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Abstract— We investigate a time and energy minimization
optimal control problem for open quantum systems, whose
dynamics is governed through the Lindblad (or Gorini-
Kossakowski-Sudarshan-Lindblad) master equation. The dis-
sipation is Markovian time-independent, and the control is
governed by the Hamiltonian of a quantum-mechanical system.
We are specifically interested to study the purity in a dissipative
system constrained by state and control inputs. We deal with the
state constraints through Gamkrelidze revisited method, while
handling control constraints through the idea of saturation
functions and system extensions. This is the first time that
quantum purity conservation is formulated in such framework.
We obtain the necessary conditions of optimality through the
Pontryagin Minimum Principle. Finally, the resulted boundary
value problem is solved by a Physics-Informed Neural Network
(PINN) approach, a technique that is also new in quantum
control context. We show that these PINNs play an effective
role in learning optimal control actions.

I. INTRODUCTION

One of the extremely important subjects in quantum infor-
mation processing is state purity preservation. In this regard,
an Optimal Control Problem (OCP) of quantum dissipative
dynamics can be formulated such that the dissipation is
Markovian time-independent. This means that the memory
effects are neglected and the dynamics of the quantum
system under study is only dependent on the current state
not the past history. Therefore, we can describe the density
operator evolution by the Lindblad master equation. In such
dynamics, there is an interaction of the controllable part
of the system, the Hamiltonian (or conservative) term, and
the uncontrollable part, the non-Hamiltonian (or dissipative)
term. Under most conditions, dissipation leads to an increase
in entropy (or a decrease in purity) of the system. However,
proposing a strategy to control the Hamiltonian term of the
system evolution with the intent that the non-Hamiltonian
term causes an increase in purity is a matter of debate.
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There have been several efforts in the literature aiming
to preserve the quantum state purity, e.g. [1, Chapter 12].
In [2], a time- and energy-minimum global OCP has been
studied for open quantum systems, however, their results are
presented based on having fast control of the Hamiltonian
and unbounded control signals as it is stressed by the authors.
In [3], a time minimum quantum OCP has been studied
aiming at achieving a target state with maximum purity for a
quantum state transition problem applicable for a two-level
system. However, their method is a two-level specific (not
easy to extend) and, as the authors claim, it is sensitive to
the initial guess. In this paper, we address the limitations
of previous strategies by exploiting new techniques in the
context of quantum optimal control problems.

A. Main Contributions

We investigate a minimum time-energy OCP for dissi-
pative quantum systems interacting with the environment,
whose dynamics is governed by the Lindblad equation, and
is subjected to preserve the state purity in a quantum state
transition process. Our contributions are listed as follows:

• We consider the purity of quantum channels as state
constraints, such that the purity is preserved within
some bounds. The technique to deal with this prob-
lem leans upon the revisited method of Gamkrelidze’s
version of Pontryagin’s Minimum Principle (PMP) [4],
which is novel in quantum control context. The feasi-
bility of using the Gamkrelidze approach can be found
in [5], but in a coherence preservation setting.

• We address the constrained control restriction through
the technique of saturation functions and system exten-
sions by extending [6] to the quantum context, and show
its compatibility with the Gamkrelidze version of PMP.

• We derive the necessary optimality PMP conditions,
and show that they are also sufficient conditions for
(local) optimality. We then solve the resulted Boundary
Value Problem (BVP) via a recently developed neural
network approach known as Pontryagin Neural Net-
works (PoNNs) derived from the Theory of Functional
Connection (TFC) [7]. In particular, we exploit the
PoNNs method for the Gamkrelidze version of PMP by
introducing an additional multiplier and extra optimality
conditions. We also apply the technique of saturation
functions presented in [8]-[9] to PoNNs, by showing its
compatibility with Gamkrelidze version of PMP.

Overall, the combination of these three techniques is new for
an OCP, specially in the context of quantum control.
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The structure of the work is as follows: In Section II,
we introduce the Lindblad master equation and provide a
linear isomorphism such that the transformed system is linear
in the state and real. Section III formulates the optimal
control problem of minimum time and energy, and in the
next section, we present the Pontryagin’s Minimum Principle
in Gamkrelidze form with saturation functions. We solve
the resulted BVP through a physics-informed neural network
approach, explained in section V. The simulation results have
been shown for the quantum state transfer problem in a two-
level system in section VI. The paper ends with conclusion
and an overview on prospective research challenges.

B. Notation

For a general continuous-time trajectory x, the term x(t)
indicates the trajectory assessed at a specific time t. We use
the superscripts T and † to show the transpose and conjugate
transpose of a matrix (or vector), respectively. To denote
the wave functions as vectors, we use the Dirac notation
|ψ⟩=

n
∑

k=1
αk |ψ̂k⟩, where |ψ⟩ indicates a state vector, αk are

the complex-valued expansion coefficients, and |ψ̂k⟩ are basis
vectors that are fixed. Dirac’s bra notation is defined such
that ⟨ψ|= |ψ⟩†. In addition, the notation |ρ ⟩⟩ indicates the
vectorized form of the density operator in the Fock-Liouville
space, and the vectorization operator is shown by vec, such
that |ρ ⟩⟩ = vec(ρ), and vec(|ψ⟩⟨ξ |) = |ξ ⟩⊗ |ψ⟩, in which
⊗ indicates the tensor product. We denote partial derivatives
using subscripts, i.e., for f being a function of n variables
including x, then fx denotes the partial derivative relative
to the x input. The notation [·, ·] represent a commutator and
{·, ·} is a Poisson bracket. The imaginary unit is shown by i=√
−1. A vector with all elements equal to zero is represented

as 0.

II. THE LINDBLADIAN DYNAMICS EQUATION

The general mathematical tool to describe our knowledge
of the state of an n-level quantum system is through the
density operator ρ , which is a Hermitian positive semi-
definite operator of trace one acting on the Hilbert space H
of the system. In quantum mechanics, the evolution of den-
sity operator through the Lindblad (or Gorini-Kossakowski-
Sudarshan-Lindblad) master equation represents the most
extensive generator of Markovian dynamics which takes the
form, [10],

ρ̇ =−i [H,ρ]+∑
k

γk

[
LkρL†

k −
1
2

{
L†

kLk,ρ
}]

(1)

in which the first term represents the unitary evolution of the
quantum system, where H is a Hermitian operator called the
quantum-mechanical Hamiltonian defined as

H = diag(E1,E2, · · · ,En)+
m

∑
l=1

ul(t)Hl

where the diagonal term implies that the basis corresponds to
the eigenvectors, and Ei represents a real number concerning
the energy level. The control ul(t) ∈R demonstrates a set of

external functions coupled to the quantum system via time
independent interaction Hamiltonians Hl . The second term
of (1) represents the dissipative part of the state evolution,
where Lk indicates the sequence of arbitrary Lindblad oper-
ators, and γk ≥ 0 is the damping rate. Master equations can
be bothersome due to the commutation term and the Poisson
bracket. Since convex combination gives the preservation of
the trace and positive definiteness, it is possible to create
a Hilbert space of density operators via defining a scalar
product. The next result provides a linear space of density
operators, called Fock-Liouville space, by which we present
a solution of the master equation via vectorization such
that the resulting Liouvillian superoperator is governed by
a linear system.

Proposition 1: Consider the Lindbladian dynamical sys-
tem (1). There exists a linear isomorphism, coordinate trans-
formation, such that the transformed system is linear in the
states and real.

Proof: We show the results by providing a coordinate
transformation given by the following composition of 3 linear
isomorphisms (whose notation is defined in the sequel):
i) L : ρ 7→ L ρ , ii) |· ⟩⟩ : ρ 7→ |ρ ⟩⟩,
iii) ·̃ : v 7→ ṽ :=

[
Re(v) Im(v)

]T

and finally L̃ = (·̃) ◦ |· ⟩⟩◦L ◦|· ⟩⟩−1◦(·̃)−1. To obtain i, we
apply the Choi-Jamiolkowski isomorphism for vectorization,
through the mapping |· ⟩⟩ : |i⟩⟨ j| 7→ | j⟩⊗|i⟩, to (1) obtaining
the Liouville superoperator acting on the Hilbert space of
density operator as |ρ̇ ⟩⟩= L |ρ ⟩⟩ where

L =− i
(
I ⊗H −HT ⊗ I

)
+∑

k
γk

[
L∗

k ⊗Lk −
1
2

I ⊗L†
kLk −

1
2

(
L†

kLk

)T
⊗ I
]

in which I is the identity matrix. To show ii, note that, for
an arbitrary density operator ρ = ∑

i, j
ρi, j |i⟩⟨ j|, its vectorized

form is given by |ρ ⟩⟩= ∑
i, j

ρi, j | j⟩⊗|i⟩. Finally to get iii, we

implement the system state and superoperator as

| ρ̃⟩⟩=

[
Re(|ρ⟩⟩)
Im(|ρ⟩⟩)

]
, L̃ :=

(
Re(L ) − Im(L )

Im(L ) Re(L )

)
so that we obtain ∣∣ ˙̃ρ ⟩

〉
= L̃ |ρ̃ ⟩⟩ (2)

We consider (2) as the system dynamics in the rest of paper.

III. OPTIMAL CONTROL FORMULATION

This section describes the problem formulation. To this
end, we have first to describe the state constraint that arises
from the concept of quantum purity.

A. Quantum purity

Quantum purity is a fundamental property of a quantum
state. For pure states, the purity P= 1, while P< 1 shows that
the quantum state is mixed. In dissipative quantum systems,
a state may be initialized as pure, i.e., ρ = |ψ⟩⟨ψ|, and then
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due to the interaction with the environment and through a
channel χ is decohered and mapped to a mixed state. A
quantum channel χ over the space H represents a completely
positive trace-preserving quantum map, i.e., χ ∈ CPTP(H).
Hence, the purity of the channel χ is considered as just the
purity of the state ρ . Therefore, one can write

P(ρ) = tr
(

χ(ρ)2
)
= tr

(
ρ

2)= (vec
(
ρ

†))†
vec(ρ)

which leads to P̃(ρ) =
〈〈

ρ̃† |ρ̃
〉〉

. Preservation or maximiza-
tion of the purity of a state transmitted through a quantum
channel, i.e., a dissipative quantum system, is an important
objective in quantum information processing. To do so,
several decoherence-reduction techniques, such as quantum
error correcting codes, and decoherence-free subspaces have
been developed. In this work, following the study in [1,
Chapter 12] that imposes an equality state constraint, we use
a less restricted form by keeping the quantum purity above
some predefined level, i.e., ᾱP0 ≤ P̃(ρ)≤ P0 with 0 < ᾱ < 1,
where P0 = P(ρ0) is the purity of the initial state.

B. Problem Formulation

Quantum operations such as quantum state transition need
to be done in the shortest possible time. However, due to the
inverse relation between control time and amplitude, a fast
operation may cause a very large control amplitude, which is
practically impossible. The methods to design the quantum
optimal controller vary according to the choice of the cost
functional, the construction of the Pontryagin-Hamiltonian
function, and the computation scheme to solve the PMP op-
timality conditions. We deal with a time-energy minimization
state constrained OCP (P) with bounded control aiming to
transfer the initial state | ρ̃(t0)⟩⟩= ρ0 to a desired target state∣∣ ρ̃(t f )

〉〉
= ρ f . The problem casts as the following:

(P)



min
u,t f

{
J = Γ t f +η

∫ t f

t0
u2 (t) dt

}
subject to∣∣ ˙̃ρ(t)

〉〉
= L̃ |ρ̃ ⟩⟩ a.e. t ∈ [t0, t f ]

| ρ̃(t0)⟩⟩= ρ0 ∈ R4n

u(t) ∈ U := {u ∈ L∞ : u(t) ∈ Ω ⊂ R}
Ω = [umin,umax] a.e. t ∈ [t0, t f ]

h(| ρ̃(t)⟩⟩)≤ 0 for all t ∈ [t0, t f ]

where Γ and η in the performance index J are positive
coefficients, and t f shows the free final time to be optimized.
The second term of J is a common choice for the cost
functional in molecular control, which measures the energy
of the control field in the interval [t0, t f ]. The control is rep-
resented as a measurable bounded function. The inequality
h(| ρ̃(t)⟩⟩) ≤ 0 defines the state constraints for the density
operator - see the specific example in (5). In this setup, we
assume that all the sets are Lebesque measurable and the
functions are Lebesgue measurable and Lebesgue integrable.
The goal is to obtain a pair (ρ⋆,u⋆) which is optimal in the
sense that the value of cost functional is the minimum over
the set of all feasible solutions.

Remark 1: It is important to assert the existence of a
solution to problem (P) in the class of measurable controls.
Following the Filippov’s theorem, [11], since the right-hand
side of the dynamical system is linear with respect to the
control, and the set of control values is convex and compact,
then one can conclude that there exists a feasible control
process to this problem.

IV. PONTRYAGIN’S MINIMUM PRINCIPLE IN
GAMKRELIDZE FORM WITH SATURATION FUNCTIONS

To deal with the indicated problem, one can identify two
Lagrangian multipliers: µ , and λ , where

• µ is bounded variation, non-increasing µ :
[
t0, t f

]
→R2,

such that µ(t) is constant on the time interval in which
the state constraint is inactive.

• |λ ⟩⟩ :
[
t0, t f

]
→ R4n is the time-varying Lagrange mul-

tiplier vector, whose elements are called the costates of
the system.

We handle control constraints with saturation functions, [6],
such that the indicated inequality-constraint for control is
transformed into a new equality-constraint. To do so, we
define a new unconstrained control variable ν(t), and substi-
tute the control constraint with a smooth and monotonically
increasing saturation function φ : R→ (umin,umax) such that

φ (ν) = umax −
umax −umin

1+ exp(sν)
with s =

c
umax −umin

in which c > 0 is a constant parameter, useful for modifying
the slope of φ(ν) at ν = 0. The advantage of using a
saturation function is that it is defined within the range of
Ω, and asymptotically approaches the saturation limits for
ν →±∞. The next steps are the following:

• We add a regularization term to the cost functional J
via a regularization parameter α , and define the new
cost functional as J̃ = J +α

∫ t f
t0 ν2(t)dt, and solve the

OCP successively by decreasing αk. We use the result
that if uk+1 and uk are the optimal control inputs for
αk+1 < αk, then with lim

k→∞
αk = 0, J̃(uk,αk) converges

to a non-increasing optimal cost, [6], i.e., by bringing
α closer to 0, we approach to the original problem.

• We consider an additional optimality condition for the
new control variable by minimizing the Pontryagin-
Hamilton function with respect to ν . Moreover, we need
to consider the constraint equation

u(t)−φ(ν) = 0 (3)
for the boundary value problem.

• We introduce a multiplier β :
[
t0, t f

]
→ R to take the

equality constraint into account.
In this new setup, we will now obtain the optimality
conditions. To this end, we first construct the Pontryagin
Hamiltonian H defined for all t ∈

[
t0, t f

]
by

H (ρ,λ ,u,ν ,δ ,α,β , t)=(|λ (t)⟩⟩−2δ (t) | ρ̃(t)⟩⟩)T L̃ | ρ̃(t)⟩⟩
+ηu2 (t)+αν

2(t)+β (t)(u(t)−φ (ν))
(4)

where δ (t) = [1 −1 ]µ(t).
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Proposition 2: Consider the OCP (P1) that is given by (P),
but with cost function J̃, and the additional constraint (3). Let
u⋆(t) be an optimal control and ρ̃⋆(t) the corresponding state
trajectory response. Then, there exist the multiplier λ ⋆(t) that
together with δ ,β :

[
t0, t f

]
→ R satisfy the PMP necessary

conditions. More precisely,

H (ρ⋆,λ ⋆,u⋆,ν ,µ,α,β , t)≤ H (ρ⋆,λ ⋆,u,ν ,µ,α,β , t)

for all t ∈ [t0, t f ], and all feasible controls u ∈ Ω. Moreover,

∂H

∂u
= (|λ ⋆⟩⟩−2δ | ρ̃⋆⟩⟩)T L̃u | ρ̃⋆⟩⟩+2ηu⋆+β = 0

∂H

∂ν
= 2αν −β

∂φ (ν)

∂ν
= 0

The remaining first-order necessary conditions for the state
and costate variables are given as∣∣ ˙̃ρ⋆
〉〉

=
∂H

∂ |λ ⟩⟩
= L̃ |ρ̃⋆ ⟩⟩ , | ρ̃⋆ (t0)⟩⟩= ρ0∣∣λ̇ ⋆

〉〉T
=
−∂H

∂ | ρ̃⟩⟩
=L̃ T |λ ⋆⟩⟩−4δL̃ |ρ⋆⟩⟩ ,

∣∣λ ⋆
(
t f
)〉〉

= λ f = 0

In addition, the transversality condition imposes that

H
(
t f
)
+Γ = 0

Proof: Following similar arguments as in [4] for the in-
dicated set of conditions, the extended Hamilton-Pontryagin
function is
H (ρ,λ ,u,ν ,µ,α,β , t) = (|λ (t)⟩⟩−µ

T (t)∇ρ̃ h(| ρ̃(t)⟩⟩)T

L̃ |ρ̃ (t) ⟩⟩+ηu2 (t)+αν(t)2 +β (t)(u(t)−φ (ν))

where the state constraint h(| ρ̃(t)⟩⟩) and multiplier µ(t) are

h(| ρ̃(t)⟩⟩) =
(

P̃[χ(ρ)]−P0
ᾱP0−P̃[χ(ρ)]

)
≤ 0, µ(t) =

(
µ1(t)
µ2(t)

)
(5)

Therefore, the gradient is given by

∇ρ̃ h(| ρ̃(t)⟩⟩) = (∇ρ̃ P̃[χ(ρ)] −∇ρ̃ P̃[χ(ρ)])T

where ∇ρ̃ P̃[χ(ρ)] = 2 | ρ̃(t)⟩⟩. Then, the Pontryagin Hamil-
tonian forms as written in (4) from which the necessary
conditions according to the PMP have been indicated.

Proposition 3: Let ρ⋆(t), u⋆(t), λ ⋆(t) be an optimal tra-
jectory of (P1). Then, ρ⋆(t), u⋆(t), λ ⋆(t) is a local minimizer
of the Pontryagin Hamiltonian (4) as long as α satisfies the
condition

α >
β

2
ε (6)

where ε = maxν∈R | ∂ 2φ(ν)
∂ν2 | is a finite bound.

Proof: A similar case of obtaining the second-order
sufficient condition for local optimality is indicated in [12],
however, in our case since we have two control variables ū=
(u,ν), the second derivative of our Pontryagin Hamiltonian
is a 2× 2 matrix rather than a scalar. Accordingly, if the
Pontryagin Hamiltonian has a positive definite Hessian with
respect to ū, then it is guaranteed that u⋆(t) is the local mini-
mizer of the Hessian, i.e., the generalized Legendre-Clebsch
condition guarantees that over a singular arc, the Pontryagin
Hamiltonian is minimized. In this case, the Hessian is given

by Hūū =

(
2η 0

0 2α−β
∂2φ

∂υ2

)
> 0. Clearly, it is positive definite

since η is positive, ∂ 2φ

∂υ2 is bounded and α satisfies (6).

Algorithm 1 Modelling and training the PoNN (main steps)
1: Morphing transformation

τ = τ0 + c(t − t0)↔ t = t0 +
1
c
(τ − τ0) , c > 0

2: Derive the approximated formulations for y(t)

ŷ(τ) = g(τ)+
k

∑
n=1

Ωk (τ)(y(τk)−g(τk)) (8)

3: Obtain a new equation as a function of the independent variable
τ , g(τ), and its derivative

F(τ, ŷ(τ), ˙̂y(τ)) = F̃(τ,g(τ), ġ(τ)) = 0 (9)

4: Formulate g(τ) through a single layer neural network

g(τ) =
L

∑
l=1

ξlσ (ωlτ +bl) =σσσ
T (τ)ξξξ (10)

in which σσσT (τ) = σT (τ) ⊗ In×n, where σT (τ) =
[σ (ω1τ +b1) , . . . ,σ (ωLτ +bL)], and ξξξ = vec([ξ1, . . . ,ξL]).

5: Compute the derivatives of g(τ) as ġ(τ) = cσσσ ′T (τ)ξξξ where
σσσ ′ = dσσσ(τ)

dτ
and obtain (9) in terms of unknowns, so F̃(τ,ξξξ )= 0.

6: Discretize τ into N points, and express the obtained set
of differential equations as loss functions at each point as
LT (ξξξ ) =

[
F̃ (τ0,ξξξ ) , . . . , F̃ (τN ,ξξξ )

]
and obtain the unknown ξξξ ,

by computing the solution of L= 0.

V. PHYSICS-INFORMED NEURAL NETWORKS BASED ON
THE THEORY OF FUNCTIONAL CONNECTIONS

In this section, we exploit the newly developed Pontryagin
PINN method derived from the theory of functional connec-
tion, [7], [8]. We give a short overview on how physics-
informed neural networks derived from TFC can be used to
solve BVPs. Consider a generic differential equation

F (t,y(t) , ẏ(t)) = 0, y(tk) = ytk , k ∈ /0∪{1,2, . . .} (7)

where F : R×Rn ×Rn → Rn is a given map, and y(t) ∈ Rn

is the state variable that has known values at instant of time
tk. Note that here we utilize a unified process to resolve
problems involving initial, boundary, or multiple values, so
k ∈ /0 refers to the boundary-free functions. The goal is to
obtain the (approximated) solution ŷ(·) of (7) along time.
Algorithm 1 describes (an adaptation of) the main steps of
the application of TFC method. The first step is to apply a
morph transformation (change of time) so that the problem
can be written in the domain of the activation functions to
be used in the next steps. Next, we impose the solution to
be on the form of (8), where g(·) : R→Rn indicates a user-
specified function, and Ω is the so-called switching function.
The free function g(·), as developed in [13] based on the
theory of extreme learning machine (ELM), is modeled by a
single hidden layer feedforward neural network (10), where
the summation is over all L hidden neurons, and σ(·) is
the activation function. In (10), ξl , ωl and bl denote the
output weight, input weight, and bias of the lth hidden node,,
respectively. These parameters correspond to the learning
factors to be updated in the training phase. We then obtain a
new set of equations F̃(τ,ξξξ ), solved via the augmented loss
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function L. Now, let proceed with the solution of optimality
conditions obtained for (P1). We approximate the state and
costate as

| ρ̃⟩⟩
(
τ,ξξξ ρ

)
=
(
σσσ ρ̃ (τ)−Ω1 (τ)σσσ ρ̃ (τ0)−Ω2 (τ)σσσ ρ̃

(
τ f
))T

ξξξ ρ̃

+Ω1 (τ)ρ0 +Ω2 (τ)ρ f

|λ ⟩⟩(τ,ξξξ λ ) =
(
σσσλ (τ)−Ω2 (τ)σσσλ

(
τ f
))T

ξξξ λ +Ω2 (τ)λ f

where the switching functions are described by Ω1 (τ) = 1+
2∆τ3

∆τ f
3 − 3∆τ2

∆τ f
2 and Ω2 (τ) =− 2∆τ3

∆τ f
3 +

3∆τ2

∆τ f
2 with ∆τ = τ −τ0 and

∆τ f = τ f − τ0, [9]. By taking the derivatives of the above
expressions, we obtain∣∣ ˙̃ρ
〉〉(

τ,ξξξ ρ

)
=c
(

σσσ
′
ρ̃ (τ)−Ω

′
1 (τ)σσσ ρ̃ (τ0)−Ω

′
2 (τ)σσσ ρ̃

(
τ f
))T

ξξξ ρ̃

+Ω
′
1 (τ)ρ0 +Ω

′
2 (τ)ρ f

˙|λ ⟩⟩(τ,ξξξ λ )=c
(
σσσ

′
λ
(τ)−Ω

′
2 (τ)σσσλ

(
τ f
))T

ξξξ λ +Ω
′
2 (τ)λ f

Regarding the control variables, the following functional
approximation are introduced

u(τ,ξξξ ) =σσσ
T
u (τ)ξξξ u, ν (τ,ξξξ ) =σσσ

T
ν (τ)ξξξ ν

We also expand the equality constraint multiplier β (τ,ξξξ ) =
σσσT

β
(τ)ξξξ β . In addition, the state constraint multipliers are

µ1 (τ,ξξξ ) =σσσ
T
µ1
(τ)ξξξ µ1 , µ2 (τ,ξξξ ) =σσσ

T
µ2
(τ)ξξξ µ2

In line with the ELM algorithm, [13], for the free final time
problems, the vector of PoNNs’ parameters to be learned
is constructed as ζζζ = [ξξξ ρ̃ ξξξ λ ξξξ u ξξξ ν ξξξ β ξξξ µ1 ξξξ µ2 c ]T . Now, we
express the set of loss functions to be minimized as

Lρ̃ =
∣∣ ˙̃ρ
〉〉

− L̃ |ρ̃ ⟩⟩

Lλ = ˙|λ ⟩⟩T − (L̃ T |λ ⟩⟩−4δL̃ | ρ̃⟩⟩)
Lu = (|λ ⟩⟩−2δ | ρ̃⟩⟩)T L̃u | ρ̃⟩⟩+2ηu+β

Lν = 2αν −βφ
′ (ν) , Lφ = u−φ(ν)

LH = H
(
t f
)
+Γ

Lµ1 = P̃[χ(ρ)]−P0, Lµ2 = ᾱP0 − P̃[χ(ρ)]

leading to an augmented form of the loss function as

L=
[
Lρ̃ Lλ Lu Lν Lφ LH Lµ1 Lµ2

]T
(11)

Equation (11) can be solved by a numerical minimization
scheme, and the PoNN’s parameter will be learnt during
the procedure. The iterative least-square method has proved
to be an efficient scheme for such problem, [8]. Through
this method, the estimation of ζζζ is adjusted and refined
to improve accuracy and convergence towards the desired
outcome at k + 1th iteration, such that ζζζ k+1 = ζζζ k + ∆ζζζ k,

where ∆ζζζ k =−
(
J(ζζζ k)

TJ(ζζζ k)
)−1

J(ζζζ k)
TL(ζζζ k), in which J is

the Jacobian matrix, compiling the partial derivatives of the
loss function with respect to each unknown parameter, and,
therefore provides a complete representation of the sensitivity
of the losses to changes in the unknowns. The iterative
procedure continues to be repeated until the convergence
criteria is satisfied, meaning that for a predefined tolerance
ε̄ > 0, we reach to L2 [L(ζζζ k)]< ε̄ .

VI. SIMULATION RESULTS

In the following, we show the feasibility of our results in a
numerical study. Let consider a quantum system consisting of
a two-level atom and a vacuum environment. The dissipation
is captured via the decay of the atom through a photon emis-
sion, which is a result of the atom - environment interaction.
The environment in this case is the surrounding vacuum state.
Therefore, the system dynamics must be expressed through
the master equation (1), in which the term H(u(t)) describes
the total atom-vacuum quantum-mechanical Hamiltonian as

H (u(t)) = E |1⟩⟨1|+u(t)(|0⟩⟨1|+ |1⟩⟨0|) (12)

where u(t) is the driving control coherently switching be-
tween the two states. We work with the implemented dy-
namics in (2). For this problem, the damping rate γ is the
atom-vacuum coupling, and the Liouvillian superoperator in

the Fock-Liouvillian space is L =

 0 iu −iu γ

iu −iE− γ

2 0 −iu
−iu 0 −iE− γ

2 iu
0 −iu iu −γ

,

which is mapped to the extended superoperator L̃ . The
parameters are considered as the following: N = 40, L = 30,
η = 0.1, Γ = 0.01, γ = 0.9, ᾱ = 0.99, α = 10−5, E = 1.
Moreover, we use the Chebyshev orthogonal polynomials as
the basis for TFC implementation. Regarding the constraints
for the components of the control u(t), they have been set
as umin =−1 and umax =+1. The results are obtained after
48 iterations. For all results, the state is initiated as ρ11 = 1,
with no coherence between different states. First, we neglect
the dissipation part, so the solution reduces to the resolution
of the Liouville-von Neumann equation, see Fig. 1(a). As
the next case, we consider the dissipation while there is
no coherent driving. The population of the excited state
experiences an exponential decay, see Fig. 1(b). Afterward,
it becomes feasible to compute the behavior of a dissipative
quantum system that undergoes both coherent driving and
decay. In such cases, oscillations and decay co-occur as
both behaviors exist simultaneously, see Fig. 1(c). In the
following, we plot the state evolution under the action of
optimal control. We initiate by the pure state ρ11 = 1 and
target to ρ00 = 1, while following the constraints on purity
preservation. The population evolution is shown in Fig. 1(d).
According to the data depicted in the graph, there is a clear
trend of exponential decay in the population of the initial
state, while there is a corresponding upward trend in the
population of the target as time passes. In order to check the
security level of reaching the target, we have to calculate the
transition probability known as the quantum fidelity, referring
to the degree of similarity between two quantum states,
typically the system state ρ(t) and target ϕ . We study fidelity
in terms of state purity computed by F (ρ,ϕ) = (tr(ρϕ))2

P(ρ)P(ϕ) ,
[14]. Since our target ϕ is a pure state, i.e., ϕ = |ψ⟩⟨ψ|,
fidelity can simply be assessed as F (ρ,ϕ) = ⟨ψ|ρ|ψ⟩

P(ρ) . Fig. 2
shows the effects of purity preservation on fidelity.

Remark 2: Recently, the theory of functional connections
has been extended to n-dimensions, as described in [15].
Therefore, a natural question is whether the proposed method
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using PoNNs is scalable enough to be applied to systems
with any number of levels. From this work, we can observe
that for an n-level system, the dimension of the Liouville
superoperator L̃ in (2) is 2n2 ×2n2, which also leads to an
increase in the dimension of the augmented loss vector L
in (11), and therefore an overall increase in computational
complexity. On the other hand, as pointed out in [16], TFC
approach presents a low condition number, and typically
is numerically robust, as indeed we could attest from our
numerical computations, that revealed good robustness to
poor initialization and insensitivity to small changes in the
input data. Therefore, the proposed strategy can perform well
in practical applications, where there may be noise or other
sources of uncertainty in the system.

VII. CONCLUSION

In this study, we proposed a framework for preserving
quantum purity during a quantum state transition problem.
Specifically, we aim to minimize both the time and energy
required for the transition, while adhering to the Lindblad
master equation, which governs the system dynamics. To
achieve this goal, we employed a combination of two
techniques, namely the Gamkrelidze revisited method and
the concept of saturation functions and system extensions.
The resulting boundary value problem is then solved using
Pontryagin neural networks, which are well-suited for this
type of problem formulation. Our approach allows us to
preserve the purity of the quantum state during the transition
while minimizing the resources required. Furthermore, we
analyze the effects of state constraints on the evolution
of quantum fidelity, providing a numerical example for a
two-level system. As future work, we intend to extend our
approach to higher-order dimensional systems, which could
yield valuable insights and applications in various fields,
including quantum computing and quantum communication.
Our results have important implications for the practical
implementation of quantum state transitions.
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