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Abstract— Nearly all natural and synthetic gene networks
rely on the fundamental process of transcription to enact
biological feedback, genetic programs, and living circuitry. In
this work, we investigate the efficacy of controlling transcrip-
tion using a new biophysical mechanism, control of localized
supercoiling near a gene of interest. We postulate a basic
reaction network model for describing the general phenomenon
of transcription and introduce a separate set of equations to
describe the dynamics of supercoiling. We show that supercoil-
ing and transcription introduce a shared reaction flux term
in the model dynamics and illustrate how the modulation of
supercoiling can be used to control transcription rates. We
show the supercoiling-transcription model can be written as
a nonlinear state-space model, with a radial basis function
nonlinearity to capture the empirical relationship between su-
percoiling and transcription rates. We show the system admits a
single, globally exponentially stable equilibrium point. Notably,
we show that mRNA steady-state levels can be controlled
directly by increasing a length-scale parameter for genetic
spacing. Finally, we build a mathematical model to explore
the use of a DNA binding protein, to define programmable
boundary conditions on supercoiling propagation, which we
show can be used to control transcriptional bursting or pulsatile
transcriptional response. We show there exists a stabilizing
control law for mRNA tracking, using the method of control
Lyapunov functions and illustrate these results with numerical
simulations.

I. INTRODUCTION

Controlling the magnitude and rate of gene transcription
from DNA into mRNA is a fundamental problem in systems
and synthetic biology [1], [2], [3], [4], [5], [6], [7]. At the
single cell level, controlling gene transcription is a problem
of controlling discrete molecular states, which manifests
empirically as a stochastic control problem [7], [8], [9], [10],
[11]. At the population level, controlling gene transcription
is a problem of controlling the distribution of mRNA counts
across a population of cells, i.e. a distributional control
problem [9]. More frequently, the problem is formulated
in terms of the control of the first moment (the mean) of
the population’s gene transcription or the centered second
moment (the variance) [9].

There are many methods for controlling gene transcription.
For example, transcription factors can be programmed to
activate or repress the promoter of a gene, which has the
effect of turning gene transcription on or off [12], [13],
[14], [15], [16]. Further, CRISPRi control uses sequence-
programmable targeting RNA molecules to direct the binding
of CRISPR proteins to promoter, ribosome binding sites, or
within a transcriptional reading frame, to sterically occlude
the procession of polymerase enzymes [17], [18], [19], [20].
Both transcription factor and CRISPR-based control are

limited by the slow rate at which proteins are translated
and folded. More recently, researchers [4] have shown that
optogenetic proteins with light-responsive domains can trans-
duce ex vivo sourced light into intracellular control signals,
thereby enabling design and execution of transcriptional
control through an in silico controller. Genomic DNA is
typically double-stranded and modeled as a double-helical
structure, averaging about 10.5 basepairs per rotation or turns
in the genetic sequence [15]. The number of rotations r in
a double stranded DNA fragment of length n is referred
to as the linking number of DNA. The linking number
normalized by the length of the DNA fragment (r/n) is
called the supercoiling density (σ) of the DNA [21]. In [21],
it was shown that transcribed DNA generates two, distinct
domains of supercoiling. Upstream of the promoter of a gene
is a relaxed domain of negatively supercoiled DNA (DNA
rotating in the left-handed direction). Downstream of the
gene is a hypercoiled region of positively coiled DNA, ro-
tating in the right-handed direction. Extensive accumulation
of twist of either type can result in writhing of the DNA,
where the backbone of the hypercoiled DNA accommodates
further torsional stress by rotating in 3D intracellular space.
Higher order twisting in 3D space is referred as writhing
and excessive writhing can form higher-order knots in DNA
known as plectonemes.
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Fig. 1. A schematic illustrating the scenario of interest: we explore the
effect of trapping supercoiling with DNA binding proteins immediately
downstream of a single gene of interest (see reactions (1-??) ).

In the presence of extensive torsional stress, the degree of
supercoiling near a gene can directly control transcription.
In [22], [23], researchers showed that high levels of positive
supercoiling can quench gene transcription. Each time a gene
transcribes with a higher degree of activity, it accumulates
enough positive supercoiling to self-repress to an off-state
[22]. The overall effect is that RNA transcription will occur
in pulsatile bursts, or bursty transcription [24]. Thus, DNA
supercoiling is a fundamental component of transcriptional
bursting [22]. Control strategies utilizing supercoiling to alter
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the frequency or magnitude of transcriptional bursting could
be used to alter cell fate [25], genomic programs [15], and
pathogenesis in various species of bacteria [26].

Here we develop novel, mathematical models for a bio-
physical approach to transcriptional control. We investigate
the feasibility of controlling a single gene’s transcription
by controlling the supercoiling around the gene using inter-
ference from a DNA binding protein [17]. Specifically, we
model utilization of a DNA-binding protein with sequence-
directed specificity. There are DNA binding proteins with de-
fined recognition sites, e.g., CRISPR or Par protein systems
that utilize targeted binding to a gene sequence. Utilizing
a mathematical approach, we explore in this paper whether
a DNA binding protein, could be used to control the local
supercoiling state surrounding a gene [14], to both upregulate
or downregulate gene transcription.

II. TRANSCRIPTIONAL DYNAMICS WITH SUPERCOILING

To begin we consider transcription of the mRNA mX of a
single gene X of length nX basepairs, with transcription rate
dependent on the local supercoiling density σX . We assume
the mRNA is subject to degradation and the supercoiling
of DNA is subject to topoisomerase regulation (gyrase reg-
ulating positive supercoiling and toposiomerase regulating
negative supercoiling). We suppose that the coordinates of
the supercoiling are centered around the homeostatic setpoint
σ∗ = 0.095, coinciding with roughly 10.5 basepairs per turn
in standard B-form DNA. Thus, when we write the translated
state variable σ = 0 in this paper, it will correspond to
the absolute, supercoiling density of gene X having average
density σX = σ∗ over nX + Lt basepairs, where Lt is the
basepair distance that displaced supercoils have to dissipate
before confronting a topological barrier (a DNA binding
protein, another gene, etc.). Throughout the paper, we will
model exclusively σX to represent local supercoiling density
— to avoid cluttered notation with multiple subscripts when
talking about equilibria σe and reference points σr, we will
simply denote σX = σ.

The purpose of tracking the supercoiling density is to
postulate a new class of simple, transcription-supercoiling
coupled models that mirror the experimentally observed,
nonlinear relationships between supercoiling and transcrip-
tion [27], [15], [28], [27], [15], [21]. For now, we focus
on a single gene surrounded by a topological barrier that
limits supercoiling. In particular, we consider a rate-varying
chemical reaction network model, one where catalytic rates
of production are dependent on the current supercoiling state
σ:

∅ P0 cX kcat(σ)−−−−−−−−→ mx (1)

mX
δm−−→ ∅ (2)

σ
δT T0 cX−−−−−→ σ+1 (3)

σ
γG0 cX−−−−→ σ−1 (4)

∅ α2 kcat(σ)−−−−−−→ σ, (5)

where P0 is the concentration of RNA polymerase, cX is

the intracellular concentration of gene X , δm is the rate of
degradation, δT is the rate of Topoisomerase I cleavage, T0

and G0 are the intracellular concentrations of Topoisomerase
I and gyrase, mX is the concentration of mRNA for gene X ,
σ is the supercoiling density of the DNA spanning gene X
and downstream until the next topological barrier, α2 is an
effective rate constant of positive supercoiling accumulation
in σ from transcription, and kcat(σ) models the supercoiling-
dependent rate of transcription.

The rate of transcription kcat(σ) is dependent on super-
coiling [28], [27], [15], [21], [29]. In particular, we assume
it follows the functional form of a radial basis function
(matching empirical observations in [30], [31]:

kcat,X(σ) = βe
−σ2

s . (6)

A derivation for the expression for α2 is beyond the scope
of this paper [15]. For now, it suffices to assume that

α2 = δTT0
nX

2h0Lt
βP0cX ,

which broadly speaking contains the conversion factor nX

2h0Lt

converting twist displaced by the transcriptional flux repre-
sented by βkcat(σ)P0cX , and subsequently catalyzed locally
into positive supercoiling at rate δTT0. The parameter h0

estimates the number of basepairs melted during an average
transcription bubble and while Lt is the basepair distance
that displaced supercoils have to dissipate before confronting
a topological barrier (a DNA binding protein, another gene,
etc.). Effectively, this term is an approximation of the positive
supercoils that result from transcriptional displacement of
natural twist in the genetic region modeled by σ. A more
detailed, spatial, biophysical model will follow in later work.

In total, there are five reactions that model mRNA and
supercoiling dynamics jointly, two of which depend on the
constants kcat and α to be described below. There are two
reactions to model the birth and death dynamics of mRNA.
The first reaction models the transcription of mRNA mX .
It assumes polymerase concentration is vastly abundant and
that gene copy number in the cell is low enough to never
approach the saturation regime of a Michaelis-Menten ap-
proximation (see Assumption 1). The second reaction models
the degradation of mRNA as a first order reaction, which
equates to an assumption that ribonucleases are unsaturated
by their degradation substrates.

There are three reactions to model the regulation and
fluctuation of supercoiling dynamics. The first reaction docu-
ments the action of a topoisomerase (TopoI) that corrects ex-
cessive negative supercoiling by introducing one positive su-
percoil (a right-handed turn). The second reaction describes
the countering effect of a distinct topoisomerase species (gy-
rase) that introduces a negative supercoil to correct excessive
positive supercoiling. In both of these reactions, we assume
the topoisomerase and gyrases proceed in their reactions with
a low, basal rate as estimated empirically from enzymatic
experiments. The third reaction models increase in positive
supercoiling when the transcription process displaces natural



twist in gene X to downstream areas of DNA as positive
supercoiling [21], [15].

Under the above assumptions, combining these five chem-
ical reactions, with the law of mass action yields the follow-
ing, simplified single-gene transcription-supercoiling model:

ṁX = kcat(σ)P0cX − δmmX

σ̇ = δTT0
nX

2h0Lt
kcat(σ)P0cX − (γG0 − δTT0)cXσ.

(7)

Now suppressing all subscript notation for gene X , then the
abstraction for this system is of the form

ṁ = α1e
−σ2/s − δmm

σ̇ = α2e
−σ2/s − (α4 − α3)σ.

(8)

where

α1 = P0cXβ, α2 = δTT0
nX

2h0Lt
βP0cX ,

α3 = δTT0cX , α4 = γG0cX .

Proposition 1: When α4 − α3 > 0, the system (8) has a
single, positive equilibrium point (me, σe) with

σe > 0, me =
α1

δm
e−σ2

e/s > 0.

Proof: The result follows from setting the derivative of
σ above equal to 0 and noting that an origin-centered radial
basis function and a positively sloped line intersecting the x
(or σ) axis at the origin only cross once on the right hand
side of the y-axis with σe < 0. Solving the first equation
yields the expression for me.
With this simplified model, we can derive the following
two results about the stability of σ about the origin. These
mathematical results are corroborated by prior experimental
studies of the phenomenon of transcriptional bursting, which
consistently shows the stability and pulsatile properties of
mRNA expression [22], [15].

Theorem 1 (Lyapunov Stability): Suppose that the cou-
pled transcription-supercoiling model (8) is written as

ṁ = α1e
−(σ)2/s − δmm

σ̇ = α2e
−(σ)2/s − (α4 − α3)(σ).

with simplified constants α1, α2, α3, α4, s > 0, where s is
an empirically fitted shape coefficient of the radial basis
function defined in (6). Then (me, σe)

T is a globally, ex-
ponentially stable equilibrium point when α4 − α3 > 0.

Proof: The following inequalities hold due to the
boundedness of radial basis functions:

α1e
−σ2/s ≤ α1 , α2e

−σ2/s ≤ α2

so we can bound the vector field by a decoupled system of
the form Ax+ b where

A =

[
−δm 0
0 −(α4 − α3)

]
, b =

[
α1

α2

]
and by the monotonicity property of integrals, since A is
Hurwitz and b is time-invariant and bounded, we know
that the bounding system dynamics are exponentially stable.
Therefore, the original system is exponentially stable, in

particular the single equilibrium point derived in Proposition
1 must be exponentially stable.

Theorem 2: Given the coupled transcription-supercoiling
model (8) with

α2 = δTT0
nx

2h0Lt
βP0cX ,

and α4 − α3 > 0 the mRNA equilibrium me is strictly
increasing while the supercoiling equilibrium σe is strictly
decreasing, with increasing spacing Lt between the gene and
its downstream barrier.

Proof: To show strict monotonicity of the system’s
equilibrium point to increasing Lt we use implicit differ-
entiation. We know that me and σe are dependent of Lt

implicitly. Specifically, we know that to solve for σe we must
solve the equation

0 = δTT0
nX

2h0Lt
βP0cXe−σ2

e/s − (α4 − α3)σe (9)

Multiplying by Lt gives us

0 = δT
T0nx

2h0
βPcXe−σ2

e/s − Lt(α4 − α3)σe (10)

and implicitly differentiating with respect Lt yields

[
δTT0nxβP0cX

h0s
σee

−σ2
e/s + Lt(α4 − α3)

]
∂σe

∂Lt
= −(α4−α3)σe

which solving for ∂σe

∂Lt

∂σe

∂Lt
=

−(α4 − α3)σe

δTT0nXβP0cXσe

h0s
e−σ2/s + Lt(α4 − α3)

,

we see that the numerator is negative since σe > 0 (Propo-
sition 1) and −(α4 − α3) < 0, so their product is negative.
Since the denominator is always positive,

∂σe

∂Lt
< 0.

Differentiating the expression for me(Lt) we see that

∂me(Lt)

∂Lt
=

α1

δm
e−σ2

e/s

(
−2σe

s

∂σe

∂Lt

)
which is positive since σe > 0 and monotonically decreasing
in Lt as shown above.

III. SUPERCOILING-TRANSCRIPTION MODEL WITH DNA
BINDING PROTEIN INTERFERENCE

Now, let us consider an identical scenario as in the previous
section, except now we consider the influence of a DNA
binding protein that can bind to regions of DNA near the
gene using a targeted binding site. For example, this may
be a standard nucleoid binding protein with a specific DNA
sequence binding motif or a CRISPRi based DNA binding
protein that uses guide RNA targeting. Separately, one could
engineer a promiscuous DNA-binding protein whose position
is actuated by a magnetic control signal that is computed
in silico. Here we investigate the theoretical ramifications



of controlling u(t) = Lt as a unconstrained, time-varying
control signal.

The parameter Lt appears in α2 of the simplified model
(8). Here we write u(t) = Lt to consider the scenario of a
potentially time-varying spacer distance of a ”sliding” DNA-
binding protein. The experimental details of such a realiza-
tion are beyond the scope of this paper, but we conceive of a
scenario where a DNA-binding protein with a magnetically
responsive domain is actuated by an in silico generated
control signal from a dynamically moving magnetic field (an
actuated magnetic tweezer).

Mathematically, we suppose that u(t) may range from
positive to negative values. A negative distance u(t) would
indicate that the binding protein potentially binds internally
or upstream of the gene, to accumulate negative supercoil-
ing. In this paper, we have focused primarily on positive
supercoiling but a more in-depth study with both negative
and positive supercoiling will be the subject of future work,
pursuant to informative experimental measurements.

The revised coupled supercoiling-transcription model with
input u(t) takes the form

ṁ = α1e
−(σ)2/s − δmm

σ̇ =
α2

u
e−(σ)2/s − (α4 − α3)σ.

(11)

where all other αi parameters are the same as before, but
the new α2 (excluding Lt) is given as

α1 = P0cXβ, α2 = δTT0
nX

2h0
βP0cX ,

α3 = δTT0cX , α4 = γG0cX .

Theorem 3: Given the bounded reference signals σr and
mr, the system (11) is asymptotically stable with the dy-
namic control law

u(t) =
α2

α1

k2(mr −m+ δmm− ṁr)

k1(σr − σ + (α4 − α3)σ)
, (12)

asymptotically tracks the dynamic reference m(t) and sta-
bilizes σ(t) about the reference σr, and where k1, and k2,
define tuneable parameters to tune the convergance rates of
the system.

Proof: Define the tracking error terms

eσ = σr − σ, em = mr −m. (13)

We will take a tiered approach in a way that utilizes the
scaled, nonlinear coupling of transcription and supercoiling.
Specifically, both share a radial basis function term, directly
as a consequence of the physics of the phenomenon we
are studying. In our model, increase in supercoiling derived
from transcription is directly proportional to the rate of
transcription (which is a supercoiling-dependent function).
First, we will solve for the control law to stabilize σ(t) to
track the reference σr. Using the method of Sontag’s formula
[32], define the control Lyapunov function Vσ(eσ) =

1
2eσ

2,

then V̇σ(eσ) = eσ ėσ = eσ(σ̇r − σ̇), and set ėσ = −k1eσ
to enforce negative definiteness of V̇σ(eσ) and tunability of
convergence with the design parameter k1. This guarantees

that the dynamics of eσ(t) are asymptotically stable, which
guarantees convergence of the supercoiling to a desired state.
Let us now set

ėσ = −k1eσ =
(
σ̇r −

α2

u
e(−σ2/s) + (α4 − α3)σ

)
(14)

and solving for u, we get

u(t) =
α2e

−σ2/s

k1eσ + σ̇r + (α4 − α3)σ
. (15)

Now we use the functional coupling relationship between
supercoiling and transcription to define a control Lyapunov
function

Vm(em) =
1

2
e2m.

Again, taking the derivative of

V̇m(em) = emėm = em(ṁr − ṁ)

= em

(
ṁr − α1e

−σ2/s + δmm
)
,

(16)

and again, introducing a convergence tuning parameter for
design, k2, we obtain

ėm = −k2em = ṁr − α1e
−σ2/s + δmm, (17)

which allows us to solve for σ in terms of mr(t) and
m(t). Noting the functional equivalence of elements of u(t)
and our current expression of ėm (a natural consequence of
mRNA and supercoiling production being linked to the same
transcriptional event) allowing us to write

e−σ2/s =
k2em + δmm− ṁr

α1
(18)

and so u(t), the control law can be expressed as

u(t) =
α2

α1
(k2em + δmm− ṁr)

k1eσ + σ̇r + (α4 − α3)σ

=
α2

α1

(
k2(mr −m) + δmm− ṁr

k1(σr − σ) + σ̇r + (α4 − α3)σ

) (19)

Thus, we have shown, by construction, that Vσ(eσ) and
Vm(em) are control Lyapunov functions and therefore eσ(t)
and em(t) will converge to 0 asymptotically.
The mathematical form of this control law is complex, so
the most feasible strategy is to compute the control law in
silico. In in vitro experiments, we anticipate having direct
seconds-scale measurements of m(t) and high-resolution
proxy measurements for σ(t) via DNA visualization. We thus
can numerically estimate the derivatives of σ and m, subject
to filtering or smoothing.

IV. SIMULATION RESULTS

In this section we summarize three numerical findings with
our supercoiling-transcription models from Section II and
Section III: 1) we show open-loop, pulsatile response for
varying spacing lengths Lt, 2) we test the dynamic control
law from Theorem 3 on a sinusoidal tracking problem,
and given the difficulties of dynamic control of u(t), 3)
we explore a switching, static control method to inform
experimental design. Our simulations were conducted in



Fig. 2. The simulated response of the open loop system (8) for 3 different
lengths of Lt. The solid lines represent the supercoiling density σ while
the dotted lines represent the concentration of mRNA molecules mX . With
increasing coding sequence length, the amplitude of the transcriptional pulse
in mRNA concentration increases.

Python 3.7 using the scipy.odeint solver, with an i7
Intel QuadCore. The code for these simulations is available
upon request.

A. Pulsatile Response of the Open-Loop Supercoiling-
Transcription Model

We simulated the open-loop supercoiling-transcription dy-
namics modeled in equation (8), the parameters are defined
in Table 1. In Figure 2 we simulate three different spacing
lengths of Lt = 100, 500, 1000 basepairs. Note that m(t)
generates a pulsatile response, while me and σe increases
monotonically with Lt, illustrating the conclusions of Theo-
rem 2.

B. Dynamic Supercoiling Control: Control of Transcrip-
tional Bursting

Now consider the controlled system (11), with parameters
as in Table 1, we simulated a dynamic supercoiling control
law using the input function defined as in Theorem 3. As
a theoretical challenge, we define a harmonically oscillatory
reference signal: mr(t) = 2 sin

(
t

200

)
+ 2.1, with ṁr(t) =

cos (t/200)
100 is the analytical derivative of the reference signal,

and σr = 0.5 as a static reference. The dynamics of the
simulation is plotted in Figure 3. Consistent with Theorem
3, we are able to track our oscillatory reference signal over
a 5000 second horizon. We see small oscillations of σ(t)

Constant Value Units Reference
P0 2.5 µM [33]
cx 1.0 $M n/a
σ∗ -0.5 turn/bp n/a
s 1.0 bp2/turns2 n/a
δm 0.01 s−1 [34]
G0 3 µM [35]
T0 3 µM [35]
γ 0.1 µM−1s−1 n/a
δT 0.05 µM−1s−1 n/a
h0 0.12 µM / turn [36]
nX 1000 base pairs n/a
Lt 100-1000 base pairs n/a

TABLE I
SIMULATION PARAMETERS FOR FIG 2. FIG 3. AND FIG 4.

Fig. 3. Dynamic supercoiling control exhibiting transcriptional bursting.
The red line depicts the supercoiling density σ while the blue line depicts
the concentration of mRNA molecules mX . The black dashed line is the
reference trajectory.

Fig. 4. Dynamic supercoiling control exhibiting transcriptional bursting.
The red line depicts the supercoiling density σ while the blue line depicts
the concentration of mRNA molecules mX .

as the controller attempts to regulate σ(t) to a constant
σr. Here tracking is limited by the coupling of oscillatory
transcriptional dynamics and supercoiling.

C. Supercoiling Control with Switching Spacer Lengths

In many cases, realizing an in vivo biomolecular realiza-
tion of the control law in Theorem 3 may not be possible.
Here we simulate the effect of a crude switching control law
or bang-bang control option.

Such a control law could be approximated experimentally
in a variety of ways. For example, an optically sensitive
protein could conditionally bind to a DNA locus, when
activated by light, to achieve spacer length Lt downstream
the gene of interest. In the presence of light from a different
wavelength, we could cause a different protein to exclusively
bind immediately behind the terminator, rendering Lt = 0.
By alternating these signals, we can create two distinct
lengths for supercoils: nx + Lt and nx. Then u(t) becomes
a switching function alternating between two lengths:

u(t) =

{
nx for t∈ I1, I3, ..In

Lt + nx for t∈ I2, I4, ..., In−1

(20)

In simulation we see that the mRNA response matches a
lagged version of a periodically alternating step function.
The mRNA alternates between two non-zero steady-state
values. The supercoiling, as expected, alternates between a
positive setpoint (lower spacing) and a near-zero setpoint



(ample spacing for supercoiling dissipation). The decay rate
of supercoiling and mRNA states is dependent on the balance
of T0 and G0 activity and δm, respectively. For illustrative
purposes, the period in our simulations is set to about
p = 100 seconds. In practice, the period would be set to
allow ample time for the rise and fall rates observed in
measurements. This strategy provides a coarse way to shape
the frequency and duration of transcriptional bursts.V. ACKNOWLEDGMENTS
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