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Abstract— This paper presents an alternative approach for
the derivation of the Kalman filter for descriptor systems. The
descriptor system is assumed to be regular and of index-one.
The proposed filtering algorithm is designed based on the well-
known projection theorem approach. The algorithm is simple
and convenient for recursive estimation and can be easily ex-
tended to complex systems with additive/multiplicative random
uncertainty. The developed results are applied to estimate the
state of charge and local currents of a parallel connected
Lithium-ion battery pack, whose modeling naturally comes out
to be a descriptor system. Simulation results demonstrate a
significant accuracy of our approach under different levels of
initialization error and noise.

Index Terms— Descriptor system, Kalman filtering, Projec-
tion theorem, Li-ion battery pack, SOC estimation.

I. INTRODUCTION

Descriptor systems, also known as differential-algebraic
equations (DAEs) or singular systems, arise naturally in
many engineering and scientific applications where there
are constraints and interdependent equations that describe a
system’s behaviour [1]. These systems combine differential
equations, which describe the system’s behaviour over time,
with algebraic equations, which impose constraints on the
system’s behaviour. The importance of descriptor systems
emanates from the fact that they provide a powerful tool for
modeling complex systems that are difficult or impossible to
describe with ordinary differential equations (ODEs) alone.
In comparison to normal state space systems, descriptor
systems not only preserve the structure of the physical system
but also describe static constraints and impulse behaviours
[2]. These systems arise in a variety of applications, in-
cluding electrical circuits, mechanical systems, chemical and
biological processes, and robotics [3]–[5]. In this paper, we
consider stochastic descriptor systems which are a natural
extension of deterministic descriptor systems, where the
system behaviour is subject to random uncertainty [6].

Kalman filter is a widely used algorithm for estimating the
state of a system based on noisy measurements. The devel-
opment of Kalman filters for stochastic descriptor systems
is an important area of research, as it enables the estimation
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and control of complex systems subject to both noise and
constraints. The literature for the design of Kalman filter for
descriptor systems is not rich, and only a limited number
of results have been presented [7]–[11]. In [7], the authors
have solved the filtering problem based on the least squares
method while in [8], the maximum likelihood criterion is
considered. The stochastic shuffle algorithm proposed in [9]
retains important statistical properties and therefore gives the
solution to the descriptor Kalman filtering problem. In [10],
the authors have considered the Kalman filter estimation
for the descriptor system as a data fitting problem that
does not need Gaussian assumption on system noises. For
rectangular descriptor systems subjected to uncertainties, a
robust Kalman filter is designed in [11]. For the descriptor
systems with correlated noises, the optimal and steady-
state filter is designed by transferring the system to an
equivalent non-singular system with correlated noises in [12].
The optimal unbiased minimum-variance state estimation of
descriptor systems via the unknown input filtering method is
in [13]. But all these algorithms designed in [7]–[11] have
complicated derivations and can not be easily applied to any
system.

The projection theorem has a significant physical signifi-
cance in state estimation for dynamic systems as it projects
the system state onto the subspace of the measured data
[14], [15]. Specifically, the projection equation provides a
way to decompose the system state into a part that lies in
the subspace of the measured data and a part that lies in
the orthogonal complement of the subspace [16]. It has the
benefits of being convenient for recursion and optimal in the
sense of minimum variance. In other words, the projection
theorem is a kind of orthogonal decomposition, which makes
the recursion of the algorithm convenient for implementation.

Lithium-ion (Li-ion) batteries have emerged as the pre-
ferred choice for a wide range of applications, including-
consumer electronics, electric vehicles (EVs), and renew-
ableenergy storage systems [17]. The performance of these
Li-ion batteries is strongly dependent on the battery’s state
of charge (SOC). Accurate SOC estimation is crucial for
a battery management system to effectively monitor and
control a Li-ion battery pack, ensuring safe and efficient
operation, prolonging the battery pack’s lifetime and provid-
ing better performance. But the internal states of individual
cells within a Li-ion battery pack are likely to differ due to
cell inconsistencies caused by manufacturing tolerances and
usage conditions [18]. These inconsistencies in the individual
cells of a battery pack can lead to issues such as voltage
imbalance, which can cause the weaker cells to overcharge

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 2570



or over-discharge, leading to a reduction in overall battery
pack performance and capacity and, in some cases, even
damage or failure of the battery pack [19]. Therefore, it is
essential to monitor and balance the individual cells within
a battery pack to ensure optimal performance and prolong
the life of the battery pack. Moreover, as the battery pack
consists of hundreds of cells, monitoring each and every
cell naturally puts a cost and sensing constraint. Contrary
to series-connected battery packs, which are governed by
ODEs only, the dynamics of parallel-connected battery packs
are evidently more challenging and require the solution of
descriptor systems [18], [20]. In this paper, as an application
to our proposed methodology, we estimate SOC and local
currents of a parallel connected battery pack realized by a
double-capacitor equivalent circuit model (ECM).

In light of the aforementioned discussion, the main con-
tribution of this paper is that we have provided an alter-
native way to derive the Kalman filtering algorithm for
descriptor systems using the projection theorem approach.
The advantage of this approach is that it is convenient for
recursion and optimal in the sense of minimum mean square
error (MMSE). Moreover, the estimation by the designed
algorithm is unbiased and can be easily extended to complex
systems having multiplicative/additive random uncertainty.
To test the practical feasibility of the developed algorithm,
it is applied to estimate SOC and local currents of a parallel
connected Li-ion battery pack.

The organization of the remaining paper is as follows.
Section II formulates the problem and decomposes the de-
scriptor system by solving the algebraic constraint. Section
III presents a new straightforward and convenient approach
to designing Kalman filter for descriptor systems based on
the well-known projection theorem. Section IV formulates
the DAE framework for a parallel connected battery pack
under minimal sensing. The effectiveness of the proposed
work towards initialization errors and noises is demonstrated
in Section V. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider a linear stochastic discrete-time descriptor sys-
tem of the form:

Exk+1 = Axk + Buk + Gwk, (1a)
yk = Cxk + vk, (1b)

where xk ∈ Rn is a state vector, uk ∈ Rm is the input vector,
yk ∈ Rp is the output vector, wk ∈ Rh is the process noise
and vk ∈ Rp is the measurement noise. The system matrices
E ,A ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×h and C ∈ Rp×n are
known. Also, the matrix E is singular i.e. rank(E) = n0 < n.

Before proceeding to the filtering algorithm, we assume
the following:

i The matrix pair (E ,A) is regular and of index-one, i.e.,

rank

[
E A
0 E

]
= n+ rank E .

ii The process noise, wk and measurement noise, vk
are uncorrelated zero mean white Gaussian with co-
variance Qk and Rk respectively, i.e., E[wkv

T
j ] =

0, E[wkw
T
j ] = Qkδkj and, E[vkvTj ] = Rkδkj , where

δkj is the Kronecker delta, Qk and Rk are the symmetric
positive definite matrices.

Using singular value decomposition (SVD), we find two non-
singular matrices U and V such that

UEV =

[
In0

0
0 0

]
, UAV =

[
A11 A12

A21 A22

]
,

UB =

[
B1

B2

]
,UG =

[
G1

G2

]
and CV =

[
C1 C2

]
.

Now, the system (1) explicitly can be written in the form

xd,k+1 = A11xd,k +A12xa,k + B1uk + G1wk, (2a)
0 = A21xd,k +A22xa,k + B2uk + G2wk, (2b)
yk = C1xd,k + C2xa,k + vk, (2c)

where xk = V
[

xd,k

xa,k

]
. (2d)

Since, we assume the system to be regular and of index-one,
the matrix A22 is non-singular. Therefore, (2b) implies that

xa,k = −A−1
22 (A21xd,k + B2uk + G2wk) . (3)

Thus, system (1) is equivalent to the following system

xd,k+1 = A0xd,k + B0uk + G0wk, (4a)
yk = C0xd,k +D0uk + ῡk, (4b)

where A0 := A11 −A12A−1
22 A21, B0 := B1 −A12A−1

22 B2,

G0 := G1 −A12A−1
22 G2, C0 := C1 − C2A−1

22 A21,

D0 := −C2A−1
22 B2, D1 := −C2A−1

22 G2,

and, ῡk := vk +D1wk.

The system (4) is non-singular having measurement
noise ῡk of zero mean and correlation coefficient
Rk = Rk + D1QkDT

1 . Moreover, it is correlated with
the process noise wk with covariance Tk = QkDT

1 .

III. DESCRIPTOR KALMAN FILTERING USING
PROJECTION THEOREM APPROACH

A. Projection Equation Development

For the system model (4) with correlated noises, we will
derive the recursive Kalman filtering algorithm such that
it is optimal in the sense of MMSE. The derivation of
the algorithm is based on the projection theorem and the
projection equation, which leads to the intuitive and simplest
form of derivation. By [14], if two random variables A and
B are orthogonal, the projection equation can be expressed
as

Proj[A|B] = E[A] + Cov[A,B]Var−1[B](B− E[B]). (5)

In other words, Proj[A|B] is the minimum variance estima-
tion of A based on the measurement data space B.
Let x̂d,k|k be the MMSE estimation of xd,k given the
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measurement data sequence y0:k ≜ [y0, y1, . . . , yk] upto
time instant k and x̂d,k|k−1 be the prior estimation of xd,k

given y0:k−1, the measurement data sequence given upto time
instant k − 1. More precisely, x̂d,k|k is the projection of
xd,k on the subspace generated by {y0:k}. In the same way,
x̂d,k|k−1 is the projection of xd,k onto the space {y0:k−1}.
Thus, we define

x̂d,k|k−1 := Proj[xd,k | y0:k−1], (6a)
x̂d,k|k := Proj[xd,k | y0:k]. (6b)

The corresponding prior and posterior error covariance, re-
spectively, are defined as

Pd,k|k−1 := E[ed,k|k−1e
T
d,k|k−1], (7a)

Pd,k|k := E[ed,k|keTd,k|k], (7b)

where ed,k|k−1 = xd,k − x̂d,k|k−1 is the prior error and
ed,k|k = xd,k − x̂d,k|k is the estimation error.
With the help of projection theorem, we can clearly say that
the prior error ed,k|k−1 and estimation error ed,k|k are per-
pendicular to the spaces {y0:k−1} and {y0:k}, respectively.

B. Kalman Filtering Algorithm

This subsection will deduce the recursive filtering algo-
rithm for stochastic descriptor systems, which is optimal in
the sense of MMSE.

Theorem 1: Under the assumptions (i) and (ii) defined
for the system (1), the prior estimate and the prior error
covariance are as follows

x̂d,k|k−1 = A0x̂d,k−1|k−1 + B0uk−1, (8)

Pd,k|k−1 = A0Pd,k−1|k−1AT
0 + G0Qk−1GT

0 . (9)
Proof: For the augmented system (4), the prior estimate

from (6a) can be computed as

x̂d,k|k−1 = Proj[xd,k | y0:k−1] = E[xd,k | y0:k−1].

On putting the value of xd,k in the above equation, we obtain
(8). Based on this, the prior error is given as

ed,k|k−1 = A0ed,k−1|k−1 + G0wk−1. (10)

On substituting (10) in (7a), we obtain (9). This completes
the proof.

Theorem 2: The expression of the posterior estimate and
the posterior error covariance are

x̂d,k|k = x̂d,k|k−1 +Kkỹk|k−1, (11)

x̂a,k|k = −A−1
22

[
A21x̂d,k|k + B2uk + G2ŵk|k

]
, (12)

Pd,k|k = [I −KkC0]Pd,k|k−1[I −KkC0]T +KkRkKT
k ,

(13)

Pa,k|k = A−1
22 A21Pd,k|k

(
A−1

22 A21

)T
+A−1

22 G2Pϵ

(
A−1

22 G2

)T
,

(14)
where

Kk = Pd,k|k−1CT
0 [C0Pd,k|k−1CT

0 +Rk]
−1, (15)

ŵk|k = Tk[C0Pd,k|k−1CT
0 + Rk]

−1ỹk|k−1, Pϵ = Qk −
Tk[C0Pd,k|k−1CT

0 + Rk]
−1T T

k and ỹk|k−1 = yk − ŷk|k−1,

represents the estimation of process noise, error covariance
of process noise and innovation, respectively.

Proof: From (6b), we have

x̂d,k|k = Proj[xd,k | y0:k] = Proj[xd,k | y0:k−1, yk]

= Proj[xd,k | y0:k−1] + Proj[ed,k|k−1 | ỹk|k−1]

= x̂d,k|k−1 +Cov[ed,k|k−1, ỹk|k−1]

×Var−1(ỹk|k−1)ỹk|k−1. (16)

Now, for the computation of innovation, we need to find the
prior estimate of yk, which is obtained as

ŷk|k−1 = C0x̂k|k−1 +D0uk. (17)

Thus, innovation ỹk|k−1 is computed as

ỹk|k−1 =yk − ŷk|k−1 = C0ed,k|k−1 + ῡk. (18)

Based on the above equation, we have

Cov[ed,k|k−1, ỹk|k−1] =E[ed,k|k−1(C0ed,k|k−1 + ῡk)
T ],

=Pd,k|k−1CT
0 . (19)

Thus, the innovation covariance matrix is defined as

Var(ỹk|k−1) =E[ỹk|k−1ỹ
T
k|k−1],

=E[(C0ed,k|k−1 + ῡk)(C0ed,k|k−1 + ῡk)
T ],

=C0Pd,k|k−1CT
0 +Rk. (20)

On substituting (19) and (20) in (16), we get

x̂d,k|k =x̂d,k|k−1 + Pd,k|k−1CT
0 ×

(C0Pd,k|k−1CT
0 +Rk)

−1ỹk|k−1

=x̂d,k|k−1 +Kkỹk|k−1 (21)

where Kk = Pd,k|k−1CT
0 [C0Pd,k|k−1CT

0 + Rk]
−1 is the

Kalman gain. The estimation error ed,k|k is

ed,k|k = xd,k − x̂d,k|k = ed,k|k−1 −Kkỹk|k−1. (22)

On putting (22) in (7b) and simplifying it, we obtain

Pd,k|k =E[ed,k|keTd,k|k]
=Pd,k|k−1 − E[ed,k|k−1ỹ

T
k|k−1]K

T
k −

KkE[ỹk|k−1ed,k|k−1
T ] +KkE[ỹk|k−1ỹ

T
k|k−1]K

T
k

=Pd,k|k−1 − Pd,k|k−1CT
0 KT

k −KkC0Pd,k|k−1

+KkC0Pd,k|k−1CT
0 KT

k +KkRkKT
k (23)

Rearranging (23), we obtain (13). Now, the estimation of
process noise wk is defined as

ŵk|k =Proj(wk | y0:k),
=E[wk] + Cov[wk, ỹk|k−1] Var

−1(ỹk|k−1)ỹk|k−1

=Tk[C0Pd,k|k−1CT
0 +Rk]

−1ỹk|k−1. (24)

The estimation error wϵ and error covariance Pϵ are

wϵ = wk − ŵk|k = wk − Tk[C0Pd,k|k−1CT
0 +Rk]

−1ỹk|k−1,

Pϵ = E[wϵw
T
ϵ ] = Qk − Tk[C0Pd,k|k−1CT

0 +Rk]
−1T T

k .
(25)
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From (3), we have

x̂a,k|k = −A−1
22

[
A21x̂d,k|k + B2uk + G2ŵk|k

]
. (26)

Thus, x̂a,k|k is obtained by substituting (11) and (22) in (26).
And, its estimation error ea,k|k is

ea,k|k = xa,k − x̂a,k|k = −A−1
22 A21ed,k|k −A−1

22 G2wϵ.
(27)

Thus, posterior error covariance is computed by

Pa,k|k = E[ea,k|keTa,k|k]

= A−1
22 A21Pd,k|k

(
A−1

22 A21

)T
+A−1

22 G2Pϵ

(
A−1

22 G2

)T
(28)

This completes the proof.
Finally, the updated estimate x̂k|k is given by

x̂k|k = V
[

x̂d,k|k
x̂a,k|k

]
, (29)

and filtering estimation error covariance matrix is

Px,k|k = V
[

Pd,k|k Pda,k|k
Pad,k|k Pa,k|k

]
VT , (30)

where
PT
ad,k|k =Pda,k|k = E[ed,k|keTa,k|k],

=− Pd,k|k
(
A−1

22 A21

)T
.

Thus, the recursive Kalman filtering algorithm for stochastic
descriptor system is derived such that it is optimal in the
sense of MMSE. The unbiasedness of the estimation is
derived in [14].

We now summarize the whole filtering procedure in Al-
gorithm 1.

Algorithm 1 Algorithm for the designed Kalman filter
• Set number of measurements N and initialize the filter

with x̂0|0 and Px,0|0.
• Initialize xd,k with x̂d,0|0 and Pd,0|0 = (Px,0|0)11.
• Compute the matrices A0, B0, G0, C0, D0 and D1.
• Update the measurement noise ῡk.
• for k = 1 : N

– Find x̂d,k|k−1 and Pd,k|k−1 from (8) and (9).
– Compute the Kalman gain from (15).
– Find the estimate x̂k|k and covariance Pd,k|k from

(11) and (13).
– Compute ŵk|k and Pϵ by using (22) and (25).
– Find the estimate x̂a,k|k and Pa,k|k by using (13) and

(14).
– Calculate x̂k|k and Px,k|k on using (29) and (30).

• end for

IV. LITHIUM-ION BATTERY PACK FORMULATION

In this paper, we consider a double capacitor ECM of
Li-ion battery, as shown in Fig 1, because of its emerg-
ing importance [21]. The electrolytic resistance within the
battery is represented by Rt. The Rs − Cs unit accounts
for the electrode surface region exposed to the electrolyte,
while as Rf − Cf unit represents the bulk inner part of the
electrode. The majority of the charge stored in chemical form
is accounted by Cf while Cs in comparison to Cf , is very
small and consequently experiences quick voltage changes
during charging and discharging [21], [22]. The cell current
is I which is taken positive for charging and negative for
discharging, Vt is the terminal voltage, Vs being the voltages
across the capacitance, Cs, and Voc(Z) represents the OCV.
It is important to mention here that we use a linear relation
between SOC and OCV [23].

Fig. 1. Double capacitor-based ECM of a Li-ion battery cell

The dynamics of j-th battery cell in a parallel connected
battery pack is given by [24]

xj,k+1 = Ãjxj,k + B̃jvj,k + Λ̃j , (31a)

yj,k = C̃jxj,k + D̃jvj,k + Ψ̃j , (31b)

where xj,k = [Zj,k Vsj,k]
T is the state vector, vj,k =

Ij,k is the input vector and yj,k = Vtj,k is the output
vector. Here Zj,k denotes the SOC of the jth cell. The
matrices Ãj , B̃j , C̃j , D̃j , Λ̃j , and Ψ̃j are given by Ψ̃j =

Rsjβj

Rj
, Ãj =

[
1− αjTs

CfjRj

Ts

CfjRj
αjTs

CsjRj
1− Ts

CsjRj

]
, B̃j =

[
TsRsj

CfjRj
TsRfj

CsjRj

]
,

Λ̃j =

[
− Tsβj

CfjRj
Tsβj

CsjRj

]
, C̃j =

[
Rsjαj

Rj

Rfj

Rj

]
, and, D̃j =[

Rtj +
RsjRfj

Rj

]
.

Now, consider a block of n cells connected in parallel.
Under the reduced sensing scenario, we assume only the
total current is measurable and local currents are unknown.
Since cells are connected in parallel, measuring the terminal
voltage of one of the cells is sufficient. Mathematically,
Kirchhoff’s voltage law puts the following algebraic con-
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straint
Rspαp

Rp
Zp,k +

Rfp

Rp
Vsp,k + (Rtp +

RspRfp

Rp
)Ip,k +

Rspβp

Rp
=

Rsqαq

Rq
Zq,k +

Rfq

Rq
Vsq,k + (Rtq +

RsqRfq

Rq
)Iq,k +

Rsqβq

Rq
,

∀p, q ∈ {1, 2, ..., n}, p ̸= q.
(32)

Similarly, Kirchhoff’s current law imposes the following
algebraic constraint

∑n
j=1 Ij,k = It,k, where It,k is the total

current applied to battery system. Therefore, under reduced
sensing scenario, the parallel connected battery pack of n
cells, naturally gives rise to descriptor system [1], which
takes the form given by (2), where xk = [xd,k xa,k]

T and
uk = [It,k 1]. xd,k =

[
x1,k x2,k · · · xn,k

]T
,

xa,k =
[
I1,k I2,k · · · In,k

]T
, ȳk =[

y1,k y2,k · · · yn,k
]T

, yk = ȳk − Ψ
and xd,k ∈ R2n, and, xa,k, ȳk ∈ Rn.

Furthermore, Ψ =
[
Ψ̃1 Ψ̃2 · · · Ψ̃n

]T
,

A11 = diag(Ã1, Ã2, · · · , Ãn), A12 =
diag(B̃1, B̃2, · · · , B̃n), C1 = diag(C̃1, C̃2, · · · , C̃n),
C2 = diag(D̃1, D̃2, · · · , D̃n),

A21 =


C̃1 −C̃2 0 · · · 0

C̃1 0 −C̃3 · · · 0
...

...
...

. . .
...

C̃1 0 0 · · · −C̃n

0 0 0 · · · 0

 ,

A22 =


D̃1 −D̃2 0 · · · 0

D̃1 0 −D̃3 · · · 0
...

...
...

. . .
...

D̃1 0 0 · · · −D̃n

1 1 1 · · · 1

 ,

B1 =


0 Λ̃1

0 Λ̃2

...
...

0 Λ̃n

 , B2 =


0 Ψ̃1 − Ψ̃2

0 Ψ̃1 − Ψ̃3

...
...

0 Ψ̃1 − Ψ̃n

−1 0

 .

V. RESULTS AND DISCUSSION

To evaluate the effectiveness of our proposed filter design
approach, we have considered a battery pack with two cells
in parallel. The capacity and nominal voltage of the two
cylindrical Li-ion battery cells considered in our study are
2.6 Ah, 3.7 V and 2.3 Ah, 3.6 V , respectively. The
input current to the battery pack is shown in Fig. 2. which
is generated from an urban dynamometer driving schedule
(UDDS) and scaled to a discharging range of 0–6 A [21]. The
values of the parameters of DC-ECM for the two cells, as
shown in Table I, are evaluated using circuit analysis methods
[25]. To incorporate process and measurement noise we take,
Qk = 10−4 and Rk = 10−3I2, where I2 represents the
identity matrix of dimension two. To evaluate the robustness

TABLE I
DC-ECM PARAMETERS USED IN SIMULATION STUDY

Parameter Cell 1 Cell 2 Units
Rt 0.015 0.010 [Ω]
Rs 0.045 0.030 [Ω]
Rf 0.055 0.040 [Ω]
Cs 110 200 [F]
Cf 9100 5630 [F]

of our approach, we randomize the initial conditions of both
SOC and current and run the simulation for 1000 Monte
Carlo runs. The sampling time Ts is taken as 1s.

0 1000 2000 3000 4000 5000 6000
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rr
e
n

t[
A
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Fig. 2. Applied total input current It from UDDS drive cycle.

Fig. 3 denotes the true and estimated SOC of cell 1 and cell
2, while Fig. 4 represents the truth and estimation of local
currents of cell 1 and cell 2. Despite a large initial estimation
error, the SOC estimates and the local cell current estimates
quickly converge the truth. Root mean square error (RMSE)
of both SOC and local cell current is plotted in Fig. 5, which
clearly demonstrates that SOC and current for the cells are
rapidly converging to zero.

In practice, the battery management system might not
always be aware of the initial SOC of the concerned cell.
Moreover, the presence of high noise levels, particularly in
measurement, can not be ignored. Therefore, for practical
applicability, our method must be robust to SOC initialization
error and should be able to appropriately track the SOC in the
presence of high levels of process and measurement noise. In
order to evaluate the effectiveness of our proposed filtering
methodology towards different initialization errors and noise,
we developed and carried out several simulations based on
combinations of three factors: the initialization error, process
noise level, and measurement noise level, and accordingly
calculated the error (%) in SOC. The six different cases
considered in the simulation study are outlined in Table
II. As evident from Table II, the proposed method has
significant accuracy and is effective towards different levels
of initialization error and noises.
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Fig. 3. True and estimated SOC’s of cell 1
and cell 2.
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Fig. 4. True and estimated current of cell 1
and cell 2.
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Fig. 5. RMSE plot of SOC and current.

TABLE II
SIMULATION TEST DESIGN

Test Initialization Process Noise Measurement Error(%)
# Error Level Noise Level SOC
1 5% 0.0001 0.001I2 1.12
2 5% 0.001 0.01I2 2.16
3 5% 0.001 0.1I2 3.54
4 20% 0.0001 0.001I2 1.34
5 20% 0.001 0.01I2 3.07
6 20% 0.001 0.1I2 4.48

VI. CONCLUSION

In this paper, we have provided an alternative approach
to derive the Kalman filter for descriptor systems using
the well-known projection theorem approach. The descriptor
system is assumed to be regular and of index-one. The
proposed approach is simple and convenient and can be
easily extended to complex systems with additive and mul-
tiplicative random uncertainties. To test the applicability of
our proposed methodology, we estimated the state of charge
and local currents of a parallel connected Li-ion battery
pack, whose modeling naturally comes out to be a descriptor
system. As evident from the simulation results, despite large
initial estimation errors and noise, the filter is able to track
the truth quickly, which demonstrates the effectiveness of our
approach.
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