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Abstract— The paper considers controller synthesis problems
for control-affine nonlinear systems with unknown dynamics,
aiming to fulfil reach-avoid-stay specifications in a prescribed
time. The research’s primary aim is to devise a closed-form,
approximation-free control strategy that ensures the system’s
trajectory reaches a target set, avoids an unsafe set, and
complies with state constraints. To address this challenge,
the paper introduces a spatiotemporal tube framework that
encapsulates both reaching and avoiding requirements via
reachability tubes and a circumvent function, respectively.
Following this, the paper presents the control strategy and
validates its effectiveness through a robot navigation case study.

I. INTRODUCTION

In recent years, the study of reach-avoid-stay (RAS)
specifications [1] has become increasingly relevant for en-
hancing safety and reliability in autonomous systems. These
specifications are pivotal in ensuring that an autonomous
system’s state trajectory reaches a desired target set from a
specific initial set and avoids any unsafe set while complying
with state constraints. Developing controllers that meet RAS
specifications is crucial as they form the foundation for more
complex task specifications [2], [3] and are instrumental in
designing robust control strategies for safety-critical scenar-
ios, like path planning and motion planning.

Adopting formal languages for specifying complex tasks
has led to the rise of symbolic control [4] as a powerful
tool. Notably, SCOTS [5] has gained significant attention for
its use of abstraction techniques to model system dynamics
symbolically and thereby compute control strategies with for-
mal guarantees. Moreover, advancements in computational
methods, such as a fixed-point algorithm [6] for reach-avoid-
stay controller synthesis, have improved upon traditional
abstraction-based methods. Enhancements in the scalability
of symbolic control for multi-agent systems have also been
achieved by utilizing barrier certificates [7]. Nonetheless,
these methods still face the challenge of the so-called curse
of dimensionality.

In contrast, nonlinear control methods, such as barrier-
based control [8], provide formal safety and stability guar-
antees without the need for discretizing the state space. The
authors in [9], [10] have demonstrated implementing control
(Lyapunov-)barrier functions for controller synthesis to meet
RAS specifications. These approaches, however, depend on
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optimization-based solutions, which increase computational
demands, particularly for larger, higher-dimensional systems.

The funnel-based control approach [11] [12], on the other
hand, offers a closed-loop control to meet specific track-
ing performance. This approach is computationally more
tractable and has been applied successfully in numerous
scenarios [13], ranging from tracking control problems in
unknown nonlinear systems [14] to managing multi-agent
systems with complex tasks [15]. Moreover, as the feedback
control algorithm dynamically adjusts the system’s trajectory
to guide it toward the target, it has been effective in enforcing
reachability specifications [16], [3].

Yet, addressing nonconvex specifications, such as obstacle
avoidance [17], through this technique remains a significant
challenge. Some studies [18] have described a two-step
process involving trajectory creation through path-planning
algorithms and then applying funnel-based feedback control.
However, separating the trajectory planning from funnels
could compromise avoidance constraints under disturbances.

In our prior work [19], we demonstrated skipping the
trajectory generation step by leveraging the funnel func-
tions’ ability to navigate around unsafe sets. In this context,
we introduced the circumvent function to define the avoid
specifications. The primary challenges identified include the
necessity for knowledge of system dynamics, vulnerability to
disturbances, longer computational times, and the inability to
satisfy prescribed time requirements.

To overcome these issues, we present an alternative to the
traditional funnel function in this study. The literature has
proposed various alternatives to funnel functions, designed
to address particular issues, such as eliminating dependence
on initial conditions [20], ensuring finite-time convergence
[21], and minimizing overshoot [22]. As a novel solution,
the paper introduces a spatiotemporal tube framework that si-
multaneously captures reach and avoid specifications through
continuously differentiable time-varying tube functions and
circumvent functions, respectively, along with guaranteeing
prescribed time satisfaction. Subsequently, we formulate
an approximation-free closed-form control law that ensures
the system’s trajectory remains within these tubes, thereby
achieving prescribed-time RAS objectives. The effectiveness
of the proposed approach is showcased through a case study.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notations: The symbols N, R, R+, and R+
0 denote the set

of natural, real, positive real, and nonnegative real numbers,
respectively. We use Rn×m to denote a vector space of real
matrices with n rows and m columns. To represent a column
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vector with n rows, we use Rn. We represent the Euclidean
norm using ∥ · ∥. For a, b ∈ R and a < b, we use (a, b)
to represent open interval in R. For a, b ∈ N and a ≤ b,
we use [a; b] to denote close interval in N. To denote a
vector x ∈ Rn with entries x1, . . . , xn, we use [x1, . . . , xn]⊤,
where xi ∈ R, i ∈ [1;n] denotes i-th element of vector
x ∈ Rn. We use In to denote identity matrix in Rn×n. A
diagonal matrix in Rn×n with diagonal entries d1, . . . , dn
is denoted by diag(d1, . . . , dn). Given N ∈ N sets Xi,
i ∈ [1;N ], the Cartesian product of the sets is given by
X =

∏
i∈[1;N ] Xi := {(x1, . . . , xN )|xi ∈ Xi, i ∈ [1;N ]}.

Consider a set Xa ⊂ Rn, its projection on ith dimension,
where i ∈ [1;n], is given by an interval [Xai,Xai] ⊂ R,
where Xai := min{xi ∈ R | [x1 . . . , xn] ∈ Xa} and
Xai := max{xi ∈ R | [x1, . . . , xn] ∈ Xa}. We further
define the hyper-rectangle JXaK =

∏
i=[1;n] [Xai,Xai]. We

denote the empty set by ∅. The space of bounded continuous
functions is denoted by C. Given a compact set X, int(X)
represents the interior of the set. max and min are smooth
approximations of the non-smooth max and min functions,
defined as, max(a, b) ≈ 1

ν ln(eνa + eνb) and min(a, b) ≈
− 1

ν ln(e−νa + e−νb), respectively.

A. System Definition

Consider the following control-affine nonlinear system:

S : ẋ = f(x) + g(x)u+ w, (1)

where x(t) = [x1(t), . . . , xn(t)]
⊤ ∈ X ⊂ Rn and u(t) ∈ Rn

are the state and control input vectors, respectively. w(t) ∈
W ⊂ Rn denotes unknown bounded disturbance. The state
space of the system is defined by the closed and connected
set X.

Assumption 1: The functions f : X → Rn and g : X →
Rn×n in (1) are unknown and locally Lipschitz.

Assumption 2: ([11], [23]) The symmetric components of
g(x) denoted by gs(x) = g(x)+g(x)⊤

2 are uniformly sign
definite with known signs for all x ∈ X. Without loss of
generality, we assume gs(x) is uniformly positive definite,
i.e., there exists a constant g ∈ R+:

0 < g ≤ λmin(gs(x)),∀x ∈ X,

where λmin(·) is the smallest eigenvalue of the matrix.

B. Problem Formulation

Let U =
⋃

j∈[1;nu]
U j ⊂ X be an unsafe set, where nu ∈

R+
0 and U j ⊂ X is assumed to be compact and convex. Note

that, in general, U can be nonconvex and disconnected. The
compact connected sets X0 ⊂ X \ U and T ⊂ X \ U
represent the initial and target sets, respectively. Further, if
X is of any arbitrary shape, we redefine the state space as
X̂ := JXK =

∏
i∈[1;n][Xi,Xi] and expand the unsafe set as

Û = U ∪ (JXK \X). We consider a prescribed-time reach-
avoid-stay problem defined in Definition 2.1.

Definition 2.1 (Prescribed-time Reach-Avoid-Stay Task):
Given a state-space X, let U be an unsafe set, X0 ∈ X \U
be an initial set, and T ∈ X \U be a target set. For a given

initial position x(0) ∈ X0, there exists t ∈ [0, tc], such
that, x(t) ∈ T and for all s ∈ [0, tc], x(s) ∈ X \U, where
tc ∈ R+ is the prescribed-time.

Problem 2.2: Given the system S in (1) satisfying as-
sumptions 1 and 2, design a closed-form controller to ensure
the satisfaction of prescribed-time reach-avoid-stay specifi-
cations in Definition 2.1.

III. DESIGNING SPATIOTEMPORAL TUBES

The spatiotemporal tubes are generated in three steps.
First, we design reachability tubes that take the system
trajectory from X0 to the target T. Second, we introduce
a circumvent function to avoid the unsafe set U. Finally,
adjusting the tube dynamically around the unsafe region, the
spatiotemporal tubes capture RAS constraints.

A. Reachability Tubes

In this section, we formulate reachability tubes, guaran-
teeing that the system’s trajectory starting from x(0) ∈ X0

enters target set T in finite time tc.
We define X̂0 as a hyper-rectangle around the initial state

x(0) ∈ int(X0) and subset of the initial set X0:

X̂0 :=
∏

i=[1;n]

[xi(0)− d0,i, xi(0) + d0,i] ⊂ X0, (2)

where d0,i ∈ R+ determines the size of X̂0. We further
choose a point η = [η1, . . . , ηn]

⊤ ∈ int(T), and define a
hyper-rectangle T̂ around η and subset of the target set T:

T̂ :=
∏

i=[1;n]

[ηi − dT,i, ηi + dT,i] ⊂ T, (3)

where dT,i ∈ R+ determines the size of T̂.
Now, the reachability tube constraints are defined

as ρL(t) = [ρ1,L(t), . . . , ρn,L(t)]
⊤ and ρU (t) =

[ρ1,U (t), . . . , ρn,U (t)]
⊤, where ρi,L(t) and ρi,U (t) are the

continuously differentiable tube functions representing the
lower and upper boundaries of the tube in ith dimension and
are defined as:

ρi,L(t) =

{
(T̂i − X̂0,i) tanh

t
tc−t + X̂0,i, if t < tc

T̂i, if t ≥ tc

ρi,U (t) =

{
(T̂i − X̂0,i) tanh

t
tc−t + X̂0,i, if t < tc

T̂i, if t ≥ tc.
(4)

Figure 1(b) illustrates the reachability tube design.

B. Circumvent Function

Consider an unsafe set U =
⋃

j∈[1;nu]
U j ⊂ X, adhering

to Assumption 3. We propose to enforce the avoid speci-
fications through a circumvent function βj : R+

0 → Rn,
j ∈ [1;nu], nu ∈ R+

0 .
Assumption 3: There exists at least one dimension ki ∈

[1;n] where X̂0 and unsafe sets U j does not overlap for
all j ∈ [1;nu], i.e., ∃ki ∈ [1;n] such that, [X̂0,ki

, X̂0,ki
] ∩

[U j
ki
,U j

ki
] = ∅,∀j ∈ [1;nu]. And there exists at least one

dimension kT ∈ [1;n] where T̂ and the unsafe sets U j does



t
Fig. 1: An example of Spatiotemporal tube design for a two-dimensional system x(t) = [x1(t), x2(t)]

⊤, assigned the task:
”Starting from S, reach T, while avoiding U, within t = 8s”. (a) State space and the controlled trajectory (black dotted
line). (b) Reachability tube Design (c) Introduction of the circumvent function. (d) Spatiotemporal tube adapted around the
circumvent function. (e) 3D visualization of spatiotemporal tubes with time as the third dimension.

not overlap for all j ∈ [1;nu], i.e., ∃kT ∈ [1;n] such that,
[T0,kT

,T0,kT
] ∩ [U j

kT
,U j

kT
] = ∅,∀j ∈ [1;nu].

Remark 3.1: Note that Assumption 3 can be relaxed by
splitting the unsafe set. In Figure 2 while U = U1 ∪ U2

violates the assumption, splitting it into U1 and U2 resolves
the issue. Details on splitting methods are beyond the scope
of this paper.
Next, we obtain the time range [tj , t

j
] over which the tube

intersects with the jth unsafe set U j , and is given by,

aj1,i = tanh−1

(
U j

i − X̂0,i

T̂i − X̂0,i

)
, aj2,i = tanh−1

(
U j

i − X̂0,i

T̂i − X̂0,i

)
,

aj3,i = tanh−1

(
U j

i − X̂0,i

T̂i − X̂0,i

)
, aj4,i = tanh−1

(
U j

i − X̂0,i

T̂i − X̂0,i

)
,

ai =

{
aj1,i

1 + aj1,i
,

aj2,i

1 + aj2,i
,

aj3,i

1 + aj3,i
,

aj4,i

1 + aj4,i

}
,

tj = ( max
i∈[1;n]

min ai)tc, t
j
= ( min

i∈[1;n]
max ai)tc. (5)

Further, note that if the system’s trajectory enters the unsafe
zone U j , then ∃t ∈ R+, such that xi(t)∩ [U j

i ,U
j

i ] ̸= ∅,∀i ∈
[1;n]. Hence, to satisfy the avoid specification, it is sufficient
to introduce the circumvent function only in one dimension
ij , given by

ij1 = argmaxi∈[1;n] min ai, i
j
2 = argmini∈[1;n] max ai,

ij = argmink={ij1,i
j
2}
(max ak −min ak). (6)

We can choose to modify either the upper or lower constraint
boundary of the tube. However, if U j

i = Xi or U j

i = Xi,
the circumvent function must be introduced in the lower or

Fig. 2: A two dimensional state space demonstrating relax-
ation of Assumption 3.

upper constraint boundary, respectively (this is analogous to
a wall-shaped obstacle scenario with no space between the
state space boundary and the obstacle at one end). In other
cases, we randomly select between the two options.

We define the circumvent function on the lower constraint
boundary for i = ij as:

βj

i
(t) =

Bje

−kj(t−mj)
2

(rj)2−(t−mj)2 +Xi, ∀t ∈ Tact,

Xi, ∀t ∈ R+ \ Tact,
(7)

where Bj = U j

i −Xi + δB, mj := tj+t
j

2 , rj := tj−t
j

2 . The
function is active in the time range Tact = [tj , t

j
] when

the system trajectory avoids U j . The δB ∈ R+ governs
how far from U j should the trajectory stay clear. The small
positive constant kj ∈ R+ determines the smoothness of
the circumvent function. Similarly, we define a circumvent



on the upper constraint boundary for i = ij as:

β
j

i (t) =

−Bje

−kj(t−mj)
2

(rj)2−(t−mj)2 +Xi, ∀t ∈ Tact

Xi, ∀t ∈ R+ \ Tact
(8)

with Bj = Xi −Uj
i + δB and the rest is the same as above.

Combining the circumvent functions for all unsafe sets
U j , we define the tube analog of avoid specification as a
holistic circumvent function βi(t) = [βi,L(t), βi,U (t)] and
β(t) = [β1(t), . . . , βn(t)]

⊤, where

βi,L(t) = max
j=[1;nu]

βj

i
(t), βi,U (t) = min

j=[1;nu]
β
j

i (t). (9)

The circumvent function is illustrated in Figure 1(c).
Remark 3.2: Note, that the definition of circumvent func-

tion (9) not only ensures avoiding the unsafe set U, but also
guarantees staying inside the state space

∏
i=[1;n]

[
Xi,Xi

]
.

C. Spatiotemporal Tube Design

We have expressed the prescribed-time reachability speci-
fication through the tube constraints ρL(t) and ρU (t) (4), and
the avoid specification through the circumvent function β(t)
(9). To enforce PT-RAS specification, we propose an adaptive
framework, akin to [16], to modify the reachability tubes
around the circumvent function. We define the following
adaptive tube constraints:

γi,L(t) := max(ρi,L(t)− αi,L(t), βi,L(t)),

γi,U (t) := min(ρi,U (t) + αi,U (t), βi,U (t)), (10)

where a continuously differentiable update function α≀(t) =
[α≀

1(t), . . . , α
≀
n(t)]

⊤ captures the modifications in the tubes.
The symbol ≀ ∈ {L,U} indicate the upper (U ) and lower
(L) constraints, respectively. The adaptive law governing the
dynamics of the update function is defined as:

α̇≀
i(t) =

θ≀i(t)

(ψ≀
i(t) + α≀

i(t))
2
− κα≀

i(t), α
≀
i(0) = 0, (11)

where ≀ ∈ {L,U}, ψL
i (t) = βi,U (t) − ρi,L(t) and ψU

i (t) =
ρi,U (t) − βi,L(t). When the reach-avoid specifications con-
flict with a tolerance of µ ∈ R+, θ≀i(t) = θo(1−sign(ψ≀

i(t)−
µ)), θo ∈ R+, ≀ ∈ {L,U}, acts as a trigger, activating the first
part of the update function. When the conflict is resolved, α≀

exponentially decays back to 0 with a decay rate κ ∈ R+.
The non-smooth sign(·) function is approximated by the
smooth function tanh(·). An illustration of the designed
spatiotemporal tube is shown in Figure 1(d).

Thus, we can enforce RAS specification by constraining
the state trajectory within the spatiotemporal tubes (10) as:

γi,L(t) < xi(t) < γi,U (t),∀(t, i) ∈ R+ × [1;n]. (12)

Lemma 3.3: γs(t), γ̇s(t), γd(t), γ̇d(t) ∈ C, where γL =
[γ1,L, . . . , γn,L]

⊤, γU = [γ1,U , . . . , γn,U ]
⊤, γd =

diag(γ1,U − γ1,L, . . . , γn,U − γn,L), and γs = γU + γL.
Proof: The proof follows a similar approach to that of

Lemma 4.2 in [19] and Lemma 1 in [16].

IV. CONTROLLER DESIGN

In this section, utilizing the spatiotemporal tubes (10), we
derive an aproximation-free, closed-form control law, similar
to [12], to satisfy (12), thereby solving Problem 2.2.

Define the normalized error e(x, t), the transformed error
ε(x, t) and the diagonal matrix ξ(x, t) as

e(x, t) = [e1(x1, t), . . . , en(xn, t)]
⊤ = γ−1

d (t) (2x− γs(t)) ,

ε(x, t) =

[
ln

(
1 + e1(x1, t)

1− e1(x1, t)

)
, . . . , ln

(
1 + en(xn, t)

1− en(xn, t)

)]⊤
,

ξ(x, t) = 4γ−1
d

(
In − e(x, t)e⊤(x, t)

)−1
,

where, γs := [γ1,U + γ1,L, . . . , γn,U + γn,L]
⊤ and γd :=

diag(γ1,d, . . . , γn,d), with γi,d = γi,U − γi,L.
Theorem 4.1: Consider the nonlinear control-affine sys-

tem S in (1). If the initial state x(0) is within the spatiotem-
poral tubes, i.e., γi,L(0) < xi(0) < γi,U (0),∀i ∈ [1;n], then
the closed-form control strategy,

u(x, t) = −kξ(x, t)ε(x, t), k ∈ R+, (13)

will satisfy (12), thereby driving the state x(t) to the target
T in finite time tc, while avoiding the unsafe set U and
adhering to state constraints.

Proof: Differentiating the normalized error e w.r.t time
and substituting the system dynamics (1) we get,

ė = 2γ−1
d (t)

(
f(x) + g(x)u+ w − 1

2
(γ̇s(t) + γ̇d(t)e)

)
︸ ︷︷ ︸

h(t,e)

,

where, x = γd(t)e+γs(t)
2 . We also define the constraints for

e through the open and bounded set D := (−1, 1)n.
Now, the proof proceeds in three steps. First, we show

that there exists a maximal solution for the normalized error
e : [0, τmax] → D, which implies that e(t) remains within
D in the maximal time solution interval [0, τmax). Next, we
show that the proposed control law (13) constraints e(t) to
a compact subset of D. Finally, we prove that τmax can be
extended to ∞.

Step 1. Since the initial state x(0) satisfies γL(0) <
x(0) < γU (0), the initial normalized error e(0) is also within
the constrained region D. Further, the spatiotemporal tube
functions γL(t) and γU (t) are bounded and continuously
differentiable functions of time, the functions f(x) and g(x)
are locally Lipschitz and the control law u is smooth over
D. As a consequence, h(t, e) is bounded and continuously
differentiable on t and locally Lipschitz on e over D.

Therefore, according to [24, Theorem 54], there exists
a maximal solution to the initial value problem ė =
h(t, e), e(0) ∈ D on the time interval [0, τmax) such that
e(t) ∈ D,∀t ∈ [0, τmax).

Step 2. Consider the following positive definite and radi-
ally unbounded Lyapunov function candidate: V = 1

2ε
⊤ε.



Differentiating V w.r.t. t and substituting ε̇, ė, system
dynamics (1), and the control strategy (13), we obtain:

V̇ = ε⊤ε̇ = ε⊤2
(
In − ee⊤

)−1
ė

= ε⊤ξ

(
ẋ− 1

2
(γ̇s + γ̇de)

)
= ε⊤ξ

(
f(x) + g(x)u+ w − 1

2
(γ̇s + γ̇de)

)
= ε⊤ξ

(
f(x)− kg(x)ξε+ w − 1

2
(γ̇s + γ̇de)

)
.

Now, by Rayleigh-Ritz inequality and Assumption 2,

g∥ε∥2∥ξ∥2 ≤ λmin(gs(x))∥ε∥2∥ξ∥2 ≤ ε⊤ξg(x)ξε,

−kε⊤ξg(x)ξε ≤ −kg∥ε∥2∥ξ∥2 = kg∥ε∥2∥ξ∥2.

Therefore, V̇ ≤ −kg∥ε∥2∥ξ∥2 + ∥ε∥∥ξ∥∥Φ∥, where Φ :=
f(x)+w− 1

2 γ̇s−
1
2 γ̇de. From Lemma 3.3, we know that γ̇s

and γ̇d are bounded by construction. From step 1, we have
e(t) ∈ D and consequently x(t) ∈ (γL(t), γU (t)). Thus,
owing to the continuity of f(x) and g(x) and employing the
extreme value theorem, we can infer ∥f(x)∥, ∥g(x)∥ < ∞.
Hence, ∥Φ∥ <∞,∀t ∈ [0, τmax).

Now add and substract kgθ ∥ε∥2 ∥ξ∥2, where θ ∈ (0, 1).

V̇ ≤ −kg(1− θ) ∥ε∥2 ∥ξ∥2 − ∥ε∥ ∥ξ∥ (kgθ ∥ε∥ ∥ξ∥ − ∥Φ∥)
≤ −kg(1− θ) ∥ε∥2 ∥ξ∥2 ,∀kgθ ∥ε∥ ∥ξ∥ − ∥Φ∥ ≥ 0

≤ −kg(1− θ) ∥ε∥2 ∥ξ∥2,∀ ∥ε∥ ≥ ∥Φ∥
kgθ∥ξ∥

,∀t ∈ [0, τmax).

Therefore, we can conclude that there exists a time-
independent upper bound ε∗ ∈ R+

0 to the transformed error
ε, i.e., ∥ε∥ ≤ ε∗,∀t ∈ [0, τmax).

Consequently taking inverse logarithmic function,

−1 <
e
−ε∗i
i − 1

e
−ε∗i
i + 1

=: ei,L ≤ ei ≤ ei,U :=
e
ε∗i
i − 1

e
ε∗i
i + 1

< 1,

∀t ∈ [0, τmax), for i ∈ [1;n]. Therefore, by employing the
control law (13), we can constrain e to a compact subset
of D as: e(t) ∈ [eL, eU ] =: D′ ⊂ D,∀t ∈ [0, τmax) where,
eL = [e1,L, . . . , en,L]

⊤ and eU = [e1,U , . . . , en,U ]
⊤

Step 3. Finally, we prove τmax can be extended to ∞.
We know that e(t) ∈ D′,∀t ∈ [0, τmax), where D′ is a

non-empty compact subset of D. However, if τmax < ∞
then according to [24, Proposition C.3.6], ∃t′ ∈ [0, τmax)
such that e(t) /∈ D. This leads to a contradiction! Hence, we
conclude that τmax can be extended to ∞. In conclusion, the
control strategy (13) guarantees the satisfaction of (12).

Remark 4.2: Note that the closed-form time-dependent
control law (13) is approximation-free and guarantees the
satisfaction of RAS specifications for control affine systems
with unknown dynamics. Additionally, if gs(x) is negative
definite, k (in control law (13)) ∈ R \ R+

0 .

V. CASE STUDY

Spatiotemporal tubes offer a closed-form solution for
general RAS tasks. To illustrate the effectiveness of this

approach, we consider a robot navigation problem using an
omnidirectional robot defined as:ẋ1ẋ2

ẋ3

 =

cosx3 − sinx3 0
sinx3 cosx3 0
0 0 1

v1v2
ω

+ w(t), (14)

where the state vector [x1, x2, x3]⊤ captures the robot’s pose,
[v1, v2, ω]

⊤ is the input velocity vector in the robot’s frame,
and w is an external disturbance. The robot operates in a 2D
arena with multiple obstacles in the presence of unknown
bounded external disturbance. Starting from three different
initial sets S1 = [0, 0.5] × [4.5, 5], S2 = [0, 0.5] × [0, 0.5]
and S3 = [4, 4.5] × [0, 0.5], the aim is to reach a target
set T = [4.5, 5] × [4.5, 5], while avoiding obstacles O1 =
[1, 2]× [4, 5], O2 = [2, 3]× [2.5, 3.5], O3 = [1, 2]× [0.5, 1.5],
and O4 = [4, 5] × [1.5, 2.5] and remaining inside the state
space boundaries [0, 5]× [0, 5]. The spatiotemporal tubes are
shaped with the following parameters: tc = 9, δB = 0.2, k =
0.01, θ0 = 0.01, κ = 5, and µ = 1. Figure 3 depicts the
simulation results with three different initial states.

The case study can also be solved using path planning
and path-following algorithms. However, these algorithms
have a moderate to high computation complexity and fail
to provide any formal guarantee of solution quality. On the
other hand, symbolic control techniques do provide formal
guarantees at the cost of increased computation complexity.
We ran tests in 500 arenas, randomly placing the obstacles at
different locations, and compared the proposed spatiotempo-
ral tube-based control approach against some state-of-the-art
techniques presented in the literature. We used a computer
with an Intel Core i7-11700 Processor and 16 GB RAM to
run the simulations on MATLAB. Table I summarizes the
findings, bringing forth the effectiveness of spatiotemporal
tubes.

VI. CONCLUSION AND FUTURE WORK

In this work, we consider a prescribed-time reach-avoid-
stay control problem. Given an initial set, a target set, an
unsafe set, and state constraints, we first proposed a spa-
tiotemporal tube framework. We have then derived a closed-
form control law guaranteeing that the state trajectories
are constrained within the spatiotemporal tubes, enforcing
prescribed-time reach-avoid-stay specifications. The feed-
back control law is approximation-free and works on control-
affine systems with unknown dynamics. Finally, the efficacy
of the proposed approach is demonstrated through a robot
navigation case study, and the results are compared with
those of other state-of-the-art algorithms in the literature.

Currently, our approach is limited to fully actuated systems
as stated in Assumption 1. Future work will expand this to
include underactuated control systems. Additionally, we plan
to enhance the method’s ability to meet reach-avoid speci-
fications and address general specifications described using
regular expressions. Our present control strategy cannot meet
arbitrary input constraints, and we aim to develop solutions
accommodating input constraints.
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Fig. 3: Spatiotemporal tube-based control to satisfy RAS tasks for three different initial states starting from S1, S2 and S3.
(b), (c) and (d) The spatiotemporal tubes reaching T avoiding O1∪O2∪O3∪O4, starting from S1, S2, and S3, respectively.

TABLE I: Comparing spatiotemporal tubes with classical algorithms

Algorithm Success
Rate (%)

Computation
Time (secs) Formal Guarantees

A* [25] [26] 95.40 3.32 Optimality under certain conditions
Probabilistic completeness

}
For tracking, we need additional mechanisms
such as PID, MPC, Funnel-based control, etc.RRT* [25] [26] 97.40 10.57

RL [27] 99.20 99.31 No formal guarantee
Symbolic Control [5] 100.00 295.46 Formal guarantees under accurate modelling
Spatiotemporal Tubes 100.00 0.02 Formal guarantees with unknown dynamics
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