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Abstract— This paper studies a class of non-cooperative
games, known as N -cluster game, which subsumes both co-
operative and non-cooperative nature among multiple agents
in the two problems. Moreover, we consider a partial-decision
information game setup, i.e., the agents have no direct access
to the decisions of other agents in all clusters, and hence need
to communicate with each other. We propose a distributed NE
seeking algorithm by a synthesis of consensus and gradient
tracking. Unlike other existing discrete-time methods for N -
cluster games where a common step-size is either publicly
known by all agents or only known by agents from the same
cluster, the proposed algorithm can work with non-uniform
constant step-sizes, which allows the agents (both within and
across the clusters) to choose their own preferred step-sizes.
We prove that all agents’ decisions converge linearly to their
corresponding NE so long as the largest step-size and the
heterogeneity of the step-sizes are small. We verify the derived
results through a numerical example in a Cournot competition
game.

Index Terms— Nash equilibrium (NE) seeking, distributed
methods, non-cooperative games.

I. INTRODUCTION

Simultaneous social cost minimization and Nash equilib-
rium (NE) seeking among multiple clusters (or coalitions)
modeled by N -cluster game have received great attention
in recent researches, due to its wide application in many
fields, such as business management, transportation systems,
political science, sports, to list a few. In such N -cluster
games, the agents in the same cluster cooperatively minimize
a cluster-level cost function, and collectively act as a virtual
player to play an N -player non-cooperative game across
clusters.

Related work: Distributed NE seeking under partial-
decision information over graphs have been researched, see
[1], [2] for unconstrained or locally set constrained games,
[3]–[5] for aggregative games, and [6]–[8] for generalized
games. Recently, NE seeking agorithms for N -cluster games
have started to draw researchers’ attention [9]–[12]. Specif-
ically, the work in [9] proposed a NE seeking algorithm
based on a dynamic average consensus and the gradient play,
assuming all agents’ decisions are directly accessible, i.e.,
full-decision information. Different from the full-decision
information setup in [9], the work in [10] modeled the
decisions of the agents in the same cluster by a decision
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vector that needs to be agreed on, and introduced a leader-
following hierarchy inter-cluster communication mechanism,
where only the cluster leader can exchange information
across different clusters. The works in [11], [12] also consid-
ered the partial-decision information setup, and supposed that
all agents from all clusters are connected. The work in [13]
considered the same cluster-level decision vector modeling as
in [10], and developed a discrete-time NE seeking algorithm
based on gradient play with no explicit communications
between clusters. As compared to the primal methods based
on gradient play, gradient tracking is preferred for its faster
convergence speed without sacrificing the accuracy, and
hence has found its great advantages in the fields of N -
cluster games recently [14]–[18]. Though being theoretically
equivalent, as compared to modeling the collection of all
agents as a single decision vector [10], [13], [16], [17], it
would be natural to model the decision variable of each
agent individually in practical applications [9], [11], [14],
[15], [18]. For example, each branch (i.e., agent) of the firm
(i.e., cluster) can only decide how much goods it can produce
rather than the collection of all branches. In general, it has no
control on other branches’ production amount, and there is
usually no such agreement among branches requiring their
production amount to be equal. Moreover, in discrete-time
methods, the step-size is usually assumed to be publicly
known by all agents, and hence a common step-size agreed
by all agents is chosen in the algorithm development [13],
[14], [16]–[18]. Concerning a distributed setup, it would be
preferred that agents are allowed to select their own preferred
step-sizes, as it does not require the central coordination
of the step-size in the implementation of the algorithm.
However, introducing such non-uniform step-sizes may not
always guarantee the convergence, and also brings substantial
complexity in the convergence analysis. The work in [15]
allows agents from different clusters to use different step-
sizes. However, agents from the same cluster still adopt a
common step-size, and the full-decision information game
setup was considered.

Contributions: The main contributions of this paper are
summarized as follows. 1) As compared to modeling the
collection of all agents as a single decision vector [10],
[13], [16], [17], this paper models the decision variable
of each agent in each cluster individually, which is more
ameanable to the applications where agents can only control
their own actions. Moreover, we consider a partial-decision
information game setup, i.e., the agents only have direct
access to their own decisions. In contrast to the distributed
setups in [16]–[18] where the agent in the same cluster needs
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to reach a common decision through average consensus,
this work does not impose a common decision requirement
within clusters. Specifically, the agents estimate other agents’
decisions via a leader-following consensus protocol across
clusters over a high-level network. This is different from
the leader-following hierarchy inter-cluster communication
mechanism as in [10], [12], [16] where there is a pre-defined
leader to exchange information across clusters. Hence, this
approach allows more inter-cluster communication channels.
Meanwhile, the agents in the same cluster perform the gra-
dient tracking updates over a low-level network. Compared
with the two level communication networks in [11], [18],
we do not require the intra-cluster communication graph
to be a part of the inter-cluster communication graph, and
allow the two level networks to be independent of each
other, which is more general. 2) Furthermore, in terms
of the implementation of the distributed protocols, most
works either consider undirected graph or directed graph
with doubly stochastic weighting matrix [15], [16], which is
relatively straightforward in terms of the analysis. However,
for directed graphs, there may not always exist a doubly
stochastic weighting matrix [19]. Thus, in our work, we
consider row stochastic weighting matrix for the high level
network and column stochastic weighting matrix for the low
level network, which increases the application range of the
method. Though such techniques have also been studied in
distributed optimization, the convergence analysis is much
more complicated in multi-cluster games. 3) Different from
all existing discrete-time methods for N -cluster games where
either a common step-size is publicly known by all agents
[13], [14], [16], [17] or only known by agents from the
same cluster [15], we consider non-uniform step-sizes, i.e.,
all agents (both among and across) the clusters are allowed to
choose their own preferred constant step-sizes. We prove that
all agents’ decisions converge linearly to their corresponding
NE so long as the largest step-size and the heterogeneity of
the step-sizes are small enough.

Notations: We use 1m for an m-dimensional vector with
all elements being 1, and Im for an m×m identity matrix.
For a vector π, we use diag(π) to denote a diagonal matrix
formed by the elements of π. For any two vectors u, v,
their inner product is denoted by ⟨u, v⟩; their weighted inner
product due to a positive vector (i.e., vector with all elements
being positive) π is denoted by ⟨u, v⟩π ≜ u⊤diag(π)−1v.
The transpose of u is denoted by u⊤. Moreover, we use
∥u∥2 for its standard Euclidean norm, i.e., ∥u∥2 =

√
⟨u, u⟩,

and ∥u∥π for its weighted Euclidean norm due to π, i.e.,
∥u∥π = ∥diag(

√
π)−1u∥2. For vector a, we use [a]i to

denote its i-th entry. The transpose and spectral norm of
a matrix A are denoted by A⊤ and ∥A∥2, respectively. The
matrix norm ∥A∥π induced by ∥ · ∥π is defined as ∥A∥π ≜
∥diag(

√
π)−1A diag(

√
π)∥2. We use ρ(A) to represent the

spectral radius of a square matrix A, and A∞ to indicate its
infinite power (if it exists) limk→∞ Ak.

II. PROBLEM STATEMENT

An N -cluster game, defined by Γ(N , {J i}, {Rni}), is a
multi-player non-cooperative game played among N clusters,
where each cluster, indexed by i ∈ N ≜ {1, 2, . . . , N}, con-
sists of a group of agents, denoted by Vi ≜ {1, 2, . . . , ni},
to cooperatively minimize a cluster-level cost function J i.
Denote n ≜

∑N
i=1 ni. Then, the cluster-level cost function

J i : Rn → R is defined as

J i(x) ≜ 1
ni

∑ni

j=1 J
i
j(x

i,x−i), ∀i ∈ N ,

where J i
j(x) is a local cost function of agent j in cluster

i, xi ≜ [xi⊤
1 , . . . , xi⊤

ni
]⊤ ∈ Rni is a collection of all agents’

decisions in cluster i with xi
j ∈ R being the action of agent j

in cluster i, x−i ∈ Rn−ni denotes a collection of all agents’
decisions except cluster i, and x ≜ [x1⊤, . . . ,xN⊤]⊤. A
vector x∗ ≜ (xi∗,x−i∗) ∈ Rn is said to be an NE of the
N -cluster non-cooperative game Γ(N , {J i}, {Rni}), if and
only if J i(xi∗,x−i∗) ≤ J i(xi,x−i∗), ∀i ∈ N .

Motivated by the work in [20], we assume the agents are
equipped with two level networks: a high-level network for
agents’ decisions exchange across clusters and N low-level
networks for agents’ (partial) gradient exchange within the
cluster. For the low-level network in each cluster i ∈ N , it is
a directed graph consisting of all agents in the same cluster,
denoted by Gi(Vi, E i) with an adjacency matrix Ai ≜ [aijk] ∈
Rni×ni , aijk > 0 if (k, j) ∈ E i and aijk = 0 otherwise. We
assume (k, k) ∈ E i,∀k ∈ Vi. For the high-level network, it
is a directed graph consisting of all agents in all clusters,
denoted by Ḡ(V̄, Ē) with an adjacency matrix Ā ≜ [āpq] ∈
Rn×n, āpq > 0 if (q, p) ∈ Ē and āpq = 0 otherwise. We
assume (p, p) ∈ Ē ,∀p ∈ V̄ . The following two standard
assumptions on the two level networks are imposed.

Assumption 1: For i ∈ N , the digraph Gi is strongly
connected. The associated adjacency matrix Ai is column
stochastic, i.e., 1⊤

ni
Ai = 1⊤

ni
.

Assumption 2: The digraph Ḡ is strongly connected. Its
associated adjacency matrix Ā is row stochastic, i.e., Ā1n =
1n.

Under Assumption 1, it is known that Ai is primitive
and column stochastic, then we denote its right eigenvector
corresponding to the eigenvalue of 1 by πi ≜ [πi

1, . . . , π
i
ni
]⊤,

such that 1⊤
ni
πi = 1. Then, πi corresponds to Ai’s non-1ni

Perron vector with eigenvalue 1, and hence all elements in πi

are positive, and Ai
∞ = πi1⊤

ni
. Define ι ≜ maxi∈N ∥πi∥2,

πi ≜ niπ
i, and π ≜ [π1⊤, . . . ,πN⊤]⊤. Denote the smallest

and largest elements of π by π and π, respectively. With
the above notations, we can obtain that

√
π∥ ·∥πi ≤ ∥·∥2 ≤√

π∥ · ∥πi and
√
π∥ · ∥π ≤ ∥ · ∥2 ≤

√
π∥ · ∥π based on

the definitions of the weighted Euclidean norm, which will
be frequently applied in the subsequent analysis. Moreover,
under Assumption 1, it follows from [21, Lemma 1] that
the adjacency matrix Ai holds that ∥Ai − Ai

∞∥πi < 1,
and ∥Ini

− Ai
∞∥πi = 1. Define σAi ≜ ∥Ai − Ai

∞∥πi . Let
σ̄1 ≜ maxi∈N σAi and ς1 ≜ 1+σ̄2

1

1−σ̄2
1

.
Next, we make the following assumption on the agents’

local cost functions.
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Assumption 3: For each j ∈ Vi, i ∈ N , the local cost
function J i

j(x
i,x−i) is convex, continuously differentiable in

xi; the partial gradient with respect to xi
k, ∀k ∈ Vi (denoted

by ∇i
kJ

i
j(x) for simplicity), is L-Lipschitz continuous in x,

i.e., for any x,x′ ∈ Rn, we have ∥∇i
kJ

i
j(x)−∇i

kJ
i
j(x

′)∥2 ≤
L∥x− x′∥2.

The game mapping of Γ(N , {J i}, {Rni}) is defined as
F (x) ≜ [∇x1J1(x)⊤, . . . ,∇xNJN (x)⊤]⊤. Then, it follows
from Assumption 3 that F (x) is Lipschitz continuous, i.e.,
for any x,x′ ∈ Rn, we have ∥F (x)−F (x′)∥2 ≤

√
nL∥x−

x′∥2. Next, the following assumption on the game mapping
condition is supposed.

Assumption 4: The game mapping F of game Γ is
strongly monotone on Rn with a constant χ > 0, i.e., for any
x,x′ ∈ Rn, we have ⟨F (x)−F (x′),x−x′⟩ ≥ χ∥x−x′∥22.

Remark 1: Under Assumptions 3 and 4, game Γ admits
a unique NE x∗. Moreover, at NE, F (x∗) = 0n, and hence
⟨F (x),x− x∗⟩ ≥ χ∥x− x∗∥22.

III. ALGORITHM

In this section, we present a distributed NE seeking
strategy for the N -cluster game under partial-decision in-
formation scenario, followed by the detailed convergence
analysis.

For the notational convenience, agent j ∈ Vi in cluster
i ∈ N of the low-level network is referred to agent ji ≜ ji

with n0 = 0 in the high-level network. Hence, its action
variable xi

j is relabeled by yji , i.e., xi
j = yji . Then, each

agent j ∈ Vi, i ∈ N needs to maintain the action variable
xi
j , and gradient tracker variables gijk for ∀k ∈ Vi. Moreover,

in the high-level network, each agent p ∈ V̄ also needs
to maintain an estimation variable ypq for the action yq
of agent q ∈ V̄ . For i ∈ N , p ∈ V̄ , we denote that
yp
(i) ≜ [yp1i , . . . , y

p
ni
i
]⊤ ∈ Rni ,yp ≜ [yp⊤

(1), . . . ,y
p⊤
(N)]

⊤ ∈
Rn,y(i) ≜ [y1i⊤, . . . ,yni

i⊤]⊤ ∈ Rnin. We use subscript t
to denote the values of all these variables at time-step t. The
update laws are designed as follows.

high-level network: p, q ∈ V̄

ypq,t+1 =
∑n

l=1 āply
l
q,t + δpāpq(yq,t − ypq,t) (1a)

low-level network: j, k ∈ Vi, i ∈ N

xi
j,t+1 = xi

j,t − γi
jg

i
jj,t, (1b)

gijk,t+1 =
∑ni

l=1 a
i
jlg

i
lk,t +∇i

kJ
i
j(y

ji

t+1)−∇i
kJ

i
j(y

ji

t ),

(1c)

with arbitrary xi
j,0 ∈ R, yji

0 ∈ Rn and gijk,0 = ∇i
kJ

i
j(y

ji

0 ),
where δp is a constant parameter for agent p ∈ V̄ , and
γi
j > 0 is a constant step-size sequence adopted by agent

j ∈ Vi, i ∈ N . Denote the largest step-size by γM ≜
maxj∈Vi,i∈N γi

j and the average of all step-sizes by γ̄ ≜
1
n

∑
j∈Vi,i∈N γi

j . Define the heterogeneity of the step-size
as the following ratio, ϵγ ≜ ∥γ − γ̄∥2/∥γ̄∥2, where γ ≜
[γ1

1 , . . . , γ
1
n1
, . . . , γN

1 , . . . , γN
nN

]⊤ and γ̄ ≜ γ̄1n.

IV. CONVERGENCE ANALYSIS

The following notations are made throughout the con-
vergence analysis for convenience. For ∀k ∈ Vi, i ∈ N ,
gi
k,t ≜ [gi1k,t, . . . , g

i
nik,t

]⊤ ∈ Rni denotes the stacked
partial gradient tracker with respect to agent k of cluster
i, ḡi

k,t ≜ 1
ni
1⊤
ni
gi
k,t ∈ R denotes the average of the

partial gradient tracker with respect to agent k of clus-
ter i, gt ≜ [g111,t, g

1
22,t, . . . , g

N
nNnN ,t]

⊤ ∈ Rn denotes
the stacked gradient tracker of all clusters, ∇i

kJ
i(y

(i)
t ) ≜

[∇i
kJ

i
1(y

1i

t ), . . . ,∇i
kJ

i
ni
(y

ni
i

t )]⊤ ∈ Rni denotes the stacked
partial gradient with respect to agent k of cluster i eval-
uated with the the corresponding estimation variable, and
∇i

kJ̄
i(y

(i)
t ) ≜ 1

ni
1⊤
ni
∇i

kJ
i(y

(i)
t ) ∈ R denotes the average

of the partial gradient with respect to agent k of cluster
i evaluated with the the corresponding estimation variable.
Then, the concatenated form of (1) is given by

yq,t+1 = Āyq,t

+ diag([δ1ā1q, . . . , δnānq]⊤)(1nyq,t − yq,t) (2a)
xt+1 = xt − diag(γ)gt, (2b)

gi
k,t+1 = Aigi

k,t +∇i
kJ

i(y
(i)
t+1)−∇i

kJ
i(y

(i)
t ). (2c)

A. Auxiliary Results

We first start with an important property of the adjacency
matrix Ā in the following lemma.

Lemma 1: Under Assumption 2, let δp > 0, p ∈ V̄ be
chosen such that 0 ≤ δpāpq < 2āpp ∀q ∈ V̄ . Then, the
matrix Ãq ≜ [ãqpm], q ∈ V̄ with its entry given by

ãqpm =

{
āpm if p ̸= m

|āpp − δpāpq| if p = m

holds that ρ(Ãq) < 1. Moreover, there exists a matrix norm
∥ · ∥E such that ∥Ãq∥E < 1 for ∀q ∈ V̄ .
Proof: The first part of the result (i.e., ρ(Ãq) < 1) can be
readily proved based on [14], [15]. For the second part, we
invoke the following lemma to facilitate the proof.

Lemma 2: (see [22, Lemma 5.6.10]) Let ρ(A) be the
spectral radius of a (square) matrix A. For any given ϱ > 0,
there exists a matrix norm ∥ · ∥E such that ρ(A) ≤ ∥A∥E ≤
ρ(A) + ϱ.

From Lemma 2, we choose ϱ ∈ (0, 1 − maxq∈V̄ ρ(Ãq)),
then there exists a matrix norm ∥ · ∥E such that ∥Ãq∥E ≤
ρ(Ãq)) + ϱ < 1,∀q ∈ V̄ , which completes the proof. □

Denote the vector norm which is compatible with the
matrix norm ∥ · ∥E by ∥ · ∥e, i.e., ∥Av∥e ≤ ∥A∥E∥v∥e for
a matrix A and a vector v with compatible size. Due to the
equivalence of all norms in a finite-dimensional vector space,
there exists C > 0 and C > 0 such that C∥v∥2 ≤ ∥v∥e ≤
C∥v∥2. Define σÃq

≜ ∥Ãq∥E . Let σ̄2 ≜ maxq∈V̄ σÃq
,

ς2 ≜ 1+σ̄2
2

1−σ̄2
2

.
Next, we provide a bound on the stacked gradient estima-

tor gt in the following lemma.
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Lemma 3: Under Assumptions 1 and 3, the stacked gra-
dient tracker gt holds that

∥gt∥22 ≤ 3πι2L2 ∑N
i=1 n

3
i ∥xt − x∗∥2π + 3π

∑N
i=1

∑ni

k=1

∥gi
k,t −Ai

∞gi
k,t∥2πi + 3n2ι2L2

C2

∑n
q=1 ∥yq,t − 1nyq,t∥2e.

Proof: It is noted that for k ∈ Vi, i ∈ N , ∥gi
k,t∥2 ≤ ∥gi

k,t −
vi1⊤

ni
gi
k,t∥2 + ∥vi1⊤

ni
gi
k,t∥2 ≤

√
π∥gi

k,t − Ai
∞gi

k,t∥πi +

niι∥ḡi
k,t−∇i

kJ̄
i(y

(i)
t )∥2+niι∥∇i

kJ̄
i(y

(i)
t )−∇i

kJ
i(xt)∥2+

niι∥∇i
kJ

i(xt)−∇i
kJ

i(x∗)∥2, where ∇i
kJ

i(x∗) = 0 has been
applied. Since Ai is column stochastic, it follows from (2c)
that ḡi

k,t+1 = ḡi
k,t +∇i

kJ̄
i(y

(i)
t+1)−∇i

kJ̄
i(y

(i)
t ). Due to the

initial conditions gi
k,0 = ∇i

kJ
i(y

(i)
0 ), we obtain

ḡi
k,t = ∇i

kJ̄
i(y

(i)
t ). (3)

Thus, ∥gi
k,t∥22 ≤ 3π∥gi

k,t − Ai
∞gi

k,t∥2πi +

3n2
i ι

2∥∇i
kJ̄

i(y
(i)
t ) − ∇i

kJ
i(xt)∥22 + 3πn2

i ι
2L2∥xt −

x∗∥2π . Since ∥gt∥22 =
∑N

i=1

∑ni

k=1 ∥gikk,t∥22 ≤∑N
i=1

∑ni

k=1 ∥gi
k,t∥22, substituting the above relation,

and noting that∑N
i=1

∑ni

k=1 n
2
i ∥∇i

kJ̄
i(y

(i)
t )−∇i

kJ
i(xt)∥22

≤ L2 ∑N
i=1

∑ni

k=1

∑ni

j=1 ni∥yji

t − xt∥22
= L2 ∑N

i=1

∑ni

k=1

∑ni

j=1

∑n
q=1 ni∥yj

i

q,t − yq,t∥22
≤ n2L2

C2

∑n
q=1 ∥yq,t − 1nyq,t∥2e, (4)

we obtain the desired result. □
The convergence analysis of the proposed algorithm is

conducted by establishing a linear system, which is com-
posed of three major expressions: i) the total decision es-
timation error, ii) the total gradient tracking error, and iii)
the gap between all agents’ decisions and the NE. Next, we
establish the inequality iterations of the three major terms in
Lemmas 4, 5 and 6, respectively.

We first derive a bound on the total action estimation error
characterized by

∑n
q=1 ∥1nyq,t − yq,t∥2e.

Lemma 4: Under Assumptions 1, 2 and 3, the total action
estimation error satisfies:∑n

q=1 ∥1nyq,t+1 − yq,t+1∥2e

≤ [
1+σ̄2

2

2 +
3n3ς2C

2
ι2L2γ2

M

C2 ]
∑n

q=1 ∥1nyq,t − yq,t∥2e
+ 3πnς2C

2
γ2
M

∑N
i=1

∑ni

k=1 ∥gi
k,t −Ai

∞gi
k,t∥2πi

+ 3πnς2C
2
ι2L2 ∑N

i=1 n
3
i γ

2
M∥xt − x∗∥2π.

Proof: From (1b), we have for q ∈ V̄ , 1nyq,t+1 = 1nyq,t −
γq1ngq,t, where γq and gq,t denote the step-size and gra-
dient tracker of agent q, respectively. That is, γi

j and gijj,t
correspond to γq and gq,t with q = ji, if agent j ∈ Vi in
cluster i ∈ N is considered. Subtracting it by (2a) and taking
the vector norm ∥ · ∥e on both sides, we have

∥1nyq,t+1 − yq,t+1∥e ≤ ∥(Ā− diag([δ1ā1q, . . . , δnānq]⊤))
(1nyq,t − yq,t)− γq1ngq,t∥e

≤ ∥Ãq(1nyq,t − yq,t)∥e + γq∥1ngq,t∥e
≤ ∥Ãq∥E∥1nyq,t − yq,t∥e +

√
nCγM∥gq,t∥2.

Square both sides, we obtain

∥1nyq,t+1 − yq,t+1∥2e ≤ σ̄2
2∥1nyq,t − yq,t∥2e + nγ2

M∥gq,t∥2e
+

1−σ̄2
2

2 ∥1nyq,t − yq,t∥2e +
2σ̄2

2nC
2
γ2
M

1−σ̄2
2

∥gq,t∥22

=
1+σ̄2

2

2 ∥1nyq,t − yq,t∥2e + nς2C
2
γ2
M∥gq,t∥22, (5)

Summing over q = 1 to n gives
∑n

q=1 ∥1nyq,t+1 −
yq,t+1∥2e ≤ 1+σ̄2

2

2

∑n
q=1 ∥1nyq,t − yq,t∥2e + nς2C

2
γ2
M∥gt∥22.

Substituting the result in Lemma 3 completes the proof. □
Next, we bound the gap between all agents’ decisions and

the NE, characterized by ∥xt − x∗∥2π .
Lemma 5: Under Assumptions 1, 2, 3 and 4, the agents’

decisions xt satisfies that

∥xt+1 − x∗∥2π ≤ [
3πγ2

M

π +
2γ2

M

πχγ̄ ]
∑N

i=1

∑ni

k=1 ∥gi
k,t

−Ai
∞gi

k,t∥2πi + [1− πχγ̄ +
3πι2L2γ2

M

π

∑N
i=1 n

3
i

+ 2π
√
nLϵγ γ̄]∥xt − x∗∥2π + [

3n2ι2L2γ2
M

πC2

+
2πnL2γ2

M

πC2χγ̄
]
∑n

q=1 ∥yq,t − 1nyq,t∥2e.
Proof: It follows from (2b) that xt+1−x∗ = xt−diag(γ)gt−
x∗. Taking the norm on both sides gives

∥xt+1 − x∗∥2π = ∥xt − diag(γ)gt − x∗∥2π
≤ ∥xt − x∗∥2π +

γ2
M

π ∥gt∥22
− 2⟨xt − x∗, diag(γ)(gt − diag(π)F (xt))⟩π (6a)
− 2⟨xt − x∗, diag(γ − γ̄)diag((π)F (xt)⟩π (6b)
− 2γ̄⟨xt − x∗, diag(π)F (xt)⟩π. (6c)

For (6a), it follows that

− 2⟨xt − x∗, diag(γ)(gt − diag(π)F (xt))⟩π
= −2

∑N
i=1

∑ni

k=1 γ
i
k⟨xi

k,t − xi∗
k , gikk,t − niπ

i
k∇i

kJ
i(xt)⟩niπi

k

= −2
∑N

i=1

∑ni

k=1(γ
i
k⟨xi

k,t − xi∗
k , gikk,t − niπ

i
kḡ

i
k,t⟩niπi

k

+ γi
k⟨xi

k,t − xi∗
k , niπ

i
k(ḡ

i
k,t −∇i

kJ̄
i(y

(i)
t ))⟩niπi

k

+ γi
k⟨xi

k,t − xi∗
k , niπ

i
k(∇i

kJ̄
i(y

(i)
t )−∇i

kJ
i(xt))⟩niπi

k
).

The first part holds that

− 2
∑N

i=1

∑ni

k=1 γ
i
k⟨xi

k,t − xi∗
k , gikk,t − niπ

i
kḡ

i
k,t⟩niπi

k

≤ πχγ̄
2 ∥xt − x∗∥2π +

2γ2
M

πχγ̄

∑N
i=1

∑ni

k=1 ∥gi
k,t −Ai

∞gi
k,t∥2πi .

For the second part, it follows from (3) that ⟨xi
k,t −

xi∗
k , niπ

i
k(ḡ

i
k,t − ∇i

kJ̄
i(y

(i)
t ))⟩niπi

k
= 0. For the third part,

we have

− 2
∑N

i=1

∑ni

k=1 γ
i
k⟨xi

k,t − xi∗
k , niπ

i
k(∇i

kJ̄
i(y

(i)
t )

−∇i
kJ

i(xt))⟩niπi
k
≤ πχγ̄

2 ∥xt − x∗∥2π
+

2πγ2
M

πχγ̄

∑N
i=1

∑ni

k=1 ni∥∇i
kJ̄

i(y
(i)
t )−∇i

kJ
i(xt)∥22.

The last term follows the same derivation as in
(4) that

∑N
i=1

∑ni

k=1 ni∥∇i
kJ̄

i(y
(i)
t ) − ∇i

kJ
i(xt)∥22 ≤
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nL2

C2

∑n
q=1 ∥yq,t − 1nyq,t∥2e. Hence, combining the above

three parts, we obtain that

− 2γ̄⟨xt − x∗,gt − diag(π)F (xt)⟩π
≤ πχγ̄∥xt − x∗∥2π +

2γ2
M

πχγ̄

∑N
i=1

∑ni

k=1 ∥gi
k,t −Ai

∞gi
k,t∥2πi

+
2πnL2γ2

M

πC2χγ̄

∑n
q=1 ∥yq,t − 1nyq,t∥2e. (7)

For (6b), it follows that

− 2⟨xt − x∗, diag(γ − γ̄)diag((π)F (xt)⟩π
≤ 2

√
π∥xt − x∗∥π∥diag(γ − γ̄)(F (xt)− F (x∗))∥2

≤ 2π
√
nLϵγ γ̄∥xt − x∗∥2π, (8)

since ∥diag(γ− γ̄)(F (xt)−F (x∗))∥2 ≤ ∥γ− γ̄∥2∥F (xt)−
F (x∗)∥2 ≤

√
nLϵγ γ̄∥xt−x∗∥2 ≤

√
π
√
nLϵγ γ̄∥xt−x∗∥π .

For (6c), by Assumption 4, we have

− 2γ̄⟨xt − x∗, diag(π)F (xt)⟩π = −2γ̄⟨xt − x∗,F (xt)⟩
≤ −2χγ̄∥xt − x∗∥22 ≤ −2πχγ̄∥xt − x∗∥2π. (9)

Substituting (7), (8), (9) and Lemma 3 into (6) yields the
desired result. □

Finally, we quantify the total gradient tracking error,
measured by

∑N
i=1

∑ni

k=1 ∥gi
k,t −Ai

∞gi
k,t∥2πi .

Lemma 6: Under Assumptions 1, 2 and 3, the total gradi-
ent tracking error

∑N
i=1

∑ni

k=1 ∥gi
k,t −Ai

∞gi
k,t∥2πi satisfies

∑N
i=1

∑ni

k=1 ∥gi
k,t+1 −Ai

∞gi
k,t+1∥2πi ≤ [

1+σ̄2
1

2

+
9πn2ς1(1+nς2C

2
)L2γ2

M

π ]
∑N

i=1

∑ni

k=1 ∥gi
k,t −Ai

∞gi
k,t∥2πi

+ [
9n4ς1(1+nς2C

2
)ι2L4γ2

M

πC2 +
3nς1(3+σ̄2

2)L
2

2πC2 ]
∑n

q=1 ∥yq,t

− 1nyq,t∥2e +
9πn2ς1(1+nς2C

2
)ι2L4γ2

M

π

∑N
i=1 n

3
i ∥xt − x∗∥2π.

Proof: It is obtained from (2c) that

∥gi
k,t+1 −Ai

∞gi
k,t+1∥2πi = ∥Aigi

k,t −Ai
∞gi

k,t∥2πi + ∥(Ini

−Ai
∞)(∇i

kJ
i(y

(i)
t+1)−∇i

kJ
i(y

(i)
t ))∥2πi + 2⟨Aigi

k,t

−Ai
∞gi

k,t, (Ini
−Ai

∞)(∇i
kJ

i(y
(i)
t+1)−∇i

kJ
i(y

(i)
t ))⟩πi .

It is noted that ∥Ini
−Ai

∞∥πi = 1, then

∥gi
k,t+1 −Ai

∞gi
k,t+1∥2πi ≤ σ̄2

1∥gi
k,t −Ai

∞gi
k,t∥2πi

+ ∥∇i
kJ

i(y
(i)
t+1)−∇i

kJ
i(y

(i)
t )∥2πi + 2∥Aigi

k,t

−Ai
∞gi

k,t∥πi∥∇i
kJ

i(y
(i)
t+1)−∇i

kJ
i(y

(i)
t )∥πi

≤ 1+σ̄2
1

2 ∥gi
k,t −Ai

∞gi
k,t∥2πi

+ ς1∥∇i
kJ

i(y
(i)
t+1)−∇i

kJ
i(y

(i)
t )∥2πi , (10)

where

∥∇i
kJ

i(y
(i)
t+1)−∇i

kJ
i(y

(i)
t )∥2πi ≤ L2

π

∑ni

j=1 ∥y
ji

t+1 − yji

t ∥22
= L2

π

∑n
q=1

∑ni

j=1 ∥y
ji

q,t+1 − yj
i

q,t∥22.

Hence,∑N
i=1

∑ni

k=1 ∥∇i
kJ

i(y
(i)
t+1)−∇i

kJ
i(y

(i)
t )∥2πi ≤ nL2

π

∑n
q=1

∥yq,t+1 − yq,t∥22 ≤ 3nL2

π

∑n
q=1(∥yq,t+1 − 1nyq,t+1∥22

+ ∥yq,t − 1nyq,t∥22 + ∥1nyq,t+1 − 1nyq,t∥22)

≤ 3nL2

π

∑n
q=1(

3+σ̄2
2

2C2 ∥yq,t − 1nyq,t∥2e
+ ∥1nyq,t+1 − 1nyq,t∥22 + n2ς2C

2
γ2
M∥gq,t∥22),

where the last inequality follows from (5). It is noted that∑n
q=1 ∥1nyq,t+1 − 1nyq,t∥22 = n∥xt+1 − xt∥22 = n∥xt −

diag(γ)gt−xt∥22 ≤ nγ2
M∥gt∥22. Summing over k = 1 to ni,

i = 1 to N for (10) and substituting the above result and
Lemma 3 complete the proof. □

B. Main Results

Now, we are ready for the analysis on the convergence of
the proposed algorithm. With the inequality iterations derived
in Lemmas 4, 5 and 6, we can establish the following linear
dynamical system

ut+1 ≤ Tut, (11)

with

ut ≜

 ∥xt − x∗∥2π∑N
i=1

∑ni

k=1 ∥gi
k,t −Ai

∞gi
k,t∥2πi∑n

q=1 ∥yq,t − 1nyq,t∥2e

 ,

T ≜


1−k1γ̄+k2γ

2
M

+k3ϵγ γ̄
k4γ

2
M+k5γ

2
M/γ̄ k6γ

2
M+k7γ

2
M/γ̄

k8γ
2
M 1−k10+k9γ

2
M k11+k12γ

2
M

k13γ
2
M k14γ

2
M 1−k16+k15γ

2
M

 ,

where k1 ≜ πχ, k2 ≜ 3πι2L2

π

∑N
i=1 n

3
i , k3 ≜

2π
√
nL, k4 ≜ 3π

π , k5 ≜ 2
πχ , k6 ≜ 3n2ι2L2

πC2 ,

k7 ≜ 2πnL2

πC2χ
, k8 ≜ 9πn2ς1(1+nς2C

2
)ι2L4

π

∑N
i=1 n

3
i ,

k9 ≜ 9πn2ς1(1+nς2C
2
)L2

π

∑N
i=1 n

3
i , k10 ≜ 1−σ̄2

1

2 ,

k11 ≜ 3nς1(3+σ̄2
2)L

2

2πC2 , k12 ≜ 9n4ς1(1+nς2C
2
)ι2L4

πC2 ,

k13 ≜ 3πnς2C
2
ι2L2

∑N
i=1 n

3
i , k14 ≜ 3πnς2C

2
, k15 ≜

3n3ς2C
2
ι2L2

C2 , k16 ≜ 1−σ̄2
2

2 .
Then, the convergence results of all agents’ decisions to

the NE x∗ can be established based on the convergence of
the dynamical system (11), which are summarized in the
following theorem.

Theorem 1: Suppose Assumptions 1, 2, 3 and 4 hold.
Generate the agent’s action {xi

j,t}t≥0, gradient tracker
{gijk,t}t≥0 and estimation variable {ypq,t}t≥0 by (1) with the
non-uniform constant step-size γi

j satisfying

0 ≤ ϵγ < k1

k3
, 0 < γM < min{ 1

k1
, γ∗

1 , γ
∗
2 , γ

∗
3},

where γ∗
1 , γ

∗
2 and γ∗

3 are some constants related to the het-
erogeneity ϵγ . Then, all players’ decisions {xt}t≥0 converge
to their corresponding NE x∗ at a rate of ρ(T).
Proof: For system (11), if ρ(T) < 1, then Tt converges to 0
at a geometric rate with exponent ρ(T) [22], which implies
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that the supremum of each individual component converges
to 0 with the same rate.

Lemma 7: (see [22, Cor. 8.1.29]) Let A ∈ Rm×m be a
matrix with non-negative entries and θ ∈ Rm be a vector
with positive entries. If there exists a constant λ ≥ 0 such
that Aθ < λθ, then ρ(A) < λ.

To invoke Lemma 7, the matrix T has to be non-negative.
Thus, it suffices to have 0 < γ̄ ≤ 1

k1
. According to Lemma 7,

to ensure ρ(T) < 1, one needs to seek for some positive
vector θ ≜ [θ1, θ2, θ3]

⊤, where θ1 > 0, θ2 > 0 and θ3 > 0,
such that Tθ < θ. Without the loss of generality, we can set
θ3 = 1. Then we obtain

(k2θ1 + k4θ2 + k6)γ̄

< (k1 − k3ϵγ)θ1γ̄
2/γ2

M − (k5θ2 + k7),

(k8θ1 + k9θ2 + k12)γ
2
M < k10θ2 − k11,

(k13θ1 + k14θ2 + k15)γ
2
M < k16.

(12)

Therefore, we would like to find the range of the step-
size such that (12) hold simultanenously for some θ1 >
0, θ2 > 0. To ensure the existence of solution γM and
γ̄, the right-hand-side of (12) needs to be positive, i.e.,
ϵγ < k1

k3
, θ1 >

(k5θ2+k7)γ
2
M/γ̄2

k1−k3ϵγ
, θ2 > k11

k10
, Thus, we can set

θ1 =
2(k5k11+k7k10)γ

2
M/γ̄2

k10(k1−k3ϵγ)
, θ2 = 2k11

k10
.

Then, we can solve the three inequalities in (12) respec-
tively by noting that γ̄ ≤ γM and γM/γ̄ < n. We obtain
γM < γ∗

1 , γM < γ∗
2 , γM < γ∗

3 , where γ∗
1 ≜ k7k10(k1−k3ϵγ)

q∗1
,

γ∗
2 ≜

√
k10k11(k1−k3ϵγ)

q∗2
, γ∗

3 ≜
√

k10k16(k1−k3ϵγ)
q∗3

, q∗1 ≜

2n2k2(k5k11 + k7k10)+ (2k4k11 + k6k10)(k1 − k3ϵγ), q∗2 ≜
2n2k8(k5k11 + k7k10) + (2k9k11 + k10k12)(k1 − k3ϵγ),
q∗3 ≜ 2n2k13(k5k11+k7k10)+(2k11k14+k10k15)(k1−k3ϵγ).
□

Remark 2: Theorem 1 shows that the linear convergence
of all agents’ decisions to the NE is guaranteed when both the
largest step-size and its heterogeneity are sufficiently small.
Besides, it should be remarked that the bounds on both the
largest step-size and heterogeneity are only sufficient but
not necessary conditions for the convergence results. For
the upper bound on the step-size, checking the conditions
may still require some global information that is difficult
to compute in a distributed manner. We remark the derived
upper bound is just a sufficient condition (not necessary) to
ensure the convergence to the NE. Hence, the bound is not
tight, and better bounds may be obtained with better choices
in the analysis.

Next, we analyze the convergence of the algorithm when
all agents adopt uniform constant step-size, summarized in
the following corollary.

Corollary 1: Suppose Assumptions 1, 2, 3 and 4 hold.
Generate the agent’s action {xi

j,t}t≥0, gradient tracker
{gijk,t}t≥0 and estimation variable {ypq,t}t≥0 by (1) with
uniform constant step-size γ satisfying

0 < γ < min{ 1
k1
, γ∗

1,c, γ
∗
2,c, γ

∗
3,c},

where γ∗
1,c, γ

∗
2,c and γ∗

3,c are some constants. Then, all
players’ decisions {xt}t≥0 converge to their corresponding

(a) Low-level 1 (b) Low-level 2 (c) Low-level 3

(d) High-level network

Fig. 1. Graph topology of two level networks.

NE x∗ at a rate of ρ(T).
Proof: It directly follows from Theorem 1 by noting that
ϵγ = 0 and γM/γ̄ = 1, which gives

γ∗
1,c ≜

k1k7k10

2k2k5k11+2k2k7k10+2k1k4k11+k1k6k10
,

γ∗
2,c ≜

√
k1k10k11

2k5k8k11+2k7k8k10+2k1k9k11+k1k10k12
,

γ∗
3,c ≜

√
k1k10k16

2k5k11k13+2k7k10k13+2k1k11k14+k1k10k15
.

Then, following the same arguments in Theorem 1, when
0 < γ < min{ 1

k1
, γ∗

1,c, γ
∗
2,c, γ

∗
3,c}, the convergence of the

algorithm is guaranteed. □

V. NUMERICAL SIMULATIONS

In this section, we validate the performance of the pro-
posed algorithm by a Cournot competition game. In partic-
ular, we consider N firms, and each firm i ∈ N consists
of ni branches to help produce goods. For j ∈ Vi, i ∈ N ,
let xi

j be the quantity of goods produced by branch j of
firm i, then its local cost function J i

j(x) is modeled by
the following function J i

j(x) = cij(x
i
j) − pij(x)x

i
j , where

cij(x
i
j) = aij(x

i
j)

2 + bij(x
i
j) models the cost incurred by

generating xi
j quantity of goods, pij(x) = dij −wi⊤

j x models
the selling price of such goods, aij , b

i
j , d

i
j ∈ R and wi

j ∈ Rn

are constant parameters. As a numerical setting, we set N =
3, ni = 3, 4 and 5, respectively. For constant parameters, we
let aij = 1, dij = 10 + i + j, bij and each element of wi

j

be uniformly drawn from [0, 1], respectively. The two level
networks are given in Fig. 1, which are strongly connected.
The inital conditions of x and yq are set to some arbitrary
values, and δq = 0.5, ∀q ∈ V̄ .

A. Algorithm Convergence

In this part, we focus on the verification of the convergence
result derived in Theorem 1. The step-size γi

j is evenly
selected from [0.045, 0.1], giving a heterogeneity of 0.2381.
Then, the trajectories of the decisions of all firms (and
branches) and the NE gap ∥xt − x∗∥2 are plotted in Fig. 2.
As can be seen, the convergence to the NE is obtained and
the rate is linear.
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Fig. 2. Trajectories of agents’ decisions in different clusters.
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Fig. 3. Influence of the step-size and heterogeneity on the rate of
convergence.

B. Influence of step-size on the convergence

In this part, we investigate the influence of the step-size
including the heterogeneity on the convergence. Specifically,
we let the agents’ step-sizes be selected within (0, 0.1].
The initial conditions of x and yq are set to zero, while
the rest of the parameters are kept the same as in Sec. V-
A. Fig. 3 plots the NE gaps under various step-size cases
with different averaged step-size and different heterogeneity.
Three cases for uniform step-size ϵγ = 0 are also included
for comparison. As can be seen, smaller heterogeneity of the
step-size and larger averaged step-size lead to a faster rate
of convergence.

VI. CONCLUSIONS

This paper has considered the N -cluster game under
partial-decision information settings, where a distributed
Nash equilibrium (NE) seeking algorithm has been proposed
with non-uniform constant step-sizes among all agents. It has
been shown that all agents’ decisions linearly converge to
their corresponding NE when the largest step-size and the
heterogeneity of the step-size are small.
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