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Abstract— This paper is concerned with the boundary output
stabilization of a reaction-diffusion equation in H2-norm. Sta-
bilizability of reaction-diffusion PDEs is most often studied in
L2-norm and sometimes in H1-norm. The case of the H2-norm
is much less reported in the literature. In this paper, the study of
the system trajectory in H2-norm is motivated by the fact that
such a regularity is required, from a mathematical perspective,
to handle a saturated Neumann measurement. More precisely,
combining a classical sector condition for saturation functions
and spectral methods, we show how the study of the system in
H2-norm allows the local exponential stabilization of the PDE
plant while estimating a subset of the domain of attraction.

I. INTRODUCTION

Actuator and sensor saturation mechanisms are known
for introducing severe constraints on control design proce-
dures [2], [9] as they introduce harmful nonlinear phenomena
with multiple equilibrium points and bounded domains of
attraction [3]. Due to its practical importance, this topic has
been intensively studied for finite-dimensional systems [1],
[20], [23]. One of the most efficient approaches for the
local stabilization and estimation of the domain of attraction
consists of the combined use of Lyapunov’s direct method
and a suitable generalized sector condition [20, Lem. 1.6].

The extension of the topic of saturated control to sys-
tems described by partial differential equations (PDEs) has
attracted much attention in the recent years. This includes the
case of the wave and Korteweg-de Vries PDEs [15], [16],
[18], as well as the case of reaction-diffusion PDEs [5],
[6], [12], [17]. All the above works embrace the case of
the saturation of the input. In contrast, the impact of the
saturation of the output was studied in [13] in the case of a
Dirichlet measurement by combining spectral methods [4]
and a generalized sector condition [20, Lem. 1.6]. This
allowed to achieve the H1-norm local exponential boundary
feedback stabilization of the plant with estimation of the
domain of attraction. However, as described in the conclusion
section of [13], the method reported therein does not apply
to the case of a saturated Neumann measurement. This is
essentially because the H1 regularity it not sufficient, in the
case of the Neumann measurement, to make a connection
between the conditions of application of the generalized
sector condition and the studied H1 Lyapunov functional.
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The main contribution of this paper is to solve the problem
of local exponential stabilization of a reaction-diffusion equa-
tion with saturated Neumann measurement while estimating
the domain of attraction. Compared to the case of a saturated
Dirichlet measurement [13], this is achieved at the expense of
considering a norm with a higher regularity, namely the H2-
norm. It is worth pointing out that most of the stabilization
results for reaction-diffusion PDEs reported in the literature
hold in L2-norm, sometimes in H1-norm. The case of the
H2-norm is far rarer with very few references [21], [22].
In this context, this paper reports one of the very first
contributions regarding the output feedback stabilization of a
reaction-diffusion PDE in H2-norm. This is achieved through
(i) a detailed analysis of the asymptotic behavior of the
eigenstructures of the underlying Sturm-Liouville operator;
and (ii) the introduction of a family of ”truncated versions”
of the H2 Lyapunov functional to ensure the stability of the
closed-loop infinite-dimensional system.

The paper is organized as follows. The problem descrip-
tion is reported in Section II. The adopted control strategy is
described in Section III while the related main stability result
is presented in Section IV. Some numerical simulations are
provided in Section V. Concluding remarks are formulated
in Section VI.

Notation. The real spaces Rn are endowed with the
Euclidean norm ‖x‖=

√
x>x. The associated induced matrix

norms are also denoted by ‖ · ‖. For any two vectors x and
y of arbitrary dimensions, we define col(x,y) = [x>,y>]>.
The space of square integrable functions on (0,1) is de-
noted by L2(0,1) with the usual inner product 〈 f ,g〉 =∫ 1

0 f (x)g(x)dx and associated norm denoted by ‖ · ‖L2 . For
any given integer m ≥ 1, the Sobolev space of order m
is denoted by Hm(0,1) with the usual norm defined by
‖ f‖2

Hm = ∑
m
k=0 ‖ f (k)‖2

L2 . For a symmetric matrix P ∈ Rn×n,
P � 0 (resp. P � 0) means that P is positive semi-definite
(resp. positive definite). Considering (φn)n≥1, an arbitrarily
given Hilbert basis of L2(0,1), we define for any two
integers 1 ≤ N < M and any f ∈ L2(0,1) the follow-
ing operators of projection: πN f =

[
〈 f ,φ1〉 . . . 〈 f ,φN〉

]>,
πN,M f =

[
〈 f ,φN+1〉 . . . 〈 f ,φM〉

]>, and RN f = f −
∑

N
n=1 〈 f ,φn〉φn = ∑n≥N+1 〈 f ,φn〉φn.

II. PROBLEM DESCRIPTION AND SPECTRAL REDUCTION

A. Problem description

We consider in this work the system described by

zt(t,x) = pzxx(t,x)+qz(t,x) (1a)
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cos(θ)z(t,0)− sin(θ)zx(t,0) = 0 (1b)
zx(t,1) = u(t) (1c)
z(0,x) = z0(x), (1d)

for t > 0 and x ∈ (0,1). Here we have θ ∈ (0,π/2),
p > 0, and q ∈ R. The control is u(t) ∈ R. The state is
z(t, ·) ∈ L2(0,1). The initial condition is z0 ∈ H2(0,1) with
cos(θ)z0(0)− sin(θ)z′0(0) = 0 and z′0(1) = u(0). The system
output considered in this work is a Neumann trace, defined
by

y(t) = zx(t,ξp). (2)

for some measurement location ξp ∈ [0,1). However, the
actually measured output available for feedback control is
a saturated version of the Neumann trace, described by

ysatl (t) = satl(y(t)) = satl(zx(t,ξp)). (3)

Here l > 0 stands for the saturation level while the saturation
function satl : R→ R is defined as

satl(y) =

 y if |y| ≤ l;

l
y
|y|

if |y| ≥ l.

The control objective is to design an output feedback
controller that achieves the local exponential stabilization in
H2-norm of (1) with saturated Neumann measurement (3)
while estimating a subset of the domain of attraction. As
we shall see, the capability to study the systems trajectories
in H2-norm will be crucial in the context of the saturated
Neumann measurement (3).

Remark 2.1: The method developed in this paper also
applies to the case of an in-domain control described by

zt(t,x) = pzxx(t,x)+qz(t,x)+b(x)u(t) (4a)
cos(θ1)z(t,0)− sin(θ1)zx(t,0) = 0 (4b)
cos(θ2)z(t,1)+ sin(θ2)zx(t,1) = 0 (4c)
z(0,x) = z0(x). (4d)

where θ1 ∈ [0,π/2) and θ2 ∈ [0,π/2] provided b ∈ H1(0,1)
with b(0) = 0 if θ1 = 0 and b(1) = 0 if θ2 = 0. In that
case, with the notations introduced in the next subsection,
b ∈ D(A 1/2), implying that bn = 〈b,φn〉 is such that λnb2

n
is summable. This allows the application of the approach
developed in this paper.

B. Operator representation and H2-norm

1) Sturm-Liouville operator: Let us introduce the
Sturm-Liouville operator A f = −p f ′′ defined on D(A ) ={

f ∈ H2(0,1) : cos(θ) f (0)− sin(θ) f ′(0) = 0, f ′(1) = 0
}

.
Direct computations show that the eigenvalues of
A are λn = pr2

n where rn is the unique solution to
cos(rn) = rn sin(rn) tan(θ) on the interval ((n − 1)π,nπ)
for any integer n ≥ 1. The associated unit eigenvectors are
given by φn(x) = Mn (rn tan(θ)cos(rnx)+ sin(rnx)) with
Mn > 0 expressed by 1

M2
n
= r2

n tan(θ)2

2

(
1+ 1

2rn
sin(2rn)

)
+

1
2

(
1− 1

2rn
sin(2rn)

)
+ tan(θ)

2 (1− cos(2rn)). From the
general theory on Sturm-Liouville operators, it is known

that (φn)n≥1 forms a Hilbert basis of L2(0,1). Moreover,
from the theory on Riesz-Spectral operators, we have that A
is equivalently represented by A f = ∑n≥1 λn 〈 f ,φn〉φn with
D(A ) =

{
f ∈ L2(0,1) : ∑n≥1 λ 2

n 〈 f ,φn〉2 <+∞

}
. Since

λn > 0, we introduce for any α > 0 the fractional
operator A α f = ∑n≥1 λ α

n 〈 f ,φn〉φn on the domain
D(A α) =

{
f ∈ L2(0,1) : ∑n≥1 λ 2α

n 〈 f ,φn〉2 <+∞

}
.

2) Asymptotic behavior: In preparation of later develop-
ments, let us note that the following asymptotic behaviors
hold when n → +∞. First, from rn ∈ ((n− 1)π,nπ), we
get that rn ∼ nπ , hence λn ∼ pn2π2. Moreover, introducing
εn = rn− (n− 1)π ∈ (0,π), it can be observed that εn→ 0.
Hence, using the identity rn = (n−1)π +εn into the implicit
equation cos(rn) = rn sin(rn) tan(θ) and proceeding with a
Taylor expansion, it can be inferred that εn ∼ cot(θ)

nπ
. It can

also be observed that Mn ∼
√

2cot(θ)
nπ

. Finally, we derive
from the analytical expression of the eigenfunctions that
φn(1) = O(1) and φ ′n(ξp) = O(n) = O(

√
λn).

3) Equivalence between the graph norm and the H2-
norm: We say that two norms ‖ ·‖1 and ‖ ·‖2 defined on the
same vector space X are equivalent if there exist constants
C1,C2 > 0 such that C1‖x‖1 ≤ ‖x‖2 ≤C2‖x‖1 for all x ∈ X .
Since the constants C1,C2 are independent of x, we simply
write ‖x‖1 . ‖x‖2 . ‖x‖1.

Noting that 0 ∈ ρ(A ), the resolvent set of A , the graph
norm ‖ f‖G(A ) = ‖A f‖L2 +‖ f‖L2 is equivalent to ‖A f‖L2

for f ∈ D(A ). So, with a slight abuse of vocabulary, we
refer to ‖A · ‖L2 on D(A ) as the graph norm.

Our objective is to study the system trajectories of (1)
in H2-norm. A key element for achieving this relies is the
following result whose proof is placed in Appendix.

Lemma 2.2: Graph norm and H2-norm are equivalent on
D(A ), that is:

‖ f‖2
H2 . ‖A f‖2

L2 = ∑
n≥1

λ
2
n 〈 f ,φn〉2 . ‖ f‖2

H2 (5)

for all f ∈ D(A ).

C. Spectral reduction
In order to carry on the spectral reduction, we define first

the change of variable formula:

w(t,x) = z(t,x)− 1
2

x2u(t). (6)

In view of the system dynamics (1) and introducing v = u̇,
we can write

u̇(t) = v(t) (7a)
wt(t,x) = pwxx +qw(t,x)+a(x)u(t)+b(x)v(t) (7b)
cos(θ)w(t,0)− sin(θ)wx(t,0) = 0 (7c)
wx(t,1) = 0 (7d)
w(0,x) = w0(x) (7e)

where a(x) = p+ q
2 x2, b(x) = − 1

2 x2, and w0(x) = z0(x)−
x2

2 u(0). Under this homogeneous representation, PDE plant
(7) reduces to

u̇(t) = v(t) (8a)
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wt(t, ·) = {−A +qIdL2}w(t, ·)+au(t)+bv(t) (8b)
w(0, ·) = w0 (8c)

and is under suitable form for spectral reduction. More pre-
cisely, we introduce the following coefficients of projection
zn(t) = 〈z(t, ·),φn〉, wn(t) = 〈w(t, ·),φn〉, an = 〈a,φn〉, and
bn = 〈b,φn〉. In particular, one has for classical solutions that
z(t, ·) = ∑n≥1 zn(t)φn with convergence of the series in L2-
norm while w(t, ·) = ∑n≥1 wn(t)φn with convergence of the
series in H2-norm. In view of (6) we have

wn(t) = zn(t)+bnu(t), n≥ 1 (9)

while the projection of (8) into (φn)n≥1 gives

u̇(t) = v(t) (10a)
ẇn(t) = (−λn +q)wn(t)+anu(t)+bnv(t). (10b)

Combining the two latter equations we obtain the following
representation in original z coordinates:

żn(t) = (−λn +q)zn(t)+βnu(t) (11)

where βn = an + (−λn + q)bn. For classical solutions, the
Neumann measurement (2) is given as the series expansion:

y(t)= zx(t,ξp)=wx(t,ξp)+ξpu(t)= ∑
n≥1

φ
′
n(ξp)wn(t)+ξpu(t).

(12)
In preparation for future developments, we need to estab-

lish an asymptotic behavior for an and bn when n→ +∞.
First, using the definitions of the coefficients an,bn and
the functions a,b, recalling that A φn = −pφ ′′n = λnφn and
φ ′n(1) = 0, two successive integration by parts show that
βn = an +(−λn +q)bn = pφn(1). In view of the asymptotic
behaviors reported in Subsection II-B.2, we have φn(1) =
O(1), so βn = O(1). Since a ∈ L2(0,1) we have an = o(1)
while λn∼ pn2π2. This implies that bn =

βn−an
−λn+q =O(1/λn)=

O(1/n2). Now, from the definitions of a,b we have a(x) =
p−qb(x) so an = p

∫ 1
0 φn(x)dx−qbn. A direct computation

shows that
∫ 1

0 φn(x)dx = Mn

(
tan(θ)sin(rn)+

1−cos(rn)
rn

)
=

O(1/n2) = O(1/λn), where we have used that rn = (n−
1)π + εn with εn ∼ cot(θ)

nπ
. This implies that an = O(1/n2) =

O(1/λn). This shows in particular that a,b ∈ D(A 1/2).

III. CONTROL STRATEGY AND CLOSED-LOOP SYSTEM
REPRESENTATION

A. Control strategy

Let δ > 0 and define an integer N0≥ 1 such that −λN0+1+
q < −δ < 0. Let N ≥ N0 + 1 be arbitrarily fixed for the
moment. The adopted control strategy, whose architecture
is inspired by the pioneer work [19] and latter reused in [7],
[8], [10], [11], [14], is as follows:

ŵn(t) = ẑn(t)+bnu(t) (13a)
˙̂zn(t) = (−λn +q)ẑn(t)+βnu(t)

− ln

{
N

∑
k=1

ŵk(t)φ ′k(ξp)+ξpu(t)− satl(y(t))

}
, 1≤ n≤ N0 (13b)

˙̂zn(t) = (−λn +q)ẑn(t)+βnu(t), N0 +1≤ n≤ N (13c)

u(t) =
N0

∑
n=1

knẑn(t). (13d)

Here kn, ln ∈R are the feedback and observer gains, respec-
tively. As detailed in the conclusion section of [13], due to
the saturated Neumann measurement, the approach reported
therein fails to assess the local stabilization of the plant with
controller (13) when evaluating the trajectories in H1-norm.
We show here that this pitfall can be avoided at the expense
of a higher regularity of the norm, namely the H2-norm.

B. Reduced order model representation

The stability analysis reported in the next section relies
on a suitable reduced order model for the closed-loop system
formed by the plant (1) and the controller (13). As classically
done for finite-dimensional systems in the presence of a
saturation, this representation makes use of the deadzone
nonlinearity Φl : R→ R defined, for all y ∈ R, by

Φl(y) = satl(y)− y. (14)

The introduction of this deadzone nonlinearity is particularly
relevant for stability analysis and estimation of the domain of
attraction due to the following generalized sector condition
borrowed from [20, Lem. 1.6].

Lemma 3.1: Let l > 0 be arbitrarily fixed. For any y,ω ∈R
such that |y−ω| ≤ l we have Φl(y)(Φl(y)+ω)≤ 0.

Let the error of observation be defined by en = zn− ẑn for
1 ≤ n ≤ N. For N0 + 1 ≤ n ≤ N, let us introduce the scaled
error of observation ẽn = λnen. Combining (12), (13a)-(13b),
and (14), we infer that

˙̂zn(t) = (−λn +q)ẑn(t)+βnu(t)+ ln
N0

∑
k=1

φ
′
k(ξp)ek(t)

+ ln
N

∑
k=N0+1

φ ′k(ξp)

λk
ẽk(t)+ lnζ (t)+ lnΦl(y(t)) (15)

for all 1 ≤ n ≤ N0 where ζ = ∑n≥N+1 φ ′n(ξp)wn. We now
introduce z̃n = ẑn/λn and the vectors ẐN0 =

[
ẑ1 . . . ẑN0

]>,
EN0 =

[
e1 . . . eN0

]>, Z̃N−N0 =
[
z̃N0+1 . . . z̃N

]>, and
ẼN−N0 =

[
ẽN0+1 . . . ẽN

]>. Owing to the plant dynamics
(11) and the controller dynamics (13c)-(13d) and (15), we
infer that

u = KẐN0 (16a)
˙̂ZN0 = (A0 +B0K)ẐN0 +LC0EN0 +LC̃1ẼN−N0

+Lζ +LΦl(y) (16b)

ĖN0 = (A0−LC0)EN0 −LC̃1ẼN−N0

−Lζ −LΦl(y) (16c)
˙̃ZN−N0 = A1Z̃N−N0 + B̃1KẐN0 (16d)
˙̃EN−N0 = A1ẼN−N0 . (16e)

where the different matrices are defined as
follows: A0 = diag(−λ1 + q, . . . ,−λN0 + q), A1 =

diag(−λN0+1 + q, . . . ,−λN + q), B0 =
[
β1 . . . βN0

]>,
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B̃1 =
[

βN0+1
λN0+1

. . . βN
λN

]>
, C0 =

[
φ ′1(ξp) . . . φ ′N0

(ξp)
]
,

C̃1 =

[
φ ′N0+1(ξp)

λN0+1
. . .

φ ′N(ξp)
λN

]
, K =

[
k1 . . . kN0

]
, and

L =
[
l1 . . . lN0

]>. Then, we have

Ẋ = FX +L ζ +L Φl(y) (17)

where
X = col

(
ẐN0 ,EN0 , Z̃N−N0 , ẼN−N0

)
(18)

and

F =


A0 +B0K LC0 0 LC̃1

0 A0−LC0 0 −LC̃1
B̃1K 0 A1 0

0 0 0 A1

 , L =


L
−L
0
0

 .
(19)

In addition, with the augmented vector X̃ = col(X ,ζ ,Φl(y)),
we obtain that

u = KẐN0 = K̃X , v = u̇ = EX̃ (20)

where K̃ =
[
K 0 0 0

]
and E =

K
[
A0 +B0K LC0 0 LC̃1 L L

]
Remark 3.2: By Cauchy uniqueness, we note that βn =

pφn(1) 6= 0 for all integers n ≥ 1. Hence, since the eigen-
values λn are simple, we deduce that the pair (A0,B0)
is controllable. In a similar fashion, the pair (A0,C0) is
observable if and only if φ ′n(ξp) 6= 0, that is cos(rnξp) 6=
rn sin(rnξp) tan(θ), for all integers 1 ≤ n ≤ N0. This latter
condition is, of example, fulfilled in the case ξp = 0.

The final step before presenting the main result of this
paper is to write the system output y expressed by (12)
into a suitable form that allows the application of the sector
condition reported in Lemma 3.1. Recalling that en = zn− ẑn,
ẽn = λnen, and z̃n = ẑn/λn, we obtain the followings:

y
(12)
= ∑

n≥1
φ
′
n(ξp)wn +ξpu =

N

∑
n=1

φ
′
n(ξp)wn +ζ +ξpu

(9)
=

N

∑
n=1

φ
′
n(ξp)zn +

(
ξp +

N

∑
n=1

φ
′
n(ξp)bn

)
u+ζ

=
N

∑
n=1

φ
′
n(ξp)ẑn +

N

∑
n=1

φ
′
n(ξp)en +

(
ξp +

N

∑
n=1

φ
′
n(ξp)bn

)
u+ζ

=
N0

∑
n=1

φ
′
n(ξp)ẑn +

N0

∑
n=1

φ
′
n(ξp)en +

N

∑
n=N0+1

λnφ
′
n(ξp)z̃n

+
N

∑
n=N0+1

φ ′n(ξp)

λn
ẽn +

(
ξp +

N

∑
n=1

φ
′
n(ξp)bn

)
u+ζ

= H1X +H2u+ζ
(20)
= HX +ζ (21)

where H1 =
[
C0 C0 λN0+1φ ′N0+1(ξp) . . . λNφ ′N(ξp) C̃1

]
,

H2 = ξp +∑
N
n=1 φ ′n(ξp)bn, and H = H1 +H2K̃.

IV. MAIN STABILITY RESULT

Theorem 4.1: Let θ ∈ (0,π/2), p > 0, q ∈ R, ξp ∈ [0,1),
and l > 0. Let δ > 0 and N0 ≥ 1 be such that −λn + q <
−δ for all n ≥ N0 + 1. Assume that φ ′n(ξp) 6= 0, that is

cos(rnξp) 6= rn sin(rnξp) tan(θ), for all integers 1 ≤ n ≤ N0.
Let K ∈ R1×N0 and L ∈ RN0 be such that A0 +B0K and
A0−LC0 are Hurwitz with eigenvalues that have a real part
strictly less than −δ < 0. For a fixed integer N ≥ N0 + 1,
assume that there exist a symmetric positive definite P ∈
R2N×2N , positive real numbers α > 1 and β ,γ,µ,T,κ > 0, a
matrix C ∈ R1×2N , and a real number d ∈ R such that

Θ1(κ)� 0, Θ2 � 0, Θ3(κ)≤ 0 (22)

where Θ1,1(κ) = F>P+PF +2κP+αγ‖RNA 1/2a‖2
L2K̃>K̃,

Θ1(κ) =

 Θ1,1(κ) PL −TC>+PL
L >P −β −dT

−TC+L >P −dT −2T


+αγ‖RNA 1/2b‖2

L2E>E

Θ2 =

 P 0 (H−C)>

0 γ

Mφ
1−d

H−C 1−d µl2


Θ3(κ) = γ

{
−
(

1− 1
α

)
λN+1 +q+κ

}
+βMφ .

with Mφ = ∑n≥N+1
φ ′n(ξp)

2

λ 2
n

<+∞. Consider the block repre-
sentation P = (Pi, j)1≤i, j≤4 with dimensions that are compat-
ible with (18) and define

E =

{
w ∈ D(A ) :

[
πN0w

πN0,NA w

]> [P2,2 P2,4
P4,2 P4,4

][
πN0w

πN0,NA w

]

+ γ‖RNA w‖2
L2 <

1
µ

}
. (23)

Then, the closed-loop system composed of the PDE (1), the
saturated Neumann measurement (3), and the controller (13),
is locally exponentially stable in H2-norm in the sense that
there exists M ≥ 1 such that for any initial condition z0 ∈ E
and with a zero initial condition of the observer (i.e., ẑn(0) =
0 for all 1≤ n≤ N), the system trajectory satisfies

‖z(t, ·)‖2
H2 +

N

∑
n=1

ẑn(t)2 ≤Me−2κt‖z0‖2
H2 (24)

for all t ≥ 0. Moreover, for any fixed κ ∈ (0,δ ], the con-
straints (22) are always feasible for N selected to be large
enough.

Proof: Let N ≥ N0 +1, P� 0, α > 1, β ,γ,µ,T,κ > 0,
C ∈ R1×2N , and d ∈ R be fixed as in the statement of the
theorem. Let the Lyapunov functional candidate defined by

V∞(X ,w) = X>PX + γ ∑
n≥N+1

λ
2
n 〈w,φn〉2 (25)

for all X ∈ R2N and all w ∈ D(A ). Here, one would like to
compute the time derivative of V along (10b) and (17). This
is not possible because the series ∑λ 3

n 〈w,φn〉2 is not con-
vergent, in general. To avoid this pitfall, let us introduce the
following “truncated versions” of the Lyapunov functional:

VM(X ,w) = X>PX + γ

M

∑
n=N+1

λ
2
n 〈w,φn〉2 (26)
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for arbitrary integers M ≥ N +1. The time derivative of VM
along (10b) and (17) reads

V̇M +2κVM = X>(F>P+PF +2κP)X +2X>PL (ζ +Φl(y))

+2γ

M

∑
n=N+1

λ
2
n ((−λn +q+κ)wn +anu+bnv)wn.

Invoking now Young’s inequality, we infer that 2λ 2
n wnanu =

2(λ 3/2
n wn)(λ

1/2
n anu) ≤ 1

α
λ 3

n w2
n + αλna2

nu2, hence
2∑

M
n=N+1 λ 2

n wnanu ≤ 1
α ∑

M
n=N+1 λ 3

n w2
n + α‖RNA 1/2a‖2

L2u2.
Here, we recall that ‖RNA 1/2a‖2

L2 = ∑n≥N+1 λna2
n < ∞

because a ∈ D(A 1/2) as discussed at the end of
Subsection II-C. Similarly, one has 2∑

M
n=N+1 λ 2

n wnbnv ≤
1
α ∑

M
n=N+1 λ 3

n w2
n +α‖RNA 1/2b‖2

L2v2 with ‖RNA 1/2b‖2
L2 =

∑n≥N+1 λnb2
n < ∞ because b ∈ D(A 1/2). Furthermore,

recalling that ζ = ∑n≥N+1 φ ′n(ξp)wn and using Cauchy-
Schwartz inequality, we infer that

ζ
2 ≤ 2

(
M

∑
n=N+1

φ
′
n(ξp)wn

)2

+2

(
∑

n≥M+1
φ
′
n(ξp)wn

)2

≤ 2
M

∑
n=N+1

φ ′n(ξp)
2

λ 2
n

M

∑
n=N+1

λ
2
n w2

n

+2 ∑
n≥M+1

φ ′n(ξp)
2

λ 2
n

∑
n≥M+1

λ
2
n w2

n

≤ 2Mφ

M

∑
n=N+1

λ
2
n w2

n +2RM‖A w‖2
L2

with Mφ =∑n≥N+1
φ ′n(ξp)

2

λ 2
n

<+∞ and RM =∑n≥M+1
φ ′n(ξp)

2

λ 2
n
→

0 as M → +∞ due to the asymptotic behaviors described
in Subsection II-B.2. Hence, with X̃ = col(X ,ζ ,Φl(y)) and
invoking (20), we infer

V̇M +2κVM ≤ 2
M

∑
n=N+1

λ
2
n Γnw2

n +2βRM‖A w‖2
L2

+ X̃>

Θ1,1(κ) PL PL
L >P −β 0
L >P 0 0

+αγ‖RNA 1/2b‖2
L2E>E

 X̃

where Γn = γ
{
−
(
1− 1

α

)
λn +q+κ

}
+βMφ for all n≥ N+

1.
We now have to invoke the sector condition from

Lemma 3.1. More precisely, provided X ∈ R2N and w ∈
D(A ) are such that |y− (CX + dζ )| ≤ l, Lemma 3.1 gives
Φl(y)(Φl(y)+CX +dζ )≤ 0. This implies that

V̇M +2κVM ≤ X̃>Θ1(κ)X̃ +2
M

∑
n=N+1

λ
2
n Γnw2

n +2βRM‖A w‖2
L2

as soon as, in view of (21), |(H −C)X +(1− d)ζ | = |y−
(CX +dζ )| ≤ l. With α > 1 and in view of (22), we deduce
that Γn ≤Θ3(κ)≤ 0 for all n≥N+1 while Θ1(κ)� 0. This
implies that

V̇M +2κVM ≤ 2βRM‖A w‖2
L2 , ∀M ≥ N +1 (27)

for all X ∈ R2N and w ∈ D(A ) so that |(H −C)X + (1−
d)ζ | ≤ l.

We now need to establish a connection between the con-
straint |(H−C)X +(1−d)ζ | ≤ l and the Lyapunov function
candidate. To do so, consider X ∈R2N and w∈D(A ) so that
V∞(X ,w) ≤ 1/µ . From Θ2 � 0 and the Schur complement,
we have

1
µl2

[
H−C 1−d

]> [H−C 1−d
]
�

[
P 0
0 γ

Mφ

]
.

Recall that ζ =∑n≥N+1 φ ′n(ξp)wn and Mφ =∑n≥N+1
φ ′n(ξp)

2

λ 2
n

<

+∞. Hence, the use of Cauchy-Schwartz inequality gives
ζ 2 ≤ Mφ ∑n≥N+1 λ 2

n w2
n. So, we deduce from the two latter

inequalities that

1
µl2 |(H−C)X +(1−d)ζ |2 ≤

[
X
ζ

]>[P 0
0 γ

Mφ

][
X
ζ

]
= X>PX +

γ

Mφ

ζ
2 ≤V∞(X ,w)≤ 1

µ
, (28)

which implies that |(H −C)X +(1− d)ζ | ≤ l, and so (27)
holds true.

Let now w0 ∈ E and consider zero initial conditions for
the observer, that is ẑn(0) = 0 for all 1≤ n≤N. This implies
that z0 = w0 while X(0) = col(0,πN0z0,0,πN0,NA z0) and
V∞(X(0),w0)< 1/µ . Assume that there exists t > 0 such that
V∞(X(t),w(t, ·)) ≥ 1/µ . Then, a continuity argument shows
the existence of t0 > 0 such that V∞(X(t),w(t, ·)) < 1/µ

for all t ∈ [0, t0) while V∞(X(t0),w(t0, ·)) = 1/µ . From
(28) we deduce that (27) holds for all t ∈ [0, t0]. An
integration on that time interval gives VM(X(t0),w(t0, ·)) ≤
e−2κt0VM(X(0),w0) + 2βRM

∫ t0
0 e−2κ(t0−τ)‖A w(τ, ·)‖2

L2dτ .
Letting M → +∞, we have RM → 0, hence
V∞(X(t0),w(t0, ·)) ≤ e−2κt0VM(X(0),w0) < 1

µ
, giving a

contradiction. This shows that V∞(X(t),w(t, ·)) < 1/µ for
all t ≥ 0. From (28), (27) holds for all t ≥ 0. Integrating
the latter equation and letting M → +∞ implies that
V∞(X(t),w(t, ·)) ≤ e−2κtVM(X(0),w0) for all t ≥ 0. The
claimed H2-stability estimate easily follows from the
definition (25) of V∞ and Lemma 2.2.

To conclude, let us show that, for any given κ ∈ (0,δ ],
the conditions (22) can always be satisfied for N sufficiently
large. To do so, we fix α > 1 arbitrarily and we set C = 0,
d = 0, β = T = N, and γ = 1/

√
N. Now, because ‖C̃1‖ =

O(1) and ‖B̃1‖ = O(1) as N → +∞, the application of the
lemma in appendix of [11] to the matrix F +κI implies that
the solution P� 0 to F>P+PF +2κP =−I satisfies ‖P‖=
O(1) as N→+∞. Since ‖L ‖=

√
2‖L‖ and ‖K̃‖= ‖K‖ are

independent of N while ‖P‖=O(1) and ‖E‖=O(1) as N→
+∞, we infer from the Schur complement that for N ≥N0+1
set large enough we have Θ1(κ) � 0 and Θ3(κ) ≤ 0. This
fixes the order N of the observer along with the decision
variables P,β ,γ,T . Applying again the Schur complement,
we infer that Θ2 � 0 for µ > 0 selected to be sufficiently
large. This completes the proof.

V. NUMERICAL ILLUSTRATION

We consider the PDE plant described by (1) with p= q= 2
and θ = π/4, giving an unstable open-loop system. The
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(a) State z(t,x)

0 1 2 3 4

Time (s)

0

1

2

O
u

tp
u

t z
x
(t,

p
)

sat(z
x
(t,

p
))

(b) Output z(t,ξp) and saturated output
satl(zx(t,ξp))

Fig. 1. Closed-loop system

system output is the saturated Neumann measurement (3) at
ξp = 0.5 with saturation level l = 1. We set the controller
and observer gain as K = −2.01 and L = 11.18. With
exponential decay rate κ = 0.5, the conditions of application
of Theorem 4.1 are found feasible for N = 3.

We consider the initial condition z0 ∈ E expressed by
z0(x) = 3.76 + 3.76x− 1.88x2. The closed-loop system is
simulated based on the 100 first modes of the PDE plant. The
time domain behavior for the closed-loop system is depicted
in Fig. 1. As predicted by Theorem 4.1, we achieve the
exponential decay of the PDE state despite the impact of
the saturation on the ouput, as depicted in Fig. 1(b).

VI. CONCLUSION

This paper has studied the local boundary feedback stabi-
lization of a reaction-diffusion equation in the presence of a
saturated Neumann measurement. This was made possible by
studying the stability of the closed-loop system in H2-norm.

APPENDIX

Proof of Lemma 2.2. Since A 1/2 is self-adjoint,
we have ‖A 1/2 f‖2

L2 =
〈
A 1/2 f ,A 1/2 f

〉
= 〈A f , f 〉. So,

it can be inferred on one side (using the spectral
representation of A ) that ‖A 1/2 f‖2

L2 = ∑n≥1 λn 〈 f ,φn〉2
while, on the other side (using the functional defini-
tion of A and an integration by parts) ‖A 1/2 f‖2

L2 =

−p
∫ 1

0 f ′′(x) f (x)dx = pcot(θ) f (0)2 + p
∫ 1

0 f ′(x)2dx. Invok-
ing the continuous embedding H1(0,1) ⊂ L∞(0,1), we de-
duce that ‖A 1/2 f‖L2 . ‖ f‖H1 . Moreover, since θ ∈ (0,π/2)
and p > 0, we have ‖ f ′‖L2 . ‖A 1/2 f‖L2 . We also have
‖ f‖2

L2 = ∑n≥1 〈 f ,φn〉2 . ∑n≥1 λn 〈 f ,φn〉2 = ‖A 1/2 f‖2
L2 be-

cause 0 < λ1 ≤ λn for all n ≥ 1. The two latter inequalities
show that ‖ f‖H1 . ‖A 1/2 f‖L2 . Adopting a similar approach,
we have ‖A f‖2

L2 = ∑n≥1 λ 2
n 〈 f ,φn〉2 = p2‖ f ′′‖2

L2 . Using
again that 0 < λ1 ≤ λn for all n ≥ 1, we get ‖A 1/2 f‖2

L2 =

∑n≥1 λn 〈 f ,φn〉2 . ∑n≥1 λ 2
n 〈 f ,φn〉2 = ‖A f‖2

L2 . Combining
all the above results, we infer that ‖ f‖2

H2 = ‖ f‖2
H1 +‖ f ′′‖2

L2 .
‖A 1/2 f‖2

L2 +‖A f‖2
L2 . ‖A f‖2

L2 = p2‖ f ′′‖2
L2 . ‖ f‖2

H2 .
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