
Multi-Agent Dynamic Scheduling with A Posteriori Path Tracking and
Collision Avoidance Using Model Predictive Control *

Jeremy Bertoncini, Viktoriya Nikitina and Matthias Gerdts 1

Abstract— This research work investigates a coordinated
multi-agent path planning and tracking method. The solution of
a pre-processed dynamic scheduling problem performs target
assignment and provides optimal starting times and paths
for each agent. Afterwards, a linear model predictive con-
troller ensures robust and fast path tracking while preventing
agents from collisions. This task is formulated as a discretized
quadratic programming (QP) problem and is solved using an
in-house developed semi-smooth Newton method. Numerical
experiments have demonstrated the efficiency of the approach.

I. INTRODUCTION

In the past decades, technological advances have consid-
erably contributed to a further improvement of autonomous
aerial vehicles (AAVs). Having a great potential to become
a game changer, they have been extensively integrated into
different areas of life such as urban mobility, logistics, agri-
culture etc. The ongoing upward trend will continue in the
long term despite pandemics, political instabilities or other
crises [1]. Thus, efficient operation and safe interaction of
autonomous agents are major research challenges to address.

To the best of authors’ knowledge, not many deterministic
approaches have been proposed to couple dynamic schedul-
ing, optimal path planning and MPC-based path tracking
with collision avoidance. [2], [3] investigate scheduling
problems using mixed-integer programming and present a
multi-agent path planning method under collision avoidance.
[4] provides interesting insights and results for dynamic
scheduling and optimal control of autonomous vertical take-
off and landing vehicles.

Collision avoidance is a strong requirement of robust path
planning and tracking methods. Optimal control problems
(OCP) dealt with are very often nonlinear and contain a large
number of constraints. Generation of collision-free optimal
trajectories may be performed by different approaches. Non-
linear nonconvex path planning methods demonstrated their
real-time efficiency in complex collision avoidance scenarios
in simulations, see [5], [6], [7], [8], as well as in experiments
using a quadrocopter equipped with a monocular camera
[9]. Nonetheless, the use of linearized models and linear
model predictive control (LMPC) is advantageous in terms of
robustness and real-time capability, see [10], [11]. Moreover,

* This research is funded by dtec.bw – Digitalization and Technology
Research Center of the Bundeswehr. dtec.bw is funded by the European
Union– NextGenerationEU.

1 Jeremy Bertoncini, Viktoriya Nikitina and Matthias Gerdts are
with the Institute of Applied Mathematics and Scientific Computing,
Department of Aerospace Engineering, University of the Bundeswehr
Munich, 85579 Neubiberg, Germany {jeremy.bertoncini,
viktoriya.nikitina, matthias.gerdts}@unibw.de

as centralized optimal control approaches suffer from their
size [12], separate consideration of multiple agents and their
coordination is a suitable approach, especially when dealing
with an increasing number of agents.

The main contribution of this work is the development of a
fast and efficient numerical method for optimal path planning
and tracking of AAVs. Combining dynamic scheduling with
coordinated LMPC, our approach benefits from the advan-
tages of these concepts and mitigates their downsides.

II. OVERALL PROBLEM DESCRIPTION AND
COUPLING STRUCTURE

Given a fixed number of agents, static targets and moving
obstacles with known dynamics, the goal is to compute an
optimal schedule, to assign each agent to a target, to provide
paths with the shortest length and to track these trajectories
by avoiding collisions with obstacles and other agents.

Our approach mainly consists of two blocks, see Figure 1.
The first part includes dynamic multi-agent scheduling and
optimal path planning. The solution of this bilevel mixed-
integer problem (MIP) comprises an optimal schedule and
optimal paths and is used as the input data for the second part
of the method. It is based on an efficient LMPC algorithm
and prevents agents from possible collisions with each other.

Dynamic Scheduling

of Agents with

Obstacle Avoidance

PATH PLANNING

Reference Paths

Optimal starting

times

Coordinated LMPC

with Inter-Agent

Collision Avoidance

PATH TRACKING

Fig. 1. Connection between dynamic scheduling (path planning) and
coordinated LMPC (path tracking)

Throughout this article, the number of agents, static targets
and dynamic obstacles are denoted by N ∈ N, T ∈ N and
Q ∈ N≥0, respectively, with the corresponding index sets
N := {1, . . . , N}, T := {1, . . . , T} and Q := {0, . . . , Q}.
The starting positions of all agents are denoted by xi, i ∈ N ,
and are supposed to be fixed and given. The whole space
domain is denoted by Ω ⊂ Rd, d ∈ {2, 3}. Moreover, static
regions and dynamic obstacles are denoted by ΩT,k, k ∈ T ,
and ΩQ,l(t), l ∈ Q, respectively. After having assigned an
agent to a target, all other targets are treated by the algorithm
as obstacles. The time-dependent set ΩS(t), across which any
agent is allowed to move on its way to its target region, can
be represented as

ΩS(t) = Ω \

(⋃
k∈T

ΩT,k ∪
⋃
l∈Q

ΩQ,l(t)

)
.

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 4297

Assumption II.1. Agents are supposed to be autonomous
aerial vehicles flying at their cruise velocity. Their flight
velocities vi are assumed to be constant (on average) and
equal implying vi = v, ∀i ∈ N , with v ∈ R>0.

This assumption is introduced due to numerical reasons.
It allows us to reduce the computational time considerably
by calculating only one value function for all agents flying
to the same target.

Assumption II.2. Within the framework of this article, the
obstacles are supposed to move periodically.

This simplification does not represent a limitation since
the method can be easily extended towards other dynamical
systems. More details can be found in [4].

III. PATH PLANNING PROBLEM STATEMENT

This section explains the path planning method within our
coupled approach. This part involves dynamic scheduling,
which assigns each agent to a target and provides optimal
starting times as well as optimal paths with the shortest
length by avoiding collisions with obstacles.

A. Bilevel Structure and Problem Description

The dynamic scheduling setting with a bilevel structure
can be described by two different optimization problems at
the upper and lower level.
Problem 1 (Upper Level: Scheduling of Agents).

min
ti,ωij ,ηik

N∑
i=1

(
ti + σ

T∑
k=1

Dk
i (ti)ηik

)
(1a)

subject to

ti +
Dk
i (ti)

β
− tj ≤M(1− ωij) +M(1− ηik) +M(1− ηjk)

for i < j, i, j ∈ N , k ∈ T , (1b)

tj +
Dk
j (tj)

β
− ti ≤Mωij +M(1− ηik) +M(1− ηjk)

for i < j, i, j ∈ N , k ∈ T , (1c)

T∑
k=1

ηik = 1 for i ∈ N , (1d)

ti ∈ [ti,min, ti,max] for i ∈ N , (1e)
ωij ∈ {0, 1} for i < j, i, j ∈ N , (1f)
ηik ∈ {0, 1} for i ∈ N , k ∈ T . (1g)

Herein, ti corresponds to the starting time of agent i, whose
flight duration to target k is denoted by Dk

i (ti), i ∈ N , k ∈
T . Furthermore, σ > 0 is a flight duration penalization term,
β > 0 is a scheduling constant, and M is a sufficiently
large constant to ensure that only one of constraints (1b)
or (1c) is active at the same time. Binary variables ωij and
ηik, i, j ∈ N , k ∈ T , are defined in the following way:

ωij =

{
1 if agent i starts before agent j,
0 otherwise

and

ηik =

{
1 if agent i flies to target k,
0 otherwise.

Constraints (1b) and (1c) are introduced to guarantee that
an agent flying to the same target as another one can start
only after some predefined period of time. For β = 1, this
period coincides with the whole mission time of the previous
agent. Next, equations (1d) ensure that each agent flies to
exactly one target. In addition, (1e) are required to define a
lower and upper bound for ti, i ∈ N . Finally, constraints
(1f) and (1g) correspond to the integrality conditions.

Note that in case that N ≥ T , an additional constraint
N∑
i=1

ηik ≥ 1 for k ∈ T

is introduced to guarantee that each target is reached by at
least one agent.

Denoting the length of the shortest path of agent i to target
k by dk(ti) and taking Assumption II.1 into account, Dk

i (ti)
can be expressed as

Dk
i (ti) = dk(ti)/v, i ∈ N , k ∈ T .

Herein, dk(ti) is a parametric function. It can be determined
solving the following parametric OCP, whose formulation
involves the arc length parameterization:
Problem 2 (Lower Level: Paths with Shortest Length).

dk(ti) := min
xi,ui

∫ ∞
ti

χΩS(t)(xi(t))dt (2a)

subject to

ẋi(t) = ui(t) for almost every t ∈ [ti,∞), (2b)
xi(t) ∈ ΩS(t) ∪ ΩT,k for every t ∈ [ti,∞), (2c)

ui(t) ∈ Ui(xi) =

{
{u ∈ Rnu | ||u|| = 1}, xi ∈ ΩS(t)

{0 ∈ Rnu}, xi ∈ ΩT,k

for almost every t ∈ [ti,∞), (2d)
xi(ti) = xi. (2e)

Herein, nu = d ∈ {2, 3}, xi corresponds to the initial
position of agent i, and χA is the indicator function.

B. Solution Procedure

The solution procedure in the first part of our method can
be summarized in the following way:

1) Solve lower level problems for every target k ∈ T
determining the value function V k(t, x) with the help
of the Hamilton-Jacobi-Bellman equation:

sup
u∈U(x), x∈ΩS(t)

{−∇xV k(t, x)>u(t)− 1} = 0. (3)

2) Insert parameters ti and given initial positions xi into
V k(t, x) and set dk(ti) := V k(ti, xi).

3) Compute Dk
i (ti) as indicated above, insert these func-

tions into (1a) and solve the upper level problem.

4298

4) Compute optimal control variables according to the
following equation derived from (3):

u∗i (ti, xi) = arg min
ui∈Ui(xi), xi∈ΩS(t)

{∇xV k(ti, xi)
>ui + 1)}.

5) Obtain optimal trajectories by inserting u∗i (ti, xi) into
the differential equation (2b) and solving it.

The numerical implementation of this concept involves
dynamic programming [13], Kruz̆kov transformation [14],
discretization of both the state and control space and in-
terpolation. The execution of these steps yields a single-
level mixed-integer nonlinear problem (MINLP). Since most
modern nonlinear solvers have proven to be not efficient
enough, an elegant piecewise linearization technique exten-
sively described in [4], [15] is applied. Its main advantage
is the possibility to control the linearization error at any
time point. The final discretized mixed-integer linear problem
(MILP) is solved using a well-performing linear solver [16].

IV. PATH TRACKING PROBLEM STATEMENT

This section explains the LMPC-based path tracking con-
cept of our coupled approach. Note that a detailed analysis
is omitted here since it goes beyond the scope of this work.

A. Motion Along A Reference Curve

The goal is to develop a path tracking controller based
on a purely kinematic 2D agent model following a planar
reference curve γr : [0, L] → R2 of length L > 0. Hereby,
γr is parameterized by its arc length s ∈ [0, L] such that
γr(s) := (xr(s), yr(s))

>. The nonlinear equations of motion
of an agent moving along a reference curve γr with a
constant flight velocity v can be expressed in terms of the
Frenet coordinates [17] such that:

ṡ(t) = v·cos(ψ(t)−ψr(t))
1−r(t)·κr(s(t)) ,

ṙ(t) = v · sin(ψ(t)− ψr(t)),
ψ̇(t) = v · κ(t),

κ̇(t) = u(t),

ψ̇r(t) = ṡ(t) · κr(s(t)).

(4)

Herein, t denotes the time, r(t) corresponds to the lateral
deviation of the agent position (x(t), y(t))> from the refer-
ence curve γr. Moreover, ψ(t) and κ(t) are the agent’s yaw
angle and its curvature, respectively. Similarly, ψr(t) and
κr(t) denote the reference curve’s yaw angle and its curva-
ture, respectively. Note that the curvature of the reference
curve is given by κr(s(t)) = ẋr(t) · ÿr(t)− ẏr(t) · ẍr(t) and
its yaw angle by ψr(s(t)) = arctan

(
ẏr(s(t))
ẋr(s(t))

)
.

An agent is steered by controlling the time derivative of its
curvature implying κ̇(t) = u(t). An observable state vector
y(t) = [r(t), ψ(t)−ψr(t)]> is introduced in order to linearize
the equations of motion (4). Indeed, for a given constant
flight velocity v, the approximations

ṡ ≈ v, ṙ(t) ≈ v(ψ(t)− ψr(t)) (5)

are acceptable under small deviations, i.e. y(t) ≈ (0, 0).
Finally, we obtain the following linear time-variant (LTV)
system: {

Ẋ(t) = A ·X(t) +B · u(t) + d(t),

y(t) = C ·X(t)
(6)

with X(t) = [r(t), ψ(t), κ(t), ψr(t)]
>,

A =

 0 v 0 −v
0 0 v 0
0 0 0 0
0 0 0 0

 , B =

 0
0
1
0

 ,

C =

[
1 0 0 0
0 1 0 −1

]
, d(t)> =

[
0 0 0 v · κr(t)

]
.

B. Inter-Agent Collision Avoidance

In the sequel, each curve uses a spline approximation. We
denote by (V)ij the projection of any vector ~V related to
agent i projected on spline j. While working with multiple
agents, inter-agent collisions may occur. For each agent,
any other one is viewed as a possible obstacle. Obstacles
are modeled by imposing linear state constraints on the
lateral deviation r(tn) at a discretized time step tn such
that r̄(tn) ≥ r(tn) ≥ r(tn), where r̄(tn) and r(tn) are the
maximal and minimal lateral deviation bounds, respectively.
The inter-agent collision avoidance is linear in order to keep
the multi-agent problem in the QP form. The bounds of
r(tn) may be deformed using an elastic Gaussian mode as
indicated in [11]:

rij(tn) ≤ rij(tn) +
∑
∀j 6=i

δij −
∑
∀j 6=i

δ̄ij ≤ r̄ij(tn), (7)

where δij and δ̄ij have the form:

δij(tn) =


Rij(tn) · exp

(
−(sii−ε(tn)−sij)c2

c11

)
if sii ≤ ε(tn)− sij ,

Rij(tn) · exp
(
−(sii+ε(tn)−sij)c2

c12

)
if sii ≥ sij + ε(tn),

Rij(tn) else.
(8)

Herein, sij indicates the arc length of agent i projected
on spline j with 1 < i, j < N . The exponent c2 is a
positive even integer whereas the coefficients c11 and c12 are
some positive constants. The term Rij defines a characteristic
corridor width along spline i for a possible avoidance of
agent j. The term ε(tn) denotes the length of the avoidance
trajectory δij(tn) and is computed via ε(tn) = cε ·

||vij(tn)||2
v

using the relative flight velocity rate of agents i, j ∈ N
and a multiplicator cε. Rij(tn) is a shape function defined

as Rij(tn) = cρ ·
(

1 +
ψr

i
j

ψr
j
i

)
with all angles lying between

(0, 2π]. As the kinematic model is equivalent to a point mass
model, cρ is tuned depending on the characteristic size of the
simulated agents.

A Frenet projection method and its operator ProjSi is
used to link the position of each agent to all splines. The

4299

operator ProjSi
employs a Newton method to determine a

minimal orthogonal distance (hereinafter referred to as dij).
Figure 2 visualizes the idea behind this projection method
for agent 1 (blue) and agent 2 (green) moving along the
respective splines S1 and S2.

Fig. 2. Two-agent collision avoidance set-up and projections

For i, j ∈ N , let the set Mi = {(xji , y
j
i), d

i
j ≤ rm}

contain all positions of agent j in a neighborhood of radius
rm around (xii, y

i
i). The elastic mode becomes then active

when (xji , y
j
i) ∈Mi, but sji ≥ sii.

Remark 1. In a scenario where agent i would come earlier
than agent j, sij would lie behind sii. In this case, a first-come
first-served rule would apply.

Note that a solution of the bilevel dynamic scheduling
problem (1) - (2) yields reference paths free of collisions
with obstacles. However, since agents may deviate from these
optimal paths to avoid each other, they may collide with
obstacles outside of the reference trajectories. To improve the
safety concept of our approach, the obstacles are oversized
on purpose by approximately twenty percents to provide each
agent with an acceptable flight corridor risk margin.

C. Coordinated Linearized Model Predictive Controller

Our approach considers all agents separately and assumes
that each agent knows the position of all other ones. In each
step of the MPC algorithm, an OCP has to be solved for every
agent. Using (6) as the underlying model, the QP-OCP can
be formulated as [11]:
Problem 3 (QP-OCP).

min
X,u

1

2

∫ tf

t0

[
X(t)> u(t)>

] [Y (t) 0
0 S(t)

] [
X(t)
u(t)

]
dt

(9a)

subject to the process dynamics (6), collision avoidance
constraints (7), some state constraints

Xmin(t) ≤ X(t) ≤ Xmax(t) (9b)

as well as control constraints

umin(t) ≤ u(t) ≤ umax(t). (9c)

For the future implementation of the coordinated LMPC,
the kinematic system (6) and Problem 3 are time-discretized
with the help of the trapezoidal rule. Therefore, Problem 3
may be treated as one belonging to the QP problem class of
the form:

Problem 4 (Predictive Discrete QP-OCP).

min
z:=(zn,...,zn+NH

)

n+NH∑
k=n

1

2
z>k Hkzk + c>k zk (10)

s.t. Akzk = αk, Bkzk ≤ ξk (11)

with z>k = [X>k u>k], Hk ∈ Rnz×nz positive semi-definite,
ck ∈ Rnz , Ak ∈ RnA×nz , αk ∈ RnA , Bk ∈ RnB×nz and
ξk ∈ RnB .

To obtain a solution, we use a local semi-smooth Newton
method developed at our institute. Its clear advantage is given
by the possibility to exploit a special structure of the system,
which can be rearranged as a (sparse) band matrix. For the
sake of brevity, the idea behind the method is not further
explained here. The interested reader is instead referred to
[11], [18].

The computational structure may be found in Algorithm 1.
For each agent, before solving Problem 4, all projections are
computed and stored for all prediction points of the LMPC
method. The agents’ positions are then regularized in order
to find the actual arc length sii of agent i located at (xii, y

i
i).

Indeed, depending on the lateral deviation rii(tn), the arc
length may be underevaluated using sii(tn) = v · tn and
needs to be therefore regularized. Subsequently, all relative
velocities are computed in order to calculate all coefficients
required for the collision avoidance method, see Subsection
IV-B. Problem 4 is finally solved for all agents i, i ∈ N .

Algorithm 1 Coordinated LMPC
1: Measure or estimate all states Xn at tn of all N agents
2: For all agents i : 1→ N :
3: Project the position of agent i on all j splines
4: Regularize the sii from the actual current positions
5: Compute relative velocities ||vij(tn)||2
6: If agent i’s starting time ti ≥ tn:
7: Solve Problem 4 and find uin
8: Set n+ 1← n and go to 1

V. ACHIEVED RESULTS
This section presents results achieved by the coupled

method elaborated in this work. The first part of the nu-
merical experiments was conducted on an Intel(R) Core
i7 computer with a 2.80GHz-CPU and an 8GB-RAM, the
second one on an Intel(R) Core i7 computer with a 3.60GHz-
CPU and an 16GB-RAM. In table I, all relevant parameters
are given for the whole algorithm. In numerical tests, a 2D
setting with d = 2 was considered. All agents were supposed
to be identical small-sized fixed-wing drones.

A. Dynamic Scheduling

Positions of agents and other objects inside the state space
Ω = [−200, 200]× [−200, 200] are defined in [m]. For xi ∈
ΩS(t), i ∈ N , the control set Ui(xi) is represented with the
help of the polar coordinates as:

Ui(xi) =
{

[cos θi, sin θi]
>
∣∣∣ θi ∈ [0, 2π)

}
.

4300

The starting positions of agents are equal to x1 =
[−110, 190]>, x2 = [−80, 190]>, x3 = [−50, 190]>, x4 =
[−20, 190]>, x5 = [−190, 50]>, x6 = [−180, 50]>, x7 =
[−170, 50]> and x8 = [−160, 50]>. All agents move with
a constant velocity of v = 10

[
m
s

]
. All obstacles are

represented by circles with radius 30[m] each. They move
periodically along two different circular trajectories with
respective velocities vQ,1 and vQ,2. The centers of the trajec-
tories are located both in the middle of the state space and
have respective radii RQ,1 and RQ,2. The target regions are
assumed to be circles with radius 10[m] each. Target 1 and
2 are located at [180,−20]> and [20,−180]>, respectively.
The constants ti,min and ti,max were chosen for all agents to
be equal to 0[s] and 300[s], respectively. In order to force a
collision, the starting times of agent 1 and 5 and their targets
were predefined such that t1 = t5 = 0[s] and η11 = η52 = 1.

Note that the most time-consuming part here is the com-
putation of as many value functions as there are targets. Once
these data are given, the solver requires 2.58[s] on average
to solve the final single-level MILP.

B. Coordinated Eight-Agents LMPC

The time horizon is tf = 5[s] with 100 time points using a
uniform grid. The frequency of the LMPC is therefore equal
to 20[Hz]. The length of all curves γi ranges from 290[m]
to 390[m]. The weight matrices Y (t) ∈ R4×4 and S(t) ∈ R
presented in Problem 3 are chosen as

Y =


h · 105 0 0 0

0 h · 104 0 −h
0 0 0 0
0 −h 0 h

 , S =
[
h · 104

]
.

The scenario considered by our coupled approach and
some results are roughly summarized in Figure 3. The plots
visualize positions of all eight agents and their collision-free
trajectories at a snapshot time t with t = 5, 25, 50, 100[s].
The obstacles shown as orange circles move periodically
following circular trajectories. As it can be seen, the splines
followed by agents 1 and 5 cross. However, they are pre-
vented from colliding with each other by the coordinated
LMPC. The collision avoidance effects are clearly shown in

TABLE I
PARAMETERS RELEVANT FOR PATH PLANNING AND TRACKING

Parameter Value Parameter Value
N 8 v 10

[
m
s

]
Q 6 RQ,1 / RQ,2 50 / 120[m]

T 2 vQ,1 / vQ,2 5.23 / 12.56
[
m
s

]
σ 1 β 3

tf 5[s] NH 100

h =
tf
NH

0.05[s] r̄ / r ±3[m]

rm 22.5[m] Rmax / Rmin ±0.25[m]

umax / umin ±0.3
[
rad

s2

]
κmax / κmin ±0.3

[
rad
s

]
c11 / c12 50 / 50 c2 4

cε 11 cρ 0.045

Figure 4. After the collision avoidance phase, their trajecto-
ries converge to the respective reference paths. The arc length
regularization introduced in Algorithm 1 is indeed essential
during the collision avoidance phase. Without it, the path
tracking quality would be impaired.

A full video of the scenario may be found at https://
youtu.be/RNDx6I0ezPs. Note that in the visualization,
each agent reaches the target assigned to it up to a tolerance
of O(hΩ), where hΩ is the step size of the uniform space
grid in Problem 2.

Fig. 3. Trajectories of eight agents at t = 5.0 seconds, t = 25.0 seconds,
t = 50.0 seconds and t = 100.0 seconds

Fig. 4. Collision avoidance of two agents at t = 13.5 seconds, t = 14.5
seconds, t = 15.5 seconds and t = 17.0 seconds

In Figure 5, the states ψ(t) and ψr(t) are plotted for t
ranging from 10[s] to 25[s] with a collision phase between
12.7[s] and 17.7[s]. Yaw angles of agents 1 and 5 are
characterized by a smooth evolution and oscillations around

4301

the respective reference yaw angles because of u1(t) and
u5(t), respectively, see Figure 6.

Fig. 5. States ψ and ψr of agents 1 and 5 during the collision avoidance
phase

Fig. 6. Controls u of agents 1 and 5 during the collision avoidance phase

Figure 7 shows the lateral deviation r(t). Outside of the
collision avoidance neighborhood, the maximum deviation’s
absolute amplitude is about 0.53[m] and occurs for agent 3.
During collision avoidance, the maximum absolute deviation
attained is equal to 3.09[m] and 1.25[m] for agent 1 and 5,
respectively.

Fig. 7. Lateral deviation per iteration for each agent

For all time iterations of the discrete LMPC-OCP method,
the required computational time per agent was under the
LMPC limit of 0.05[s] (i.e. 20[Hz]). For that reason, our
method has proven to be fast and efficient.

VI. CONCLUSION AND OUTLOOK

This paper proposed a novel multi-agent collision-free
method, which couples path planning on the basis of dynamic
scheduling and MPC-based path tracking. Exploiting a coor-
dinated MPC concept and thus avoiding complex centralized
systems of equations, the method elaborated in this work
has proven to be fast and efficient even during inter-agent
collision avoidance maneuvers.

The approach can be extended towards systems with time-
dependent flight velocity profiles. In the path planning part,
the objective function of the lower level problem (2) should
be reformulated. Moreover, an additional velocity control
variable should be introduced. This would imply an increase
in the dimension of the control space by one and hence

larger computational times. In the path tracking part, non-
constant velocities could be easily handled by substituting
a constant velocity v by a function v(t) and adding one
control feedback rule to the kinematic model (4). Note that
the generic kinematic model of the MPC algorithm may
be adapted to multiple platforms to increase its versatility
and extend its application domains. Future research projects
involve a 3D extension of our approach and its experimental
validity check.

REFERENCES

[1] Morgan Stanley Research, “Are flying cars preparing for takeoff?,” 01
2019.

[2] F. Borrelli, T. Keviczky, G. J. Balas, G. Stewart, K. Fregene, and
D. Godbole, “Hybrid decentralized control of large scale systems,” in
Hybrid Systems: Computation and Control (M. Morari and L. Thiele,
eds.), (Berlin, Heidelberg), pp. 168–183, Springer Berlin Heidelberg,
2005.

[3] A. Richards and J. How, “Aircraft trajectory planning with collision
avoidance using mixed integer linear programming,” in Proceedings
of the 2002 American Control Conference (IEEE Cat. No.CH37301),
vol. 3, pp. 1936–1941 vol.3, 2002.

[4] V. Nikitina, S. Rogovs, and M. Gerdts, “Piecewise linear value
function approximations in nonlinear dynamic scheduling problems
with vtols.” https://arxiv.org/abs/2303.03351, 2023.

[5] M. Castillo-Lopez, S. A. Sajadi-Alamdari, J. L. Sanchez-Lopez, M. A.
Olivares-Mendez, and H. Voos, “Model predictive control for aerial
collision avoidance in dynamic environments,” 2018 26th Mediter-
ranean Conference on Control and Automation (MED), pp. 1–6, 2018.

[6] B. Lindqvist, S. S. Mansouri, A.-a. Agha-mohammadi, and G. Niko-
lakopoulos, “Nonlinear mpc for collision avoidance and control of
uavs with dynamic obstacles,” IEEE Robotics and Automation Letters,
vol. 5, no. 4, pp. 6001–6008, 2020.

[7] M. Werling and D. Liccardo, “Automatic collision avoidance using
model-predictive online optimization,” in 2012 IEEE 51st IEEE Con-
ference on Decision and Control (CDC), pp. 6309–6314, 2012.

[8] M. A. Hurni, P. Sekhavat, and M. I. Ross, “Autonomous trajectory
planning using real-time information updates,” 08 2008.

[9] A. Al-Kaff, F. Garcia, D. Martin Gomez, A. de la Escalera, and
J. Armingol, “Obstacle detection and avoidance system based on
monocular camera and size expansion algorithm for uavs,” Sensors,
vol. 17, p. 1061, 05 2017.

[10] P. Falcone, M. Tufo, F. Borrelli, J. Asgari, and H. E. Tseng, “A
linear time varying model predictive control approach to the integrated
vehicle dynamics control problem in autonomous systems,” in 2007
46th IEEE Conference on Decision and Control, pp. 2980–2985, 2007.

[11] A. Britzelmeier and M. Gerdts, “A nonsmooth newton method for
linear model-predictive control in tracking tasks for a mobile robot
with obstacle avoidance,” IEEE Control Systems Letters, vol. 4, no. 4,
pp. 886–891, 2020.

[12] B. Gutjahr, L. Gröll, and M. Werling, “Lateral vehicle trajectory
optimization using constrained linear time-varying mpc,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 18, no. 6, pp. 1586–
1595, 2017.

[13] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
University Press, 1 ed., 1957.

[14] S. N. Kružkov, “Generalized solutions of the hamilton-jacobi equations
of eikonal type. i. formulation of the problems; existence, uniqueness
and stability theorems; some properties of the solutions,” Mathematics
of the USSR-Sbornik, vol. 27, p. 406, 04 1975.

[15] M. Gerdts, S. Rogovs, and G. Valenti, Solving Complex Intersection
Management Problems Using Bi-level MINLPs and Piecewise Lin-
earization Techniques, pp. 255–273. Springer International Publishing,
2022.

[16] Gurobi Optimization LLC, “Gurobi optimizer reference manual 9.1,”
03 2020.

[17] Hao Su, Justin Solomon, “Curves: Parametrization, curvature,
frenet frame.” https://geoml.github.io/Lectures/L3_
Curves_I.pdf.

[18] R. Mifflin, “Semismooth and semiconvex functions in constrained
optimization,” SIAM Journal on Control and Optimization, vol. 15,
pp. 957–972, 1977.

4302

