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Distributed Nash Equilibrium Seeking in N-Cluster Games with
Non-Uniform Constant Step-Sizes

Yipeng Pang and Guogiang Hu

Abstract—This paper studies a class of non-cooperative
games, known as N-cluster game, which subsumes both co-
operative and non-cooperative nature among multiple agents
in the two problems. Moreover, we consider a partial-decision
information game setup, i.e., the agents have no direct access
to the decisions of other agents in all clusters, and hence need
to communicate with each other. We propose a distributed NE
seeking algorithm by a synthesis of consensus and gradient
tracking. Unlike other existing discrete-time methods for N-
cluster games where a common step-size is either publicly
known by all agents or only known by agents from the same
cluster, the proposed algorithm can work with non-uniform
constant step-sizes, which allows the agents (both within and
across the clusters) to choose their own preferred step-sizes.
We prove that all agents’ decisions converge linearly to their
corresponding NE so long as the largest step-size and the
heterogeneity of the step-sizes are small. We verify the derived
results through a numerical example in a Cournot competition
game.

Index Terms— Nash equilibrium (NE) seeking, distributed
methods, non-cooperative games.

I. INTRODUCTION

Simultaneous social cost minimization and Nash equilib-
rium (NE) seeking among multiple clusters (or coalitions)
modeled by N-cluster game have received great attention
in recent researches, due to its wide application in many
fields, such as business management, transportation systems,
political science, sports, to list a few. In such N-cluster
games, the agents in the same cluster cooperatively minimize
a cluster-level cost function, and collectively act as a virtual
player to play an N-player non-cooperative game across
clusters.

Related work: Distributed NE seeking under partial-
decision information over graphs have been researched, see
[1], [2] for unconstrained or locally set constrained games,
[3]-[5] for aggregative games, and [6]-[8] for generalized
games. Recently, NE seeking agorithms for N-cluster games
have started to draw researchers’ attention [9]-[12]. Specif-
ically, the work in [9] proposed a NE seeking algorithm
based on a dynamic average consensus and the gradient play,
assuming all agents’ decisions are directly accessible, i.e.,
full-decision information. Different from the full-decision
information setup in [9], the work in [10] modeled the
decisions of the agents in the same cluster by a decision
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vector that needs to be agreed on, and introduced a leader-
following hierarchy inter-cluster communication mechanism,
where only the cluster leader can exchange information
across different clusters. The works in [11], [12] also consid-
ered the partial-decision information setup, and supposed that
all agents from all clusters are connected. The work in [13]
considered the same cluster-level decision vector modeling as
in [10], and developed a discrete-time NE seeking algorithm
based on gradient play with no explicit communications
between clusters. As compared to the primal methods based
on gradient play, gradient tracking is preferred for its faster
convergence speed without sacrificing the accuracy, and
hence has found its great advantages in the fields of N-
cluster games recently [14]-[18]. Though being theoretically
equivalent, as compared to modeling the collection of all
agents as a single decision vector [10], [13], [16], [17], it
would be natural to model the decision variable of each
agent individually in practical applications [9], [11], [14],
[15], [18]. For example, each branch (i.e., agent) of the firm
(i.e., cluster) can only decide how much goods it can produce
rather than the collection of all branches. In general, it has no
control on other branches’ production amount, and there is
usually no such agreement among branches requiring their
production amount to be equal. Moreover, in discrete-time
methods, the step-size is usually assumed to be publicly
known by all agents, and hence a common step-size agreed
by all agents is chosen in the algorithm development [13],
[14], [16]-[18]. Concerning a distributed setup, it would be
preferred that agents are allowed to select their own preferred
step-sizes, as it does not require the central coordination
of the step-size in the implementation of the algorithm.
However, introducing such non-uniform step-sizes may not
always guarantee the convergence, and also brings substantial
complexity in the convergence analysis. The work in [15]
allows agents from different clusters to use different step-
sizes. However, agents from the same cluster still adopt a
common step-size, and the full-decision information game
setup was considered.

Contributions: The main contributions of this paper are
summarized as follows. 1) As compared to modeling the
collection of all agents as a single decision vector [10],
[13], [16], [17], this paper models the decision variable
of each agent in each cluster individually, which is more
ameanable to the applications where agents can only control
their own actions. Moreover, we consider a partial-decision
information game setup, i.e., the agents only have direct
access to their own decisions. In contrast to the distributed
setups in [16]-[18] where the agent in the same cluster needs
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to reach a common decision through average consensus,
this work does not impose a common decision requirement
within clusters. Specifically, the agents estimate other agents’
decisions via a leader-following consensus protocol across
clusters over a high-level network. This is different from
the leader-following hierarchy inter-cluster communication
mechanism as in [10], [12], [16] where there is a pre-defined
leader to exchange information across clusters. Hence, this
approach allows more inter-cluster communication channels.
Meanwhile, the agents in the same cluster perform the gra-
dient tracking updates over a low-level network. Compared
with the two level communication networks in [11], [18],
we do not require the intra-cluster communication graph
to be a part of the inter-cluster communication graph, and
allow the two level networks to be independent of each
other, which is more general. 2) Furthermore, in terms
of the implementation of the distributed protocols, most
works either consider undirected graph or directed graph
with doubly stochastic weighting matrix [15], [16], which is
relatively straightforward in terms of the analysis. However,
for directed graphs, there may not always exist a doubly
stochastic weighting matrix [19]. Thus, in our work, we
consider row stochastic weighting matrix for the high level
network and column stochastic weighting matrix for the low
level network, which increases the application range of the
method. Though such techniques have also been studied in
distributed optimization, the convergence analysis is much
more complicated in multi-cluster games. 3) Different from
all existing discrete-time methods for /V-cluster games where
either a common step-size is publicly known by all agents
[13], [14], [16], [17] or only known by agents from the
same cluster [15], we consider non-uniform step-sizes, i.e.,
all agents (both among and across) the clusters are allowed to
choose their own preferred constant step-sizes. We prove that
all agents’ decisions converge linearly to their corresponding
NE so long as the largest step-size and the heterogeneity of
the step-sizes are small enough.

Notations: We use 1,, for an m-dimensional vector with
all elements being 1, and I,,, for an m X m identity matrix.
For a vector 7, we use diag(r) to denote a diagonal matrix
formed by the elements of w. For any two vectors w,wv,
their inner product is denoted by (u, v); their weighted inner
product due to a positive vector (i.e., vector with all elements
being positive) 7 is denoted by (u,v), = u'diag(r) lv.
The transpose of u is denoted by . Moreover, we use
||u||2 for its standard Euclidean norm, ie., |jull2 = /{u,u),
and |ju||, for its weighted Euclidean norm due to 7, ie.,
(|| = ||diag(/7) ~tul|2. For vector a, we use [a]; to
denote its ¢-th entry. The transpose and spectral norm of
a matrix A are denoted by AT and | Al|2, respectively. The
matrix norm ||A||; induced by || - || is defined as ||A|, =
||diag(y/7) LA diag(y/7)||2. We use p(A) to represent the
spectral radius of a square matrix A, and A, to indicate its
infinite power (if it exists) limy_, o, A*.

II. PROBLEM STATEMENT

An N-cluster game, defined by I'(V, {J*}, {R"}), is a
multi-player non-cooperative game played among N clusters,
where each cluster, indexed by i € A/ £ {1,2,...,N}, con-
sists of a group of agents, denoted by V' = {1,2,...,n;},
to cooperatively minimize a cluster-level cost function J*.
Denote n £ Zil n;. Then, the cluster-level cost function
J*:R"™ — R is defined as

JHx) & o 0 i x ),
where Ji( ) is a local cost function of agent j in cluster
i, x' & [m‘lT, ..,ziT]T € R™ is a collection of all agents’
decisions in cluster ¢ with x; € R being the action of agent j
in cluster 7, x7* € R®~™ denotes a collection of all agents’
decisions except cluster 4, and x = [x!'T, ... xVT]T. A
vector x* £ (x™ x~") € R™ is said to be an NE of the
N-cluster non-cooperative game I'(A, {.J 1 {R"™}), if and
only if J¥(x™, x~™) < Ji(x!,x~™), Vi € N.

Motivated by the work in [20], we assume the agents are
equipped with two level networks: a high-level network for
agents’ decisions exchange across clusters and N low-level
networks for agents’ (partial) gradient exchange within the
cluster. For the low-level network in each cluster i € N, it is
a directed graph consisting of all agents in the same cluster,
denoted by G:(Vi, £Y) with an adjacency matrix A2 [a ;k] €
R aly > 0 if (K, j) € &' and aj, = 0 otherwise. We
assume (k, k) € £',Vk € V. For the high-level network, it
is a directed graph consisting of all agents in all clusters,
denoted by G(V,€) with an adjacency matrix A £ [a,,] €
R™", g, > 0 if (¢,p) € € and G, = 0 otherwise. We
assume (p,p) € &£,¥p € V. The following two standard
assumptions on the two level networks are imposed.

Assumption 1: For i € N, the digraph G; is strongly
connected. The associated adjacency matrix A’ is column
stochastic, i.e., 1, AP =1, .

Assumption 2: The dlgraph G is strongly connected. Its
associated adjacency matrix A is row stochastic, i.e., A1, =
1,.

Under Assumption 1, it is known that A’ is primitive
and column stochastic, then we denote its rlght eigenvector
corresponding to the eigenvalue of 1 by 7* = Eml,.m ]
such that 1,,Tw7r = 1. Then, 7 corresponds to A®’s non-1,,
Perron vector with eigenvalue 1, and hence all elements in 7t
are positive, and A’ 1) . Define ¢ £ max;en |||z,
mi & prt and w 2 w17 wNT]T. Denote the smallest
and largest elements of 7 by m and 7, respectively. With
the above notations, we can obtain that /7| - ||z < ||-|l2 <
V| |lx: and &l - [ < || - 2 < V7| - |» based on
the definitions of the weighted Euclidean norm, which will
be frequently applied in the subsequent analysis. Moreover,
under Assumption 1, it follows from [21, Lemma 1] that
the adjacency matrix A’ holds that ||Az — A | < 1,
and HI — A’ ||z« = 1. Define oar = 2 || A? — Al || 5. Let
71 2 max;en o4 and ¢ = 1*‘3;

Next, we make the followmg assumptlon on the agents’
local cost functions.

Vi e N,

>

= T
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Assumption 3: For each j € V'i € N, the local cost
function .J}(x*, x ") is convex, continuously differentiable in
x'; the partial gradient with respect to z},, Vk € V* (denoted
by VilJ Z( ) for simplicity), is £-Lipschitz continuous in x,
ie., for any x,x" € R", we have ||V}.J}(x) — V. Ji(x')||2 <
Lljx =x'|2.

The game mapping of T'(N, {J%}, {R"}) is defined as
F(x) 2 [VaJi(x)T, ..., Ven JV(x)T]T. Then, it follows
from Assumption 3 that F'(x) is Lipschitz continuous, i.e.,
for any x,x’ € R", we have | F(x) — F(x/)|2 <
x'||2. Next, the following assumption on the game mapping
condition is supposed.

Assumption 4: The game mapping F' of game I' is
strongly monotone on R™ with a constant y > 0, i.e., for any
x,x" € R", we have (F(x) — F(x'),x —x') > x|x —x'|3.

Remark 1: Under Assumptions 3 and 4, game I' admits
a unique NE x*. Moreover, at NE, F(x*) = 0,,, and hence
(F(x),x —x7) > x|x - x°3

III. ALGORITHM

In this section, we present a distributed NE seeking
strategy for the N-cluster game under partial-decision in-
formation scenario, followed by the detailed convergence
analysis.

For the notational convenience, agent j € V' in cluster
i € N of the low-level network is referred to agent j* £ j°
with ng = 0 in the high-level network Hence, its action
variable xj is relabeled by yji, ie., x} = yj;i. Then, each
agent j € Vi, i € N needs to mamtam the action variable
7, and gradient tracker variables g7, for Vk € V. Moreover,
1n the high-level network, each agent p € V also needs
to maintain an estimation variable y? for the action y,
of agent ¢ € V. For i € N, p € V, we denote that

y(pl) é [yfza e 7yn:]—r € Rnlvyp é [y(l—;v e vy(N)]T €
R™,y@ & [yV'T . y%T]T € R™%" We use subscript ¢
to denote the values of all these variables at time-step ¢. The
update laws are designed as follows.

high-level network: p, q € %

Yh r = 2o @il ¢+ Oplipg (Yot — Vg t) (la)
low-level network: j. k € Vi.i € N
o1 = The = V9500 (1b)

Q;k,t+1 = Zzn:H aj‘lgzik,t + VZJJZ:(}’%}Q - Z}J]Z(y‘g)v
(1o

with arbitrary 2%, € R, yél € R" and g}, , = V};J}_(yél),
where 6, is a constant parameter for agent p € V, and
73- > ( is a constant step-size sequence adopted by agent
j € Vi, i € N. Denote the largest step-size by vy =
max;eyi ;e A/ 'y; and the average of all step-sizes by ¥
%Z]‘evi,ie N ’y; Define the heterogeneity of the step-size
as the following ratio, e, £ ||v — 7l|2/[|7|2, where v =
T =S, ¢ LS v\ and 4 £ 71,,.

L

IV. CONVERGENCE ANALYSIS

The following notations are made throughout the con-
vergence analysis for convenience. For Vk € V' )i € N,

8.t [Gi5er- - 90k € R™ denotes the stacked
partial gradient tracker with respect to agent & of cluster
i, 8, = 21,8, € R denotes the average of the

partial gradlent tracker with respect to agent k of clus-
ter i, 8 = (9114 930, T € R™ denotes

the stacked gradient tracker of all clusters, V}J i(y{y &

[ViJi(y:),....ViJi (y7)]T € R™ denotes the stacked
partial gradient with respect to agent k of cluster i eval-
uated with the the correspondlng estimation variable, and

iJi(yl)y & L L VI (y; () € R denotes the average
of the partial gradlent with respect to agent k of cluster
1 evaluated with the the corresponding estimation variable.
Then, the concatenated form of (1) is given by

N
7gnNnN,

Ygi+1 = AYq,t
+ diag([01a1g, - - - Onling) ) (LnYqs — i) (2)
Xi41 = X — diag(y)g:, (2b)
gl = A, + VIV (i) - VI (vi?). (20)

A. Auxiliary Results

We first start with an important property of the adjacency
matrix A in the following lemma.

Lemma 1: Under Assumption 2, let 6, > 0,p € Y be
chosen such that 0 < 0papy < 2ap, Vg € V. Then, the
matrix A = [aq ],q € V with its entry given by

ag = am
pm ‘a _
Pp

holds that p(leq) < 1. Moreover, there exists a matrix norm
| - ||z such that ||A,||z < 1 for Vg € V.

Proof: The first part of the result (i.e., p(A,) < 1) can be
readily proved based on [14], [15]. For the second part, we
invoke the following lemma to facilitate the proof.

Lemma 2: (see [22, Lemma 5.6.10]) Let p(A) be the
spectral radius of a (square) matrix A. For any given ¢ > 0,
there exists a matrix norm || - || g such that p(A4) < [|[A||g <
p(4) + o. )

From Lemma 2, we choose ¢ € (0,1 — max,cyp p(Ay)),
then there exists a matrix norm || - ||z such that ||4,|z <
p(/iq)) + 0 < 1,Yq € V, which completes the proof. (Il

Denote the vector norm which is compatible with the
matrix norm || - ||g by || - ||e, i-e., ||Av|le < ||Allgllv]|e for
a matrix A and a vector v with compatible size. Due to the
equivalence of all norms in a finite-dimensional vector space,
there exists C' > 0 and C' > 0 such that C|jv||s < [Jv]le <
C||v||2. Define 04, 2 |4, ||lg. Let 5o £ maX,cp o

S 1+o’2
S
2= 1= az

Next, we provide a bound on the stacked gradient estima-
tor g; in the following lemma.

if p#m

plpgl fp=m
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Lemma 3: Under Assumptions 1 and 3, the stacked gra-
dient tracker g; holds that

lgell3 < 3L 000 nd e —x* |3 + 37 0, it

b — AL+ S T e~ Lyl
Proof: Tt is noted that for k € V', i € N, ||gj. ,ll2 < llgj}., —

Vi, gl + (v 1 Bl < VAllgr, — Algyllx
natllg,, — VT ()l + it VT () - VLT () o +
n;t|| V3, I (x¢) =V}, J* (x*)||2, where V7, J*(x*) = 0 has been

applied. Since A’ is column stochastic, it follows from (2c)
that g, 1 = &, + V;J’(yﬁﬂl) - }CJZ(yt(’)). Due to the
initial conditions g}w = V}CJz(y(() )), we obtain

gty = Vid'(v"). 3)
Thus, Hgch,tH% < Sngi,t - Al gk Il o T
VI ) — VISR + 3wl -

. N i
X*H?r Since ||gt||% = dim1 ZZ:1 <
{\i i ¢ 112 substituting the above relation,
Do 2kt 8r.tll2 g
and noting that
S S VT (i) - szZ(xt)||2
<r? Zi:1 Zk;1 :1 ”ZHYt — Xt H2
= [? D1 ZZ:l n=1 ZZ=1 ”iHyé,t - yw”%
2 p2
< ngg Z:l 1¥gt = Lnyqell2, 4)
we obtain the desired result. O

The convergence analysis of the proposed algorithm is
conducted by establishing a linear system, which is com-
posed of three major expressions: i) the total decision es-
timation error, ii) the total gradient tracking error, and iii)
the gap between all agents’ decisions and the NE. Next, we
establish the inequality iterations of the three major terms in
Lemmas 4, 5 and 6, respectively.

We first derive a bound on the total action estimation error
characterized by >0 |10yt — yo.ill2-

Lemma 4: Under Assumptions 1, 2 and 3, the total action
estimation error satisfies:

o=t nYget1 = a2
1452 33 62 2,22
< [HP + R E I S LY — a2
37 62 2 N n; i Al
+ 37neC vy Zz 12 = ||gkt gk: tH

+ 3TN0 2 L2 SNl Svarllxe — x*||2.
Proof: From (1b), we have for ¢ € V, L,y 111 = 1pYq,t —
Yqln8q,t, Where 74 and gg; denote the step-size and gra-
dient tracker of agent ¢, respectively. That is, fy] and gj it
correspond to v, and g, with ¢ = j°, if agent j € V" in
cluster s € N\ is considered. Subtracting it by (2a) and taking

the vector norm || - || on both sides, we have
11nyg,e1 = Yaetille < (A — diag([81a1g, .-, Sning] "))
(LnYgt — ¥at) — Valn8qtlle
< N Ag(Lnyge = yai)lle + Yol Lngg,tlle

< | Agll 2 1nyat — Yatlle + vVRCyarllga.ell2-

Square both sides, we obtain

11nYg,it1 = Yareille <051 1nyar = YauillZ + s l|ga,e 2
1—52 252nC2
=+ %Hln)/q,t - Yq,t”g M”gq t||2
1 =2
= ﬂHlnyq,t - Yq,tHg + n§2C’ ’YMng,t”Qa (5

Summing over ¢ = 1 to n gives Z;’

=1 ||1an,t+1 -
1452 =2
Yarr1llz < =52 201 11ayar — yaillz +10C v l1g:l5-

Substituting the result in Lemma 3 completes the proof. [

Next, we bound the gap between all agents’ decisions and
the NE, characterized by [x; — x*||2.

Lemma 5: Under Assumptions 1, 2, 3 and 4, the agents’
decisions x; satisfies that

372 2~2 N i ;
< [P+ PM]YTL kL e
~ | 3mPLA N
— AL gk i + 11— Xy + %Zi:l n;
2,2p2_ 2
+ 2mv/nLe A |x — x5 + [Fg

7C
2mwnL?ys
+ %] 22:1 [¥g:t = Lnygoell2-
Proof: Tt follows from (2b) that x; 1 —x* = x; —diag(vy)g:—
x*. Taking the norm on both sides gives

l[xt41 — X*||2

diag(v)g: — x*||2
2
<l = x5+ 2 flge]f3

lIx¢11 — X*||72'r = |lx: —

—2(x; — x", diag(y)(g¢ — diag(7) F(x;)))=  (62)
— 2(x; — x*, diag(y — 7)diag((7) F (X¢) ) (6b)
— 29(xy — x*, diag(m) F(x¢))r- (6¢)
For (6a), it follows that
—2(x, — x*, diag(¥) (g — diag()F(x,)))
-2 Zy 1 Zk 1 ’Yk <xk t 557;*’ glifk,t - ni”zicviji(xt»nm;;

221 1Zk 1(7k<33kt xi*>9;§k,t_ni7rigi,t>niw;
+ e, — 2l k(@ — VR (YE)) et
+ 9w — 2 (VT (1) = Vi (%0)) it ).

The first part holds that

N i Lk 3
-2 Ei:l ZZ 1 %(xk it — Ty 7glkk,t -
~y 2 N i
< B xe —x %+ E’YT% DAY Dyt
For the second part, it follows from (3) that <x§C :
i nmy (8, — V};ji(ygl))»n i = 0. For the third part,
we have
_221 Py 17k<xkt x}:»nﬂﬁg( i;ji(Y:EZ))
= Vi (%)) ri < 55 e — X717

n;my
271' 0
,,ZX S Erl mal Vi (vi?) = Vi (x) 3.

The last te]\r[m follows the same derivation as in
@ that S0 SR Vi) - Vi G)lE <

i i )
nlﬂ-kgk t>ni7"i

gt — ALy |2

e
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%22:1 l¥qt — Lnyq.:l|?. Hence, combining the above

three parts, we obtain that

—29(x; — x*, g — diag(m) F(x¢)) =
= * 2~2 N i ;
< mxllxe — x5+ 200 0L ek — Alegl ]2
L r2
+ RS |yae — TaYaull? (7)

For (6b), it follows that

— 2(x; — x", diag(y — ¥)diag((m) F(x¢))
< VT ||x¢ — x*|| || diag(y — ) (F(x;) — F(x*
< 2my/nLey|x — x |7 ®)

since ||diag(y — ) (F(x¢) = F(x*))[[2 < [|v = 7|2l F(x¢) —
F(x*)|2 < vnLe,y]xe —x*||2 < VAV/LeF|% — X" -
For (6¢), by Assumption 4, we have

Dll2

—27(x¢ — x*, diag(m) F(x¢))n = —27(x¢ — X", F(x¢))
< =27 llx — x*||5 < —2mxTllxe — xF|2. 9)

Substituting (7), (8), (9) and Lemma 3 into (6) yields the
desired result. ]

Finally, we quantify the total gradient tracking error,
measured by 37,7, 3737 [lg)  — ALeg .l

Lemma 6: Under Assumptions 1, 2 and 3, the total gradi-

ent tracking error Y20 S0 [lgk , — A%og) ,l|2.: satisfies
N i . . . 1_,'_—2
Zi:l ZZ:1 ”g;f,t-i-l - Aéog}c,t—&-l' i- > [%
97n2¢1 (14+ne2C°) L2342 N i ;
+ el = Mo o1 iy llgh — Akgi 4l
Onter (1+ncaCo )2 L42 3ncy (3+52) L2
+ [ n"¢y( 7::202 )= L%y + n§1éﬂ_cf'722) ]2221 ||Yq,t

2 97Tn? 61 (14152 C )L2£4'y
= Loygellz + = Ly

Proof: Tt is obtained from (2c) that

i= 1’I’L3||X -X ||2

ii = ||Aig;c t
s LCeRN[ER
kJZ(Y£-21) -

Al gk t| Tt + H( 5
+ 2<Algk,t
LIy ).

ngtﬂ_Ai
— AL )(V 1(y§i21>
— Al gl (In, — AL)(

It is noted that || I,, — A%_]

~i = 1, then

|‘g2,t+1 _A(i;og}g t+1H3r?7 < 5%”glict_ Al g2t||2
VI (yi) — VT (yi)2 + 2| A'gl,
— A gk t|1r1 kJZ(yiil)— le(yg))|7ri
1+0 7 7
< 72 1||gk't_Aoogkt||3r7
+ | VET (y))) = VT (vt )12, (10)
where
i 71 i T 7 2 ng i jt
Vi3 i) = Vid i)l < 5 5 vk = w1 113

2 2
= Lﬂ Zq 123 1 ||yq,t+1 y;,t”%'

Hence,

N
Dt Dok
Hyrz,t+1 - Yq,t||2 <
+ ||Yq,t - an,t”g + ||1an,t+1 -

2 3+
< sl gn (3o

2_<n£2
Tt —

LIy

||v;f']l(3’t+1)
3nL?

n 2
>og=1 Ulyge+1 — Lnyg el
Loyg.ell3)

||Yq,t - 1an,t||z

—2
+ 1200 i llgq.lI3),

+ ||1nYQ,t+1 - 1n}’q,t| %

where the last inequality follows from (5). It is noted that
D=1 1nYari1 = 1nygull3 = nlxepr = xil3 = nlx —
diag(y)g: — x¢||3 < nv3/||g¢||3. Summing over k = 1 to n;,
i =1 to N for (10) and substituting the above result and

Lemma 3 complete the proof. ]

B. Main Results

Now, we are ready for the analysis on the convergence of
the proposed algorithm. With the inequality iterations derived
in Lemmas 4, 5 and 6, we can establish the following linear
dynamical system

u;1 < Tug, (1T)
with
r 2
% — x*||%
A N n; i i (|2
W= DD ”gkj - Aoogk,t||ﬂ-7t )
aet 1¥at = Loygell?
q
-1—k1’7+k2"/12u _ _
_ kavi+ksva /3 kevartkrva /7
T A +k'3€'y'Y

k:g'yi/[ 17]610‘#]99’}/12” k11+k12'\/§4 ’

k1373, k1473 1—kis+kisvi,

A A 3ImELE N 3 A
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ownL? A 97n2¢; (14ncaC2 )2 L4 3
ke = Taro ks = 1(12 LSl
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11 - 2702 B 12 - wC? >
. —2
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c? 6= 73

Then, the convergence results of all agents’ decisions to
the NE x* can be established based on the convergence of
the dynamical system (11), which are summarized in the
following theorem.

Theorem 1: Suppose Assumptions 1, 2, 3 and 4 hold.
Generate the agent’s action {:C;t}tzo, gradient tracker
{g§k’t}t20 and estimation variable {yé’,t}tzo by (1) with the
non-uniform constant step-size 7; satisfying

0<ey <0 <yu <min{z-,77,75,73 ),
where 7,75 and 3 are some constants related to the het-
erogeneity e,. Then, all players’ decisions {x;};>o converge
to their corresponding NE x* at a rate of p(T).
Proof: For system (11), if p(T) < 1, then T* converges to 0
at a geometric rate with exponent p(T) [22], which implies
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that the supremum of each individual component converges
to 0 with the same rate.

Lemma 7: (see [22, Cor. 8.1.29]) Let A € R™*™ be a
matrix with non-negative entries and 8 € R™ be a vector
with positive entries. If there exists a constant A > 0 such
that A6 < \@, then p(A4) < A.

To invoke Lemma 7, the matrix T has to be non-negative.
Thus, it suffices to have 0 < 4 < 1711 According to Lemma 7,
to ensure p(T) < 1, one needs to seek for some positive
vector @ = [0y,05,05] T, where 6; > 0, 63 > 0 and 63 > 0,
such that T < 0. Without the loss of generality, we can set
A3 = 1. Then we obtain

(k201 + kb2 + ke )Y

< (k1 — k3ey)017° /7 — (ks + kr),
(kg1 + kol + k12)va; < k1ob2 — ki1,
(k1301 + k1462 + k15)73; < k1.

12)

Therefore, we would like to find the range of the step-
size such that (12) hold simultanenously for some 6; >
0, 85 > 0. To ensure the existence of solution 7, and
¥, the rlght hand-side of (12) needs to be positive, i.e.,

€ < 1,0, > % 0y > J+, Thus, we can set
1 36’)/

0 2(k5k11+k7k10)7M/“/ 0y = 2k11
1= k10(k1 k‘gﬁ ) - k‘
Then, we can solve the three 1nequa11t1es in (12) respec-

tively by noting that ¥ < ~p; and 5/ < n. We obtain
Yar < v <3 Y < 5. where 45 & Friobizhae)

'R
j 2 fEebnliRe) o a \/@ql 2
2n2ks (kski1 + krkio) + (2kak11 + kekio) (k1 — ksey), ¢ =

2n2k8(k5k11 + k‘7k‘10) + (2]{}9/4111 + k‘mk‘12)(k‘1 - /41367),
q§ é 2n2k13(k5k11 +k7/€10)+(2/€11]€14+k10k15) (k?1 —kgéfy).
]

Remark 2: Theorem 1 shows that the linear convergence
of all agents’ decisions to the NE is guaranteed when both the
largest step-size and its heterogeneity are sufficiently small.
Besides, it should be remarked that the bounds on both the
largest step-size and heterogeneity are only sufficient but
not necessary conditions for the convergence results. For
the upper bound on the step-size, checking the conditions
may still require some global information that is difficult
to compute in a distributed manner. We remark the derived
upper bound is just a sufficient condition (not necessary) to
ensure the convergence to the NE. Hence, the bound is not
tight, and better bounds may be obtained with better choices
in the analysis.

Next, we analyze the convergence of the algorithm when
all agents adopt uniform constant step-size, summarized in
the following corollary.

Corollary 1: Suppose Assumptions 1, 2, 3 and 4 hold.
Generate the agent’s action {a%,};>0, gradient tracker
{951 }t>0 and estimation variable {y} ,}:>0 by (1) with
uniform constant step-size y satisfying

: 1
0< 0 < mln{k*lfy)lk,cv')’;,calyg,c}a

where 77,73 . and 73, are some constants. Then, all
players’ decisions {x;};>o converge to their corresponding

1 —— 2 1
3 2
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1 2 4
3 5

—>

—_—

§E

2—>3

(b) Low-level 2 (c) Low-level 3

11

N

10

[0 — <
(0 —

(d) High-level network

Fig. 1. Graph topology of two level networks.

NE x* at a rate of p(T).
Proof: Tt directly follows from Theorem 1 by noting that
~ =0 and 7yp/5 = 1, which gives

LAY kikzkio
Ve = 2koksk114+2kokrki0+2k1kak11+k1kekio”’

* A kikiokia
V2, = 2kskgk11+2k7rkskio+2k1koki1+ki1kioki2’

kA kikiokie
T3¢ 2kski1k13+2krkiok1s+2k1ki1kiatkikiokis

Then, following the same arguments in Theorem 1, when
0<y< min{k—ll,wic,ﬁ’cﬁ;c}, the convergence of the
algorithm is guaranteed. ]

V. NUMERICAL SIMULATIONS

In this section, we validate the performance of the pro-
posed algorithm by a Cournot competition game. In partic-
ular, we consider N firms, and each firm 7 € A consists
of n; branches to help produce goods. For j € Viiie N,
let 2 be the quantity of goods produced by branch j of
firm z then its local cost function J¢(x) is modeled by
the following function Ji(x) = c%(z}) — pj(x)a?}, where
ci(xh) = af (@ 0?7+ b’( %) models the cost incurred by
generating ac quantlty of goods, pj L (x) = di —wﬁx models
the selling prlce of such goods, a;,b;, dz e R and w; € R"
are constant parameters. As a numerical setting, we set N =
3, n; = 3,4 and 5, respectively. For constant parameters, we
let aj» =1, d; =10+ 1+ 7, bé and each element of w;
be uniformly drawn from [0, 1], respectively. The two level
networks are given in Fig. 1, which are strongly connected.
The inital conditions of x and y, are set to some arbitrary

values, and 6, = 0.5, Vg € V.

A. Algorithm Convergence

In this part, we focus on the verification of the convergence
result derived in Theorem 1. The step-size 'y;» is evenly
selected from [0.045,0.1], giving a heterogeneity of 0.2381.
Then, the trajectories of the decisions of all firms (and
branches) and the NE gap |[x; — x*||2 are plotted in Fig. 2.
As can be seen, the convergence to the NE is obtained and
the rate is linear.
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Fig. 3. Influence of the step-size and heterogeneity on the rate of
convergence.

B. Influence of step-size on the convergence

In this part, we investigate the influence of the step-size
including the heterogeneity on the convergence. Specifically,
we let the agents’ step-sizes be selected within (0,0.1].
The initial conditions of x and y, are set to zero, while
the rest of the parameters are kept the same as in Sec. V-
A. Fig. 3 plots the NE gaps under various step-size cases
with different averaged step-size and different heterogeneity.
Three cases for uniform step-size e, = 0 are also included
for comparison. As can be seen, smaller heterogeneity of the
step-size and larger averaged step-size lead to a faster rate
of convergence.

VI. CONCLUSIONS

This paper has considered the N-cluster game under
partial-decision information settings, where a distributed
Nash equilibrium (NE) seeking algorithm has been proposed
with non-uniform constant step-sizes among all agents. It has
been shown that all agents’ decisions linearly converge to
their corresponding NE when the largest step-size and the
heterogeneity of the step-size are small.
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