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Abstract— The interaction of phase-separating systems with
chemical reactions is of great interest in various contexts,
from biology to material science. In biology, phase separation
is thought to be the driving force behind the formation of
biomolecular condensates, i.e. organelles without a membrane
that are associated with cellular metabolism, stress response,
and development. RNA, proteins, and small molecules par-
ticipating in the formation of condensates are also involved
in a variety of biochemical reactions: how do the chemical
reaction dynamics influence the process of phase separation?
Here we are interested in finding chemical reactions that can
arrest the growth of condensates, generating stable spatial
patterns of finite size (microphase separation), in contrast with
the otherwise spontaneous (unstable) growth of condensates.
We consider a classical continuum model for phase separation
coupled to a chemical reaction network (CRN), and we seek
conditions for the emergence of stable oscillations of the solution
in space. Given reaction dynamics with uncertain rate constants,
but known structure, we derive easily computable conditions
to assess whether microphase separation is impossible, possible
for some parameter values, or robustly guaranteed for all
parameter values within given bounds. Our results establish
a framework to evaluate which classes of CRNs favor the
emergence of condensates with finite size, a question that is
broadly relevant to understanding and engineering life.

I. MODELLING MICROPHASE SEPARATION
IN THE PRESENCE OF CHEMICAL REACTIONS

Phase separation has emerged as a key area within bi-
ological research over the last decade [4]. The physical
properties of phase separation are hypothesized to enable
living organisms to exercise fine control over their chemical
production [22]. Within the non-equilibrium cellular envi-
ronment, chemical reactions and phase separation combine
to produce a new class of physical systems, deemed active
emulsions [30] or active droplets [31]. Beyond biological
relevance, these systems have displayed intriguing proper-
ties in their own right [23], [26], yielding novel behavior
in both spatial organization and dynamical properties. By
combining both conserved dynamics (phase separation) and
non-conserved dynamics (chemical reactions), we can think

The work of FB was supported by the European Union under the
NextGenerationEU Grant Uniud-DM737. The work of EF and DO was
supported by the Sloan Foundation under Award G-2021-16831 and by the
U.S. NSF under CAREER Award 1938194 and FMRG:Bio Award 2134772.
The work of GG was supported by the European Union under the ERC
INSPIRE Grant 101076926.

1 Department of Mathematics, Computer Science and Physics, University
of Udine, Italy. blanchini@uniud.it

2 Department of Mechanical and Aerospace Engineering, Univer-
sity of California at Los Angeles, USA. efranco@seas.ucla.edu,
osmanovic.dino@gmail.com

3 Department of Industrial Engineering, University of Trento, Italy.
giulia.giordano@unitn.it

Fig. 1: Dispersion relation curves for phase separating systems. Condensate
size grows when the wave number κ decreases. When there is no separation
(red, dashed curve), condensates dissolve. In macrophase separation (red,
solid curve), typical in the absence of chemical reactions, condensates either
grow until they are macroscopically separated (for small κ) or dissolve
completely (for large κ), as the intermediate crossing point is an unstable
fixed point. In microphase separation (blue curve), which can be induced by
chemical dynamics, both large condensates (small κ) and small condensates
(large κ) have a negative growth rate, while condensates of intermediate size
have a positive growth rate, hence the mid crossing point is a stable fixed
point, leading to a prevalent condensate size.

of active emulsions as an extension of classical reaction-
diffusion models [3], [19]–[21], [24], [25], and bring similar
tools to bear on the analysis of their properties. Here we
are interested in establishing whether chemical reactions can
provide control over phase separating systems by inducing
microphase separation (MS), i.e. stable patterns of finite
size, as opposed to macrophase separation, i.e. patterns that
expand, or no phase separation (Fig. 1).

We model such systems by considering the time evolution
of n chemical species, with a vector of concentrations c(z) =
[c1(z) c2(z) . . . cn(z)] ∈ Rn

+, z ∈ Rds . Without loss of
generality, we assume that species 1 phase separates, so it
can be in either of two phases, condensed and dispersed,
respectively characterized by concentrations cc1 and cd1. The
overall dynamics is described by equation:

dc(z, t)

dt
= I(c(z, t)) +R(c(z, t)), (1)

where the term I(c(z, t)) = ∇ ·
(
D∇ δF (c(z,t))

δc(z,t)

)
describes conserved spatial dynamics, under the
Cahn-Hilliard [12] energy functional F (c(z, t)) =∫ {

ν(c1(z)− cc1)
2(c1(z)− cd1)

2 + γ2|∇c1(z)|2 + 1
2c

⊤ϵc
}
dz,

where γ > 0 is a length scale, ϵ ∈ Rn×n is a matrix of
constant attraction/repulsion parameters, and ν is an energy
scale. See also [27] and [14], [29] for similar approaches
combining the Cahn-Hilliard model for phase separation
and chemical dynamics. We infer the corresponding time
evolution via “model B” dynamics [18]. We assume
that every species has the same homogeneous diffusion
coefficient and molecular mass, hence the diffusion matrix
is D = dI , where d > 0 is a common diffusion constant.
The term R(c(z, t)) describes the reaction fluxes generated
by a set of chemical reactions, assuming the existence of
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a free energy source that maintains the rates at which the
reactions proceed [26].

Full analysis of (1) is usually rather complex, however
we can obtain information about the properties of the so-
lution by linearization (i.e., by treating each Fourier mode
of the system as independent and observing whether that
mode is unstable to infinitesimal perturbations), which can
give tractable results on the effects of chemistry on phase
separation. Linearization is a canonical method of treating
reaction-diffusion like problems; [16, Section III] and [29,
SI] provide details about linearization in a combined phase
separation/reaction model. We perform a linear stability
analysis of model (1) near the fixed point of the chemical dy-
namics R(cs) = 0: c(z, t) = cs+w exp(iκz+ρ(κ)t), where
w is small: w2 ≈ 0. The linearization around cs involves
the Jacobian matrices JI(κ) = ∇c(z)I(c(z, t))

∣∣
c=cs

of the
conserved spatial dynamics and JR = ∇c(z)R(c(z, t))

∣∣
c=cs

of the chemical reaction dynamics. We assume that the
phase-separating species is the first one, so that JI(κ) has
the symmetric structure:

JI(κ) =


µ|κ|2 − γ2|κ|4 −d|κ|2ϵ12 . . . −d|κ|2ϵ1n

−d|κ|2ϵ12 −d|κ|2 . . . −d|κ|2ϵ2n
...

...
. . .

...
−d|κ|2ϵ1n −d|κ|2ϵ2n . . . −d|κ|2

 , (2)

where ϵij represent spatial attraction/repulsion among
species, and µ > 0 depends on d, cc1, cd1 and cs. We thus
obtain the relationship

ρ(κ)w = [JI(κ) + JR]w, (3)

where the spectral abscissa ρ(κ) of (JI(κ) + JR) char-
acterizes the dynamics of spatially oscillatory behaviors.
The dispersion relation curve ρ(κ) depends on the wave
number κ: the growth rate of a spatial wave depends on
its wave number [11], [16]. Linearization allows us to make
quantitative predictions about the behavior of a given system
without computing the full solution to (1). We can use
linearization to discriminate between systems that undergo
microphase separation (MS), macrophase separation or no
phase separation. As previously mentioned, MS corresponds
to finite size patterns that do not change over time: as
illustrated in Fig. 1, this happens when ρ(κ) < 0 for small
κ, ρ(κ) > 0 for intermediate κ, and ρ(κ) < 0 for large κ.
In MS, spatial compartmentalization occurs with a particular
length scale, enabling precise control of droplets that can
operate like microreactors with “life-like” properties [30].

The design space of such a problem is large, in that
we have many possible chemical reaction networks (CRNs)
that can couple to phase separating systems. To assess the
likelihood of MS and identify interesting candidate CRNs
for experimental realization, in previous work we compu-
tationally explored the parameters and chemical reaction
networks that lead to matrices JI(κ) and JR in (3) [27].
The probability that ρ(κ) has three roots was evaluated when
generating either random JR matrices or random CRNs [28].

Here we consider the problem of inducing MS via chem-
ical reactions through a control-theoretic approach. Given

a CRN structure, whose rate parameters are unknown but
bounded in a known range, we rely on parametric robustness
approaches [5] and vertex results [9], [10], [17] to provide
conditions ensuring that MS is: impossible; possible for some
parameter values; or robustly guaranteed for all parameter
values in the range.

We achieve these conditions by converting the original
problem, formulated in terms of the spectral abscissa of
an uncertain matrix and thus challenging to handle, into a
problem formulated in terms of the robust analysis of the
determinant of an uncertain matrix, much simpler to tackle.

II. MICROPHASE SEPARATION: A SPECTRAL PROBLEM

To characterize the dispersion relation (3), we study the
spectrum of matrix J(κ) = JI(κ) + JR. Given (2), by
collecting the terms in |κ|2 and |κ|4 we can write JI(κ) =
J2|κ|2 + J4|κ|4 and J(κ) becomes:

J(κ) = JR + J2|κ|2 + J4|κ|4. (4)

Without restriction, we assume that JR can be rewritten
according to the BDC decomposition introduced in [6], [7],
[17]; this is possible for the Jacobian of any generic CRN.

Assumption 1. The Jacobian JR can be decomposed as
JR = B∆C, where ∆ = diag{∆1,∆2, . . . ,∆m} has posi-
tive diagonal entries representing the uncertain parameters
(the nonzero partial derivatives of the CRN system), while
matrices B ∈ Zn×m and C ∈ Zm×n represent the known
structure of the given CRN. The unknown parameters ∆j are
bounded as

∆ ∈ D = {∆: 0 < ∆−
j ≤ ∆j ≤ ∆+

j }, (5)

for given lower bounds ∆−
j and upper bounds ∆+

j .

We restrict our analysis to CRNs with one conservation law.

Assumption 2. For all ∆ ∈ D, matrix JR = B∆C
is singular and has n − 1 eigenvalues with negative real
part. Also, there exists a nonnegative vector v⊤ ≥ 0 such
that v⊤B = 0, representing a conservation law: since
v⊤B∆C = 0, v⊤ is a left eigenvector of JR associated
with the eigenvalue at 0.

Assumption 2 entails that matrix JR is marginally stable.
Its stability can be assessed through existing techniques
tailored to CRNs, proposed for instance in [1], [6], [8], [15].

We also introduce suitable assumptions on the symmetric
matrix JI(κ) = J2|κ|2 + J4|κ|4.

Assumption 3. The symmetric matrix J2 is indefinite, the
symmetric matrix J4 is negative semidefinite, and there exists
κ̄ such that JI(κ̄) = J2|κ̄|2 + J4|κ̄|4 is negative definite.

The Jacobian matrix J(κ) = JR + J2|κ|2 + J4|κ|4 in
(4) has eigenvalues λi(∆, κ), i = 1, . . . , n, and its spectral
abscissa (i.e., the maximum real part ℜ of its eigenvalues)
is ρ(∆, κ) = maxi {ℜ(λi(∆, κ)}. The eigenvalues of JR =
B∆C are λi(∆, 0), i = 1, . . . , n.

Assumption 4. The eigenvalue of matrix JR = B∆C
associated with the conservation law is λ1(∆, 0) = 0.
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Definition 1. A continuous function f(κ) has a positive sign
change if f(κ1) < 0 < f(κ2) for some κ1 < κ2, while it
has a negative sign change if f(κ1) > 0 > f(κ2). Moreover,
function f(κ) is initially positive (respectively, negative) if
there exists an open right neighborhood of 0, (0, κ̂), in which
the function is positive (respectively, negative).

We can now define the (robust) microphase separation
property that is the subject of our analysis.

Definition 2 (Occurrence of microphase separation). Sys-
tem (1) exhibits microphase separation (MS) if, for a given
∆ ∈ D, ρ(∆, κ) is initially negative (i.e., there exists κ̂ such
that ρ(∆, κ) < 0 for all κ ∈ (0, κ̂)), then has a positive sign
change and finally a negative sign change (i.e., ρ(∆, κ1) > 0
and ρ(∆, κ2) < 0 for some 0 < κ̂ < κ1 < κ2). System (1)
exhibits robust MS if this condition holds for all ∆ ∈ D.

The MS condition in Definition 2 describes a qualitative
behavior of ρ(∆, κ) consistent with the blue curve in Fig. 1:
the size of condensates shrinks for small κ, grows for
intermediate values of κ, shrinks again for large κ. For
known parameters, the condition can be tested by directly
computing the eigenvalue curves [27]. Departing from this
approach, our analysis aims to develop efficient methods
to tackle the case of uncertain CRN parameters: given a
range of possible parameter values, by taking advantage of
the BDC decomposition of the Jacobian of the chemical
reaction dynamics, we check whether the condition can or
cannot hold for some parameters in the range, and whether
it holds robustly for all parameters in the range.

III. ROBUST DETERMINANT CONDITIONS
FOR MICROPHASE SEPARATION

We obtain (robust) conditions for MS by mapping the
dispersion relation problem, involving the spectral abscissa
ρ(∆, κ), to a determinant problem. To this aim, given uncer-
tain CRN parameters ∆, whose values are bounded in the
set D as in (5), we consider the functions

Ψ−(κ) = min
∆∈D

det[−(B∆C + |κ|2J2 + |κ|4J4)], (6)

Ψ+(κ) = max
∆∈D

det[−(B∆C + |κ|2J2 + |κ|4J4)], (7)

which can be easily computed, as we will show in Sec-
tion III-B. In view of their definition, Ψ−(κ) ≤ Ψ+(κ).
Moreover, Ψ−(0) = Ψ+(0) = 0, because, in view of
Assumption 2, the determinants in (6) and (7) are 0 for
κ = 0. Both functions grow to infinity as κ → +∞, as
shown after Lemma 1.

Studying functions Ψ−(κ) and Ψ+(κ) allows to provide:
• a crucial necessary condition for MS: Ψ+ needs to be
initially positive (Theorem 1);
• a sufficient condition ensuring MS for some values of the
parameters (which we can determine): either Ψ− or Ψ+ is
initially positive and has a negative sign change (Theorem 2);
• a sufficient condition ensuring robust MS for all admissible
parameters: both Ψ− and Ψ+ are initially positive and have
a negative sign change (Theorem 3).

The technical challenge lies in relating the spectral ab-
scissa ρ(∆, κ) to the curves Ψ− and Ψ+. While a negative

value of the determinant det[−(B∆C + |κ|2J2 + |κ|4J4)]
implies positivity of the spectral abscissa ρ(∆, κ), the oppo-
site unfortunately is not true: the determinant may well be
positive even when ρ(∆, κ) > 0.

First assume only the chemical reaction parameters are
subject to uncertainty, which affects the entries of JR.

Theorem 1 (Necessary condition). If system (1) exhibits
microphase separation for some ∆ ∈ D, then Ψ+ is initially
positive.

Proof. Since ρ(∆, κ) < 0 necessarily requires that
det[−(B∆C+|κ|2J2+|κ|4J4)] > 0, then the maximum Ψ+

must be initially positive when ρ(∆, κ) is initially negative,
as required by Definition 2.

In Fig. 2A we illustrate a case in which Ψ+ is not initially
positive, hence MS is not possible; conversely, in Fig. 2B,
Ψ+ is initially positive.

We now state the other main results, whose proof requires
some technical lemmas and is thus reported in Section III-A.

Theorem 2 (Sufficient condition). System (1) exhibits mi-
crophase separation for some ∆ ∈ D if either Ψ− or Ψ+ is
initially positive and has a negative sign change.

Actual parameter values for which MS does occur can be
found following the procedure described in Section III-B.

In Figs. 2B and 2C, we illustrate the case in which MS is
possible for some ∆ ∈ D.

Theorem 3 (Robust sufficient condition). System (1) exhibits
microphase separation for all ∆ ∈ D if Ψ− is initially
positive (and hence Ψ+ is initially positive too) and Ψ+

has a negative sign change (and hence Ψ− has it too).

In Fig. 2D, we illustrate the case in which MS is robustly
guaranteed for all ∆ ∈ D.

Finally, we consider the case in which uncertainty affects
the parameters of both spatial dynamics (i.e., the entries of
JI ) and chemical dynamics (i.e., the entries of JR).

Corollary 1. Assume that J2 and J4 are diagonal matrices,
whose diagonal entries are uncertain parameters bounded
in intervals. Then, redefining the functions as Ψ−(κ) =
min∆,J2,J4

det[−(B∆C + |κ|2J2 + |κ|4J4)] and Ψ+(κ) =
max∆,J2,J4

det[−(B∆C+|κ|2J2+|κ|4J4)], all the previous
results still hold true.

A. Proofs of the main results

We begin with two technical lemmas. The first states that,
for large enough κ, we have Hurwitz stability.

Lemma 1. For any given ∆, limκ→+∞ ρ(∆, κ) = −∞.

Proof. Recall that J4 is negative semi-definite and take κ ≥
κ̄, with κ̄ defined in Assumption 3. The Lyapunov inequality(

JR + J2|κ|2 + J4|κ|4
)⊤

+
(
JR + J2|κ|2 + J4|κ|4

)
=

(B∆C)⊤ +B∆C + 2J2|κ|2 + 2J4|κ|4 ≤
(B∆C)⊤ +B∆C + 2J2|κ|2 + 2J4|κ|2|κ̄|2 =

|κ|2
[
(B∆C)⊤ +B∆C

|κ|2
+ 2(J2 + J4|κ̄|2)

]
< 0 (8)
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holds for κ large, because (J2+J4|κ̄|2) is negative definite
and the fraction converges to 0. This implies Hurwitz sta-
bility for κ large enough. To prove that limκ→∞ ρ(∆, κ) =
−∞, denote K = B∆C + κI and repeat the computation
for the perturbed matrix Jκ =

(
κI + JR + J2|κ|2 + J4|κ|4

)
to get

J⊤
κ + Jκ ≤ |κ|2

[
K⊤ +K

|κ|2 + 2(J2 + J4|κ̄|2)
]
< 0 (9)

for κ large, hence Jκ is Hurwitz. The spectral abscissa of(
JR + J2|κ|2 + J4|κ|4

)
is thus less than −κ, for κ large.

Since the determinant of the negative of a matrix of size
n is (−1)n times the product of the matrix eigenvalues,
limκ→+∞ ρ(∆, κ) = −∞ implies that limκ→+∞ Ψ−(κ) =
limκ→+∞ Ψ+(κ) = +∞.

Remark 1. If we take bounds ∆−
i > 0 and ∆+

i < ∞, by
compactness the limit in Lemma 1 is uniform in ∆ ∈ D.

Due to Lemma 1, if ρ(∆, κ) has a positive sign change,
then it needs to have a subsequent negative sign change.

Lemma 2. Under Assumption 2, if for some ∆ we have that
det[−(B∆C + |κ|2J2 + |κ|4J4)] is initially positive, as a
function of κ, then there exists κ̃ > 0 such that ρ(∆, κ) < 0
for 0 < κ ≤ κ̃.

Proof. Consider the characteristic polynomial

p(s, κ,∆) = det[sI − (B∆C + |κ|2J2 + |κ|4J4)]. (10)

For κ = 0, λ1 = 0 is an isolated root of the characteristic
polynomial p(s, 0,∆), while all the other roots λi, i > 1,
have negative real parts. In view of the continuity of the
eigenvalues with respect to κ, for a small, positive κ the roots
λi, i > 1, still have negative real part. Hence, the spectral
abscissa is given by the dominant real eigenvalue λ1 and
we show that, for a small, positive κ, λ1 becomes negative,
hence ρ(∆, κ) < 0. Write the characteristic polynomial as
p(s, κ,∆) = sn + pn−1(κ,∆)sn−1 + · · · + p1(κ,∆)s +
p0(κ,∆). For κ = 0, the constant term p0(0,∆) = 0, due to
the zero root, while pj(0,∆) > 0 for j > 0, since all other
roots have negative real part due to Assumption 2. Hence
the derivative of p computed at s = 0, assuming s real,
is positive: d

dsp(s, κ,∆)
∣∣
s=0

= p1(κ,∆) > 0. For a small
κ > 0 in a neighborhood of 0, the polynomial p(s, κ,∆)
becomes positive; since it is locally increasing in κ, the root
λ1, initially 0, moves to the left and becomes negative.

Proof. Theorem 2. If Ψ− is initially positive, then for all
∆, p(s, κ,∆) defined in (10) is initially positive. Lemma 2
ensures that ρ(∆, κ) < 0 in a right neighborhood of zero,
for all ∆. On the other hand, Ψ− becomes negative for
some larger κ, meaning that for some ∆∗, ρ(∆∗, κ) > 0,
so ρ(∆∗, κ) has a positive sign change. Then, ρ will have a
negative sign change ρ(∆∗, κ) < 0 for κ large in view of
Lemma 1.

If Ψ+ is initially positive, then for some ∆∗, p(s, κ,∆∗)
is initially positive. In view of Lemma 2, ρ(∆∗, κ) < 0 in a
right neighborhood of zero, for all ∆. On the other hand, Ψ+

becomes negative for some larger κ, meaning that ρ(∆, κ) >

0 for all ∆. Then ρ(∆∗, κ) < 0 has a positive sign change,
and eventually will have a negative sign change ρ(∆∗, κ) < 0
for κ large, again, in view of Lemma 1.

Proof. Theorem 3. If Ψ− is initially positive, then ρ(∆, κ) is
initially negative for all ∆. If Ψ+ has a negative sign change,
then ρ(∆, κ) becomes positive for all ∆ (before becoming
eventually negative).

Remark 2. If ρ(∆, κ) becomes positive, we cannot discrim-
inate whether the ensuing transition to instability is due to
the appearance of real or complex eigenvalues (unless JR is
Metzler, as in the case of networks of mono-molecular reac-
tions, and JI is diagonal, so that the dominant eigenvalue
is real). We believe that a supplementary analysis can be
performed resorting to value-set techniques [5] or to second
additive compound matrices [2] so as to possibly rule out
imaginary eigenvalues.

Corollary 1 can be proven by repeating the same argu-
ments, since the determinant is a multilinear function of all
the considered parameters if matrices J2 and J4 are diagonal.

B. Computing Ψ− and Ψ+ and checking criteria

Computing Ψ− and Ψ+ is simple, since they are respec-
tively the minimum and the maximum of 2m polynomials.

Proposition 1. Given the set D in (5), let D̂ be the set
of all its vertices: D̂ =

{
∆ : ∆j ∈ {∆−

j ,∆
+
j }

}
. Then, the

functions Ψ− and Ψ+, respectively defined in (6) and (7),
can be computed as

Ψ−(κ) = min
i

pi(κ), Ψ+(κ) = max
i

pi(κ), (11)

where pi(κ) = det[−(B∆(i)C + |κ|2J2 + |κ|4J4)] with
∆(i) ∈ D̂, i = 1, 2, . . . , 2m.

The curves Ψ− and Ψ+ are thus piecewise polynomials:
there exists a finite set of values κ1, κ2, . . . , κM for which
Ψ− (analogously, Ψ+) is a polynomial in each interval
[κh, κh+1]. Hence, Ψ− and Ψ+ are piecewise differentiable.

Proof. For any value of κ, the maximum and minimum in (6)
and (7) are achieved on the vertices D̂ of the hyper-rectangle
D, because the determinants are multilinear functions of
the uncertain parameters ∆i and any multilinear function
defined on a hyper-rectangle achieves both its minimum and
its maximum value on a vertex [5], [9], [10].

The fact that the curves Ψ− and Ψ+ are piecewise poly-
nomials follows from the fact that two different polynomials
of order N can intersect in at most N points.

It can be immediately seen that Proposition 1 allows us to
check the conditions of Theorems 1, 2 and 3 as follows.

Proposition 2. The following equivalences hold.
• Ψ− is initially positive iff all the polynomials pi(κ) are

initially positive.
• Ψ+ is initially positive iff at least one of the polynomials

pi(κ) is initially positive.
• Ψ− takes negative values iff at least one of pi(κ) does.
• Ψ+ takes negative values iff all pi(κ) do.
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Remarkably, checking the conditions for MS requires
the analysis of a finite number of polynomials. When the
sufficient conditions of Theorem 2 are met, and thus the
considered CRN structure can give rise to MS provided that
the parameters are suitably chosen, the following algorithm
allows us to identify values that do ensure MS.

Algorithm 1. To find parameter values ensuring MS:
• If Ψ− is initially positive and has a negative sign change,
find κ∗ for which Ψ−(κ∗) < 0. Then, the vertex polynomial
ph such that ph(κ∗) = Ψ−(κ∗) < 0 is associated with vertex
parameters ∆∗

sep ∈ D̂ ensuring MS.
• If Ψ+ is initially positive and has a negative sign change,
find κ̃ such that, for 0 < κ ≤ κ̃, the vertex polynomial
ph(κ) = Ψ+(κ) > 0. Then, ph is associated with vertex
parameters ∆̃sep ∈ D̂ ensuring MS.

Remark 3. The algorithm finds a vertex at which MS is
verified. Then, a region where MS is robustly verified can
be easily determined. Assume e.g. that we are in the first
case and the identified vertex has ∆i = ∆−

i . Consider the
reduced region [∆−

i ,∆
−
i +λ(∆+

i −∆−
i )], with 0 < λ < 1. By

iterating over decreasing λ, we may find that also Ψ+ has a
sign change: Ψ+(κ∗) < 0. Then, MS is robustly guaranteed
within the whole reduced region according to Theorem 3.

IV. TESTING MICROPHASE SEPARATION IN THE
PRESENCE OF CHEMICAL REACTIONS

We provide here a collection of examples where
we apply our proposed criteria to test robust
microphase separation in the presence of different
chemical reaction network structures. In all the
considered examples, we assume |κ|2J2 + |κ|4J4 =
diag

[
µ|κ|2 − γ2|κ|4 −d|κ|2 −d|κ|2 . . . −d|κ|2

]
, so

that the separating species is the first one (C1), and we take
µ = 1, d = 1 and γ2 = 0.03.
Example 1. Consider the CRN C1 + C3 ⇀ C2 + C4,
C2 ⇀ C1, C4 ⇀ ∅, ∅ ⇀ C3. The CRN system is formed
by equations ċ1 = −g13(c1, c3) + g2(c2) = −ċ2, ċ3 =
−g13(c1, c3)+c0, ċ4 = +g13(c1, c3)−g4(c4), corresponding
to the BDC-decomposable Jacobian matrix J = B∆C, with

B =

−1 1 −1 0
1 −1 1 0
−1 0 −1 0
1 0 1 −1

 , C =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,

∆ = diag
[
∂g13
∂c1

∂g2
∂c2

∂g13
∂c3

∂g4
∂c4

]
. With bounds ∆+

i =

0.5 and ∆−
i = 0.3 for all i, functions Ψ− and Ψ+ are

visualised in Fig. 2A. The necessary condition in Theorem 1
is violated, because Ψ+ is initially negative, hence MS is
never possible for ∆ ∈ D. Fig. 2A1 illustrates the lack of
MS on the full nonlinear simulation of a 2D system with
g13 = 0.856c1c2, g2 = 0.84c2, c0 = 0.59, g4 = 0.8c4.

Example 2. Consider the CRN C1 ⇀ C2 ⇀ C3 ⇀ C1
corresponding to equations ċ1 = −g1(c1) + g3(c3), ċ2 =
−g2(c2) + g1(c1), ċ3 = −g3(c3) + g2(c2), with Jacobian
J = B∆C,

B =

−1 0 1
1 −1 0
0 1 −1

 , C =

1 0 0
0 1 0
0 0 1

 , ∆ = diag
[
∂g1
∂c1

∂g2
∂c2

∂g3
∂c3

]
.

Fig. 2: Ψ− (blue) and Ψ+ (red) for the different examples we considered. In
Example 1 (panel A), Ψ+ is initially negative, thus violating the necessary
condition in Theorem 1: MS never occurs for ∆ ∈ D. In Example 2
(panel B), Ψ+ is initially positive and has a negative sign change: MS
occurs for some ∆ ∈ D. In Example 3 (panel C), Ψ− is initially
positive and has a negative sign change: MS occurs for some ∆ ∈ D.
In Example 4 (panel D), Ψ− (hence Ψ+) is initially positive and then Ψ+

(hence Ψ−) changes sign: MS occurs robustly for all ∆ ∈ D. Bottom
row panels (A1, B1, B2, C1, C2, D1, D2): full nonlinear simulations of
the examples considered, starting from the same initial conditions (t0);
occurrence of MS matches the expectation of our linear analysis. Simulation
parameters are in the main text. Full simulations can be downloaded at
https://github.com/osmanovicdino/CRNData.

Taking ∆−
i = 2 and ∆+

i = 5 for all i, Fig. 2B shows that MS
is possible, because the condition in Theorem 2 is satisfied:
Ψ+ is initially positive and has a negative sign change. A
parameter choice ensuring MS is ∆̃sep =

[
5 2 2

]
, com-

puted following Algorithm 1. Fig. 2B1 shows MS emergence
is possible in the full nonlinear system for g1 = 0.57c1, g2 =
0.27c2 and g3 = 0.98c3, which correspond to an initially
negative dispersion relation. Picking a different parameter
set, which violates the conditions of Theorem 2, does not lead
to MS as shown in Fig. 2B2, where g1 = 0.58c1, g2 = 0.13c2
and g3 = 0.78c3. Patterns coarsen slowly; at t → ∞ they
are expected to match those in Fig. 2A1.

Example 3. Consider the CRN C1 ⇌ C2, C1 + C2 ⇌ C3
and the corresponding system ċ1 = −g12(c1, c2)− g1(c1) +
g2(c2)+g3(c3), ċ2 = −g12(c1, c2)+g1(c1)−g2(c2)+g3(c3),
ċ3 = g12(c1, c2) − g3(c3), which has Jacobian J = B∆C
with

B =

−1 1 −1 −1 1
1 −1 −1 −1 1
0 0 1 1 −1

 , C =

1 0 1 0 0
0 1 0 1 0
0 0 0 0 1

⊤

,

∆ = diag
[
∂g1
∂c1

∂g2
∂c2

∂g12
∂c1

∂g12
∂c2

∂g3
∂c3

]
. When ∆−

i = 3

and ∆+
i = 5 for all i, as shown in Fig. 2C, MS is possible,

because the condition in Theorem 2 is satisfied: Ψ− is
initially positive and has a negative sign change. A parameter
choice ensuring MS is ∆∗

sep =
[
3 5 3 3 5

]
, computed

following Algorithm 1. Figs. 2C1 and C2 show nonlinear
simulations in which the system respectively does (g1 =
0.27c1, g2 = 0.92c2, g12 = 0.14c1c2, g3 = 0.77c3) or does
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not (g1 = 0.54c1, g2 = 0.5c2, g12 = 0.72c1c2, g3 = 0.77c3)
exhibit MS, as expected from our linear analysis.

Example 4. Consider the CRN C1 ⇌ C2 ⇌ C3, cor-
responding to system ċ1 = −g1(c1) + g2,1(c2), ċ2 =
−g2,1(c2) + g1(c1) − g2,2(c2) + g3(c3), ċ3 = −g3(c3) +
g2,2(c2), which has Jacobian J = B∆C

B =

−1 1 0 0
1 −1 −1 1
0 0 1 −1

 , C =

1 0 0 0
0 1 1 0
0 0 0 1

⊤

,

∆ = diag
[
∂g1
∂c1

∂g2,1
∂c2

∂g2,2
∂c2

∂g3
∂c3

]
. Taking ∆−

i = 1 and

∆+
i = 2 for all i, Fig. 2D shows that MS occurs robustly, for

all choices of ∆ within the bounds, because the condition in
Theorem 3 is satisfied: both Ψ− and Ψ+ are initially positive
and have a negative sign change. Figs. 2D1 and D2 show
example nonlinear simulations with two arbitrary parameter
sets in which the system always exhibits MS (g1 = 0.65c1,
g2,1 = 0.09c2, g2,2 = 0.69c2, g3 = 0.37c3 for D1 and
g1 = 0.74c1, g2,1 = 0.03c2, g2,2 = 0.22c2, g3 = 0.66c3 for
D2) consistent with the expectation from the linear analysis.

V. CONCLUDING DISCUSSION

Recent work [13], [14], [23] has extended the reaction-
diffusion framework to account for more complex models
of diffusive dynamics, such as usage of the Cahn-Hilliard
functional to model the conserved dynamics corresponding
to phase separation. While many studies have focused on
traditional reaction-diffusion systems [3], [19]–[21], [24],
[25], we are only beginning to explore phase separating
systems subject to chemical reactions, which can lead to
intriguing structural and dynamical properties [31].

We have considered the problem of predicting the emer-
gence of microphase separation (MS) in a continuum model
that couples phase separation and chemical reactions: spa-
tial dynamics affect how species arrange in space while
keeping their total concentration constant; chemical reaction
dynamics determine how the species locally inter-convert,
thus changing the total amounts of individual components.
MS is associated with the occurrence of stable spatial os-
cillations with regions of high density of material, known
as condensates. For uncertain chemical reaction parameters
bounded in a known interval, we have provided easy-to-
compute conditions to check whether MS can be ruled out,
or can arise for some parameters in the interval, or does
robustly arise for all parameters in the interval. Our approach
offers useful tools and insights for the experimental design
of robust phase-separating systems in synthetic biology or
material science.
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