≥ es, (6)
where es denotes a constant safety margin.

2) HoS Regulations Constraints: The HoS regulations
involve three quantities, namely, the maximum consecutive
driving time, denoted as Td, the maximum daily driving time,
denoted as T̄d, and the minimum mandatory rest time before
starting a new consecutive driving period, denoted as Tr.

In line with the HoS regulations, the maximum consec-
utive driving time shall be bounded by Td. That is, for
k=0, . . . ,N, the consecutive driving time ck is restricted by

ck + dk ≤ Td, k = 0, . . . , N−1, cN ≤ Td. (7)
Moreover, as the driver’s daily driving time is no more than
T̄d, we have that

N∑
k=0

τk +

N−1∑
k=0

2b̄kdk ≤ T̄d, (8)

where, as defined above, b̄k = bk∨ b̃k, so that b̄k =1 if the
truck visits Sk and 0 otherwise.

When charging at Sk, there is a preparation time pk before
the battery can get charged. In addition, we consider staying
at Sk over Tr as taking a rest. As a result, when bk = 1
and b̃k = 0, the sum tk + pk should be less than Tr, i.e.,
tk+pk < Tr. On the other hand, no such restriction is needed
if b̃k=1. These constraints can be described compactly as

bk
(
tk + pk

)
≤

(
1− b̃k

)(
Tr − δ

)
+ b̃kδ, (9)

for k = 0, . . . , N−1, where δ is some small positive constant
so that constraint tk+pk<Tr is approximated by tk+pk ≤
Tr− δ. The large constant δ is introduced to approximate
unboundedness above.

3) Delivery Deadline Constraint: Let the total time al-
lowed to complete the trip be ∆T +

∑N
k=0 τk, where ∆T

provides an upper bound on the extra time spent due to
charging and rest. Then the constraint imposed by the
deadline is

N−1∑
k=0

max
{
bk
(
2dk+pk+tk

)
, b̃k

(
2dk+Tr

)}
≤ ∆T. (10)

III. EXACT SOLUTION TO THE OPTIMAL CHARGING
PROBLEM WITH HOS REGULATIONS

This section presents the optimization problem for deter-
mining the optimal charging strategy while fulfilling the HoS
regulations. We start by introducing the optimal charging
problem, followed by the exact solution and the computa-
tional complexity analysis of the problem.

A. Optimal Charging Problem

1) Cost Function: Our goal is to complete the delivery
mission on time under the HoS regulations while saving
operational costs. This includes the cost of charging and
economic loss due to extra labor costs. Specifically, the
expenses from charging at selected stations along the route
are defined as

F1

(
b0, t0, . . . , bN−1, tN−1

)
=

N−1∑
k=0

ξkbktk,

where ξk represents the electricity price per charging time
unit in accordance with the charging power at Sk, and tk is
the charging time at Sk.

In addition, the cost due to the extra travel time during
the entire trip is represented as

F2

(
b0, b̃0, t0, . . . , bN−1, b̃N−1, tN−1

)
=

N−1∑
k=0

max
{
bk
(
2dk+pk+tk

)
, b̃k

(
2dk+Tr

)}
ε, (11)

where, as previously defined, Tr represents the minimum
mandatory rest time specified by the HoS regulations. The
monetary loss per extra travel time unit is denoted by ε.

The cost function of the optimal charging problem is then
of the following form

F
(
b0, b̃0, t0, . . . , bN−1, b̃N−1, tN−1

)
=F1

(
b0, t0, . . . , bN−1, tN−1

)
+

F2

(
b0, b̃0, t0, . . . , bN−1, b̃N−1, tN−1

)
, (12)

which includes the cost of charging and the cost of extra
travel time for completing the delivery mission.

2) Optimization Problem: Based on the battery dynamics,
consecutive driving times, HoS regulations, and delivery
deadline constraints formulated in Section II, as well as the
cost function given above, the optimal charging strategy can
be obtained by solving the following optimization problem

min
{(bk,b̃k,tk)}N−1

k=0

F
(
b0, b̃0, t0, . . . , bN−1, b̃N−1, tN−1

)
s. t. (1) − (10),

where (1) defines the domains of the decision variables bk,
b̃k, and tk, (2) and (3) characterize the battery dynamics dur-
ing driving and charging, and (4) describes the consecutive
driving times upon arriving at each ramp. The constraints
imposed by the battery capacity and its safety margin are
(5) and (6). The HoS regulations are characterized by (7)-
(9). The constraint related to the delivery deadline is (10).
The sufficient conditions under which the problem is feasible
are given in Appendix E of the extended version [17].

Note that the proposed formulation is flexible to incorpo-
rate various modifications, such as taking the sum of b̄k as
the cost function (12) for a sparse selection of the stations, or
replacing the linear approximation of battery dynamics (3)
to nonlinear ones. For simplicity, we focus on the present
setting.
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B. Exact Solution

The optimal charging problem formulated above is a
mixed integer program with bilinear constraints. Thus, it
cannot be directly addressed by many standard solvers. To
obtain the exact solution to the problem, one could iterate
over all possible combinations of integer variables. Since the
integer variables bk and b̃k admit 4 combinations at each
station, i.e., (0, 0), (0, 1), (1, 0), (1, 1), there are in total
4N charging and rest choices, where N is the number of
stations. Therefore, the exact solution requires solving 4N

linear programs, which leads to high computational demands
and is not practical.

Note that the bilinear constraints can be transformed into
linear ones so that the problem becomes a standard mixed
integer linear program. We demonstrate this transformation
in Appendix F of [17]. However, the exact solution to
the transformed problem may still require an exponential
number of iterations; see [18, p. 480]. Moreover, if the linear
approximation of charging in (3) is replaced by nonlinear
functions of tk, such transformations would become obsolete.

To obtain tractable charging strategies, especially for long-
haul trips with many candidate charging and rest stations, a
rollout-based approximate solution to the optimal charging
problem is proposed in the following section.

IV. APPROXIMATE SOLUTION TO THE OPTIMAL
CHARGING PROBLEM VIA ROLLOUT

In this section, we introduce the proposed rollout scheme
for the optimization problem formulated in Section III. We
first describe a basic form of the method within the context
of a general mixed integer program, which is modified from
the methods introduced in [13] and [14, Section 3.4]. It is
followed by a variant of the scheme. Then we demonstrate
how the basic form, as well as its variant, can be applied
to obtain an approximate solution to the optimal charging
problem. Further analysis and variants of our scheme are
provided in [17].

A. Rollout for Mixed Integer Program

Let us consider the following mixed integer program:

min
(u,v)

G(u, v) s. t. (u, v) ∈ C (13)

where u = (u0, . . . , uN−1) is composed of discrete ele-
ments, with each element uk belonging to a finite discrete set
Uk, i.e., uk ∈Uk, k=0, . . . , N−1, and v∈ℜm wheere ℜm

is the m-dimensional Euclidean space. The function G maps
elements in U×ℜm to real numbers with U=U0×· · ·×UN−1,
and C is a nonempty subset of U×ℜm.

When favorable structures are absent, problem (13) can
be difficult to address. A naive approach is to enumerate all
possible values of u, and then solve just as many optimiza-
tion problems that involve only the continuous variable v.
However, the number of such problems could increase expo-
nentially as the dimension of u increases. On the contrary,
the number of continuous optimization problems involved
in our scheme grows only linearly with N , as we will see
shortly.

For our proposed scheme to find a feasible solution in
theory, we assume that there is a known ū=(ū0, . . . , ūN−1),
referred to as the base solution, such that (ū, v̄) ∈ C for some
v̄∈ℜm. In other words, if we define a set C as

C=
{
u∈U | (u, v)∈C for some v∈ℜm

}
, (14)

then our scheme relies on the assumption that some ū ∈
C is known. Based on this condition, the proposed method
focuses on the discrete variables one at a time. In particular,
it first computes the ũ0 via solving

ũ0∈arg min
u0∈U0

min
v∈ℜm

G(u0, ū1, . . . , ūN−1, v)

s. t. (u0, ū1, . . . , ūN−1, v)∈C.
(15)

Having computed ũ0, it proceeds by solving

ũ1∈arg min
u1∈U1

min
v∈ℜm

G(ũ0, u1, ū2, . . . , ūN−1, v)

s. t. (ũ0, u1, ū2, . . . , ūN−1, v)∈C.
(16)

At last, it solves
ũN−1∈arg min

uN−1∈UN−1

min
v∈ℜm

G(ũ0, . . . , ũN−2, uN−1, v)

s. t. (ũ0, . . . , ũN−2, uN−1, v)∈C.
(17)

Denoting as ũ the solution (ũ0, . . . , ũN−1) computed
above, referred to as the rollout solution, the approximate
solution obtained via our scheme is (ũ, ṽ) where

ṽ ∈ arg min
(ũ,v)∈C

G(ũ, v). (18)

We have the following result for the proposed scheme.
Proposition 4.1: Let ū ∈ C and consider (ũ, ṽ) obtained

via (15)-(18). We have that (ũ, ṽ)∈C and
G(ũ, ṽ) ≤ min

(ū,v)∈C
G(ū, v). (19)

Proof: See Appendix B of [17].
Remark 4.1: Denote as n the maximum number of ele-

ments contained in Uk. The naive scheme involves solving
as many as nN continuous optimization problems, while our
rollout scheme requires solving at most nN such problems.
Supposing that polynomial-time algorithms are used for con-
tinuous problems, our scheme can be executed in polynomial
time.

Remark 4.2: The rollout scheme (15)-(17) can be carried
out even starting from ū ̸∈C. In this case, the resulting rollout
solution ũ may still be feasible.
B. Variant of the Rollout Scheme

The proposed scheme admits a few variants. Here we
discuss one that is particularly relevant to our application.
Additional variants are given in Appendices C and D of [17].

Suppose that ℓ different base solutions ū1, . . . , ūℓ ∈ U
are known. We can obtain their respective rollout solu-
tions ũ1, . . . , ũℓ as well as the corresponding minimiz-
ing ṽ1, . . . , ṽℓ. We then select (ũi∗ , ṽi

∗
) where i∗ ∈

argmini{G(ũi, ṽi)}ℓi=1. Clearly, we have the following per-
formance bound

G(ũi∗ , ṽi
∗
) ≤ min

i∈{1,...,ℓ}
min

(ūi,v)∈C
G(ūi, v). (20)

However, this is at the expense of the increased compu-
tational demands, which are ℓ-fold of that of the original
scheme.
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C. Rollout-Based Charging Strategy

In what follows, we show that the charging problem for-
mulated in Section III belongs to the class of generic problem
(13). As a result, the rollout scheme and its variant developed
thus far can be applied to provide charging strategies.

To this end, let us define as uk the pair (bk, b̃k), k =
0, . . . , N−1, and u = (u0, . . . , uN−1). Accordingly, Uk =
{(0, 0), (1, 0), (0, 1), (1, 1)}. We lump all the continuous
variables involved in the charging problem as v, namely,

v=(t0, e0,∆e0, c0, . . . , tN−1, eN−1,∆eN−1, cN−1, eN , cN ).

Then the function F defined in (12) can be written as a
function of (u, v), which we denote as G. Moreover, let C
denote the set of (u, v) that fulfills the conditions (1)-(10).
Via the change of variables introduced here, the charging
problem can be seen as an instance of the generic problem
(13).

To obtain charging strategies via the rollout scheme, we
use two different base solutions. The first solution ū1 is
referred to as the greedy solution. Intuitively, the greedy solu-
tion sets ū1

k=(1, 1) if the battery energy ek+1 upon arriving
at rk+1 does not fulfill constraint (6) without charging at
Sk. Moreover, once ū1

k=(1, 1), the battery is fully charged
at Sk. Another base solution ū2, referred to as the relaxed
solution, is obtained via solving a relaxation of the original
problem, where the binary constraints are replaced by closed
intervals [0, 1]. If the optimal value for binary variables is
nonzero, the relaxed solution sets respective binary variables
to 1. Apart from a base solution, the relaxation of the original
problem also provides a lower bound of the optimal cost of
the original problem. Together with the upper bounds (19)
and (20), we obtain a certificate for the optimality gap of the
rollout scheme.

Note that either one of the two base solutions may not
be feasible as they involve approximations of the original
problem. Due to the presence of the HoS constraint (8) and
the delivery deadline (10), computing a feasible base solution
can be as hard as solving the original problem. On the other
hand, owing to reasons discussed in Remark 4.2, both ū1

and ū2 are used in our simulation studies, and together they
suffice for the practical needs.

V. SIMULATION STUDIES

A. Setup

1) Transport Route: We consider the Swedish road net-
work with 105 real road terminals, where the coordinates
of the road terminals are obtained from the SAMGODS
model [19]. The delivery missions for trucks are generated
by randomly selecting the origin and destination pairs (i.e.,
OD pairs) from the set of road terminals. Since today
only very few charging stations for electric trucks are in
operation, some other real road terminals obtained from the
SAMGODS model, except for those considered as origins
and destinations, are used as potential charging and rest
stations in the simulation, as shown by the grey nodes in
Fig. 3. For each OD pair, the shortest path between the
OD is pre-planned via OpenStreetMap[20], and the charging

Fig. 3. The transport route model of one truck, where 5 charging and rest
stations are available along the route, as shown by the green nodes. Ramps
leading to the shortest detours are shown by the yellow nodes.

and rest stations along the route are identified with a given
search range. Accordingly, the travel times {τk} and the
detour times {dk} are accessible from OpenStreetMap. The
transport route model of one truck is shown in Fig. 3.

2) Parameter Settings: The latest published data for elec-
tric trucks manufactured by Scania [21] is used in setting the
parameters. We consider electric trucks at a load capacity of
40 tonnes with a usable battery of 468 kWh, with up to
350 kilometers driving range. The usable battery energy is
ef − es, which can vary from 0 to 468 kWh. The charging
power Pk and Pmax are considered as 300 and 375 kW,
respectively. We assume trucks drive at a constant speed of
82 km/h, resulting in approximately 1.83 kWh/min of battery
consumption. In addition, pk is 6 min, ξk is 0.36C/kWh, and
ϵ is set as 0.4C/min, based on truck drivers’ salaries per hour
in Sweden in 2023. The EU’s HoS regulations are applied.

B. Solution Evaluation

To evaluate the rollout-based charging strategy, we conduct
simulation studies for trucks in 6 scenarios where N is varied
from 5 to 10, and in each scenario, the proportion of the
initial battery is changed from 20% to 100%, incremented
with 5%. The optimal solution is computed by enumerating
all the possible combinations of the binary variables, and the
rollout solution is obtained by taking ū1 and ū2 as the base
solutions. Both solutions use Gurobi as the linear program
solver. For brevity, we refer to the optimal and rollout-based
solutions as OS and RS, respectively, and refer to the lower
and upper bounds of the optimal cost of the rollout solution
as LB and UB. In Fig. 4, we provide the costs of the OSs
and RSs for the selected scenarios N = 6, 7, as well as
the LBs and UBs obtained using our base solutions. The
results show that RSs are near-optimal to the OSs, and could
be achieved based on different base solutions. Moreover,
the greedy and relaxed base solutions provide good upper
bounds for the rollout solution. Further details of parameters,
additional simulation results, sensitivity analysis, and the link
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Fig. 4. The costs of the optimal and rollout-based solutions.

TABLE I
COMPARISON BETWEEN THE OS AND RS

N 5 6 7 8 9 10

AOG-RS [%] 0 0.55 0.72 0.49 0.03 0.42

AOG-UB [%] 1.04 5.46 2.23 0.49 4.28 1.72

ACT of RS [s] 0.34 0.42 0.57 0.65 0.84 1.43

ACT of OS [min] 0.32 1.34 5.45 24.02 98.50 413.68

to codes are given in [17].
The optimality gap between RSs and OSs, UBs and OSs,

and the computational efficiency of the RS and OS methods
are shown in Table I. For each N with a given initial battery,
the optimality gap between the RS and OS is computed by
100×(F (RS)−F (OS))/F (OS), where F is the cost function
defined by (12). Similarly, the optimality gap between the UB
and OS is computed by 100×(UB−F (OS))/F (OS). We show
in Table I the average optimality gap (AOG) of 17 situations
for each N and the average computational times (ACT) to
obtain the RS and OS. It can be seen that the computational
demands for obtaining OSs increase exponentially with the
increase in N . By employing the proposed RS scheme, the
computational time decreases significantly, taking less than 2
seconds, while having an average optimality gap within 1%,
which illustrates the desirable properties of our method.

VI. CONCLUSION

This letter investigated the optimal charging strategy for
electric trucks, which allows freight drivers to determine
where and how long to recharge trucks to complete the
delivery task before deadlines while respecting the HoS
regulations. We assumed that every truck has a pre-planned
route with a given collection of charging and rest stations.
The optimal charging problem of each truck was modeled as
a mixed integer program integrated with bilinear constraints,
which is computationally intractable to be solved exactly.
As an approximate scheme, a rollout-based charging strategy
was proposed, which provides near-optimal solutions to the
problem with solid performance guarantees while reducing
the computational load drastically. Compared to the existing
literature, our modeling method allows for handling the

HoS regulations subject to delivery deadlines. Moreover, the
rollout-based solution of high efficiency is promising to be
applied in real-time strategy planning to cope with travel
time uncertainties. Future work could be developing optimal
charging strategies for electric trucks with limited charging
resources at stations.
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