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Abstract— This paper presents extensions of control barrier
function (CBF) and control Lyapunov function (CLF) theory
to systems wherein all actuators cause impulsive changes to
the state trajectory, and can only be used again after a
minimum dwell time has elapsed. These rules define a hybrid
system, wherein the controller must at each control cycle choose
whether to remain on the current state flow or to jump to
a new trajectory. We first derive a sufficient condition to
render a specified set forward invariant using extensions of CBF
theory. We then derive related conditions to ensure asymptotic
stability in such systems, and apply both conditions online in
an optimization-based control law with aperiodic impulses. We
simulate both results on a spacecraft docking problem with
multiple obstacles.

I. INTRODUCTION

Control Barrier Functions (CBFs) [1] are a tool for design-
ing control laws that render state trajectories always inside
a specified set. Each CBF converts a set of allowable states,
herein called the CBF set, to a set of allowable control
inputs at every state in that set [2]. Any control input within
this set will render the future state trajectory inside the
CBF set. The controller thus has freedom to work towards
other goals, such as convergence, as long as the control
remains within the input set generated by the CBF. CBFs
thus provide a computationally tractable solution to many
nonlinear constrained control problems. While the original
formulations of CBFs [3]–[5] considered continuous-time
systems, subsequent authors have published numerous ex-
tensions to sampled systems [6]–[11], discrete-time systems
[12], [13], and hybrid systems [14]–[17], among others. In
this paper, we develop set invariance rules for a specific class
of hybrid systems: systems with impulsive actuators that are
only permitted to be used after a minimum dwell time has
elapsed since their previous use. This models, for instance,
a spacecraft with chemical thrusters.

Impulsive systems are a special class of hybrid systems,
and there has been much work on stability of hybrid systems
over the past two decades [18]–[23], and more recently work
on set invariance [4], [17], [24] and CBFs [14]–[16], [25],
[26] for hybrid systems. A hybrid system is a combination
of a set of time intervals where a system flows according
to a state differential equation called the flow map, and a
set of times where the state jumps (changes instantaneously)
according to an algebraic function called the jump map.
Control may be applied along the flows, at the jumps (also
called impulses), or both. In this letter, we study systems
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where control occurs only via jumps, and jumps occur only
when control is applied, as is formalized in Section II. The
work in [17], [24] show that a hybrid system renders a set
forward invariant if 1) the flow map always lies within the
tangent cone of the set, and 2) the image of the set through
the jump map is a subset of the set. The authors in [4], [15],
[16] then rewrite these conditions for CBFs and CBF sets.
However, these two conditions have no way to incorporate
a minimum dwell time constraint (equivalently, a minimum
time between events [22]).

Recall that the problem of finding a CBF is equivalent
to the problem of finding a controlled-invariant set [27].
For hybrid systems, this equivalency follows from, e.g., [15,
Def. 3.6] and [26, Def. 5]. In this letter, due to the minimum
dwell time constraint, rather than applying control to render
the state inside such a controlled-invariant set, we must apply
control to render the state into a set whose forward reachable
set remains a subset of the CBF set at least until the dwell
time has elapsed. This is an inherently different problem than
that addressed by typical CBFs [1], [5] or by the hybrid CBFs
in [4], [14]–[17], [24]–[26], and has more in common with
margins for ensuring set invariance between samples under
sampled controllers such as [6]–[9], [28], [29]. This paper
applies the same concept of sampling margins as in [6], now
modified for impulsive rather than zero-order-hold control,
to guarantee set invariance under a minimum dwell time.
Additionally, in Section III-E.1, we propose a variation of
our method for reducing conservatism.

Finally, the addition of the minimum dwell time constraint
also complicates stability. The work in [18] provides a
formula for a maximum dwell time at which stability is
still guaranteed, and similar stability certificates for specified
dwell times are presented in [21]–[23]. However, all of
these results are overly restrictive, because they all place
weak assumptions (e.g., exponentially bounded divergence)
on the flows in exchange for strong requirements (e.g., rapid
exponential contractivity) on the jumps. This is sensible
in general, since the jumps are controlled and the flows
are uncontrolled, but the spacecraft community has long
developed controllers with weaker assumptions on the jumps
[30]–[32], though not with the desired minimum dwell time.
Thus, building up from the minimum dwell time constraint,
this letter presents conditions to

1) render a CBF set forward invariant subject to impulsive
control with a minimum dwell time constraint, and

2) render the origin asymptotically stable subject to the
same impulsive control and dwell time rules.

This paper is organized as follows. Section II presents the
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system model. Section III presents the set invariance strategy,
the asymptotic stability strategy, and some mathematical
tools. Section IV presents simulations of these methods on
a satellite docking problem. Section V presents concluding
remarks.

II. PRELIMINARIES

Notations: Given a time domain T ⊆ R, spatial domain
X ⊆ Rn, and function η : T × X → R, denoted η(t, x),
let ∂tη denote the partial derivative with respect to t. Let
∇η denote the gradient row vector with respect to x. Let
η̇ = ∂tη +∇ηẋ denote the total derivative of η in time. Let
N denote the set of nonnegative integers. Let ∥ · ∥ denote the
2-norm. A continuous function α : R≥0 → R≥0 is class-
K∞, denoted α ∈ K∞ if 1) α(0) = 0, 2) α is strictly
increasing, and 3) limλ→∞ α(λ) = ∞. Let Kr denote the
set of continuous functions β : R≥0 → R≥0 satisfying 1)
β(0) = 0, and 2) β(λ) > 0 for all λ > 0.
Model: Spacecraft with chemical thrusters are frequently
modeled as evolving according to an ordinary differential
equation (ODE) with impulsive jumps. When activated, the
thruster subsystem causes an instantaneous change, called
an impulse, to the spacecraft velocity, and then the system
flows according to the ODE until the next impulse is applied.
Control can only be applied at the impulses. We also assume
the following two restrictions on impulses:
R-1) the controller is sampled with fixed period ∆t and an

impulse can only be applied at the sample times; and
R-2) the controller can only apply an impulse at least ∆T

after the last impulse was applied, where ∆T > ∆t.
Let T ⊆ R be a time domain, X ⊆ Rn be the state space,

and U ⊆ Rm be the set of allowable controls. To encode
R-1, let

D0 ≜ {t ∈ T | t = t0 + k∆t, k ∈ N} (1a)

be the set of controller sample times originating from initial
time t0 ∈ T . To encode R-2, let the additional state σ ∈ R≥0

encode the time since the last impulse was applied. A tuple
(t, σ) is an impulse opportunity if t ∈ D0 and σ ≥ ∆T , or
equivalently, if (t, σ) lies in the set of impulse opportunities

D ≜ D0 × {σ ∈ R≥0 | σ ≥ ∆T} . (1b)

The control is thus a map u : D × X → U defined only at
the set of impulse opportunities D. The time ∆T is called
the minimum dwell time between impulses [18]. Assume that
∆T = q∆t for some q ∈ N.

We can thus model the spacecraft generally as

{
ẋ = f(t, x)

σ̇ = 1
(t, σ) /∈ D

x+ = g(t, x, u)

σ+ = σ if u = 0

σ+ = 0 if u ̸= 0

(t, σ) ∈ D
(1c)

The system (1c) defines a hybrid system with flow set C ≜
(T × R≥0) \ D, flow map f : T × X → Rn, jump set
D, and jump map g : T × X × U → X . We note that

(1c) has time-dependent jumps, and therefore is also a timed
automaton [33]. In this paper, we assume that the maps f and
g are known and single-valued (rather than being differential
inclusions), that g(t, x, 0) = x for all t ∈ T , x ∈ X , and that
solutions to (1) exist and are unique for all t ∈ T . Also
assume that σ(t0) = ∆T at the initial time t0, so that the
initial state tuple (t0, σ(t0), x(t0)) is an impulse opportunity.

Note that at every impulse opportunity (t, σ) ∈ D, the
controller u can choose whether or not to apply an impulse,
so impulses will generally be aperiodic, and may lack an
average dwell time as in [18]. For brevity in Section III,
given a control law u : D × X → U , denote the set of
impulse opportunities where the control law chooses to not
apply an impulse as

Zcoast ≜ {(t, σ, x) ∈ D × X | u(t, σ, x) = 0} . (2)

The central problem addressed in Section III is as follows.

Problem 1. Given dynamics (1) and a set Ssafe(t) ⊂ X ,
derive conditions on the control u that are sufficient to
1) guarantee x(t) remains in Ssafe(t),∀t ∈ T , and 2)
render the origin asymptotically stable, where we assume
0 ∈ Ssafe(t),∀t ∈ T .

The conditions arising from Problem 1 can then be en-
forced online using optimization-based control laws as is
typical in the CBF literature [1, Sec. II-C]. Unlike [1], in this
letter, we allow these optimizations to be nonlinear programs.
Such programs are more computationally expensive than the
quadratic programs in [1], but we assume that this cost is
acceptable due to the long dwell time ∆T between impulses.

III. IMPULSIVE TIMED CONTROL BARRIER FUNCTIONS
AND CONTROL LYAPUNOV FUNCTIONS

In this section, we first present some definitions and tools
in Section III-A, before using these tools to address invari-
ance of a subset of Ssafe(t) in Section III-B. We then address
stability of the origin in two parts in Sections III-C-III-D, and
provide examples and additional tools in Section III-E.

A. Flows and Bounding Functions
In this letter, we will utilize predictions about the future

state. Suppose that no jumps occur in some interval [t, τ ] ⊂
T . Then define the flow operator p : T × T × X → X as

p(τ, t, x) = y(τ) where ẏ(s) = f(s, y(s)), y(t) = x . (3)

Next, we are interested in approximations of the future state.
Given a scalar function h : T ×X → R, and an initial state
(t, x), denote by ψh : T ×T ×X → R any function satisfying

ψh(τ, t, x) ≥ h(s, p(s, t, x)), ∀s ∈ [t, τ ] . (4)

That is, ψh is an upper bound on the evolution of the function
h for any interval [t, τ ] during which there are no control
impulses. Methods to find such a bounding function are
described in [6]–[8], [11], [28], [29] and others, and thus are
only briefly elaborated upon here in Section III-E. We note
that [6]–[8], [11], [28], [29] all include a term that accounts
for the effects of the control input u ∈ U , whereas this term
can be ignored here since f in (1) is independent of u.
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B. Set Invariance

We first address the safety part of Problem 1. To apply
the method of CBFs, we seek a function h : T × X → R
such that the set

Sh(t) ≜ {x ∈ X | h(t, x) ≤ 0} (5)

satisfies Sh(t) ⊆ Ssafe(t),∀t ∈ T . The definition of CBF [5,
Def. 5] can be generalized to the system (1) as follows.

Definition 1. Let ψh be as in (4). A continuous function
h : T × X → R is an Impulsive Timed Control Barrier
Function (ITCBF) for the system (1) if

inf
u∈U

ψh(t+∆T, t, g(t, x, u)) ≤ 0,∀x ∈ Sh(t),∀t ∈ T . (6)

Note that 1) we relax [5, Def. 5] to no longer require
differentiability of h, though differentiability is helpful when
applying tools from [6]–[8], [11], [28], [29], and 2) condition
(6) does not include a class-K function, as this is unnecessary
in sampled controllers. The following theorem then provides
sufficient conditions for forward invariance of Sh(t).

Theorem 1. Given an ITCBF h : T × X → R for the
system (1), let Sh(t) be as in (5), and ψh as in (4). Let
u : D×X → U be a control law, and let Zcoast be as in (2).
If u satisfies

ψh(t+∆t, t, x) ≤ 0, ∀(t, σ, x) ∈ (D × Sh) ∩ Zcoast, (7a)
ψh(t+∆T, t, y) ≤ 0, ∀(t, σ, x) ∈ (D × Sh) \ Zcoast, (7b)

where y = g(t, x, u(t, σ, x)), then u renders time-varying set
Sh(t) forward invariant for all t ∈ T .

Proof. Given (t0, σ(t0)) ∈ D and x(t0) ∈ Sh(t0), divide
{t ∈ T | t ≥ t0} into a sequence of intervals Ik = [tk, tk+1],
k ∈ N, where tk+1 > tk. Then a sufficient condition for u
to render Sh(t) forward invariant for all future t ∈ T is
for the following two properties to hold for every k ∈ N:
1) u renders x(t) ∈ Sh(t) for all t in the interval Ik, and
2) the endpoint tk+1 of Ik is an impulse opportunity. If
u = 0, then condition (7a) implies that both properties hold
for tk+1 = tk+∆t. If u ̸= 0, then condition (7b) implies that
both properties hold for tk+1 = tk + ∆T . Thus, u renders
Sh(t) forward invariant. ■

Thus, we have two conditions analogous to [5, Cor. 2] that
render sets of the form (5) forward invariant subject to the
impulsive dynamics (1). The remaining challenge is to deter-
mine functions h and ψh satisfying (6) and (4), respectively.
We first discuss conditions for asymptotic stability before
providing examples of h and ψh in Section III-E.

C. One-Step MPC Impulsive Stability

We now begin to address the stability part of Problem 1.
There has been much work on stability of hybrid systems
with continuous actuators [9], [19], [20], [34], impulsive
actuators [21]–[23], or both [18]. In summary, given a
Lyapunov function V : T × X → R≥0, the conditions
[21, Eq. 5], [22, Eq. 8], and [18, Eq. 4b] state that if

V (t, g(t, x, u)) ≤ cV (t, x) for c ∈ (0, 1), then for suf-
ficiently frequent jumps, the origin of the system (1c) is
exponentially stable. These conditions can be readily applied
to stabilize (1) using periodic impulses. However, when the
dwell time ∆T is large, a more efficient strategy may be to
examine the predicted value of the Lyapunov function after
∆T has elapsed rather than immediately after the impulse.
To this end, consider the following lemma.

Assumption 1. Let V : T × X → R≥0 be a continuously
differentiable function satisfying

α1(∥x∥) ≤ V (t, x) ≤ α2(∥x∥) (8)

for all x ∈ X and all t ∈ T for two functions α1, α2 ∈ K∞.

Lemma 1. Let Assumption 1 hold. Assume that there exists
α3 ∈ K∞ such that f in (1) satisfies ∥f(t, x)∥ ≤ α3(∥x∥) for
all t ∈ T and x ∈ X . Let p be as in (3). Let u : D×X → U
be a control law, and denote Z1 ≡ Zcoast as in (2) and
Z2 = (D ×X ) \ Z1. For the system (1), if u satisfies

V (t+∆t, p(t+∆t, t, x)) ≤ V (t, x), ∀(·) ∈ Z1, (9a)
V (t+∆T , p(t+∆T , t, y)) ≤ V (t, x), ∀(·) ∈ Z2, (9b)

where (·) = (t, σ, x) and y = g(t, x, u(t, σ, x)), then u
renders the origin uniformly stable as in [35, Def. 4.4].

Proof. See [36, Lemma 1]. ■

Lemma 1 differs from [18], [21], [22] in three ways. First,
(9) provides conditions on the future state, which is explicitly
computed using (3), rather than the present state. Second,
these predictions allow us to avoid explicitly checking for
upper bounds on the growth of V during flows, as is required
in [21], [22]. Third, Lemma 1 allows for aperiodic impulses,
as long as (9) are checked at their respective frequencies.

We refer to (9) as a “one-step Model Predictive Control
(MPC)” strategy. That is, to evaluate (9), we input the
control u at a single (i.e. “one-step”) time instance, make
a prediction using (3), and then check a condition on V ,
analogous to checking constraints in an MPC optimization.
Note that encoding (9) into an optimization problem could
be computationally expensive, since checking (9) entails
computing the solution to a differential equation during every
iteration of the optimization. In Section IV, we assume that
this cost is acceptable, or that we have an analytic form for
the solution, as is the case for many spacecraft orbits.

D. Impulsive Stability via Restriction to Stable Flows
Motivated by fuel efficiency, a strategy in aerospace sys-

tems (e.g. [30]) is to allow a system to coast uncontrolled
until a control impulse is necessary to continue stabilization.
In this subsection, we implement this strategy subject to
constraints R-1, R-2 via a specialization of Lemma 1. In
technical terms, given a Lyapunov function V as in (8), we
seek to render the set

Sv(t) ≜ {x ∈ X | v(t, x) ≤ 0} (10)

forward invariant, where, for readability, we denote

v(t, x) ≡ V̇ (t, x) = ∂tV (t, x) +∇V (t, x)f(t, x) . (11)
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This is possible under dynamics (1) if v : T ×X → R is also
an ITCBF as in Definition 1. Let ψv be an upper bound for v
analogous to ψh in (4). In the following theorem, we provide
new conditions to establish stability using such a coasting
strategy. However, if x(t0) /∈ Sv(t0), then these conditions
will not initially apply, so we instead fall back on the “one-
step MPC” strategy in (9). Divide the state space into two
sets: 1) Z1 ∪ Z2, where the controller enforces (9), and 2)
Z3 ∪ Z4, where the controller enforces the new conditions
(12).

Theorem 2. Let Assumption 1 hold. Assume that there exists
α3 ∈ K∞ such that f in (1) satisfies ∥f(t, x)∥ ≤ α3(∥x∥)
for all t ∈ T and x ∈ X . Let v be as in (11), ψv be as
in (4), and p be as in (3). Let Z1, Z2, Z3, and Z4 be four
disjoint sets such that Z1∪Z3 = Zcoast in (2), and Z2∪Z4 =
(D × X ) \ Zcoast. Then for the system (1), any control law
u : D ×X → U satisfying (9) and all of the following

ψv(t+∆t, t, x) ≤ 0, ∀(t, σ, x) ∈ Z3, (12a)
ψv(t+∆T, t, g(t, x, u(t, σ, x))) ≤ 0, ∀(t, σ, x) ∈ Z4, (12b)
V (t, g(t, x, u(t, σ, x))) ≤ V (t, x), ∀(t, σ, x) ∈ Z4, (12c)

will render the origin uniformly stable as in [35, Def. 4.4].

Proof. Let (tk, σ(tk)) ∈ D be an impulse opportunity, and
let (tk+1, σ(tk+1)) ∈ D be the next impulse opportunity.
For brevity, denote zk = (tk, σ(tk), x(tk)). First, Lemma 1
implies that if zk ∈ Z1 ∪ Z2, then V (tk+1, x(tk+1)) ≤
V (tk, x(tk)).

Next, if zk ∈ Z3 ∪ Z4, conditions (12a)-(12c) similarly
imply that V (tk+1, x(tk+1)) ≤ V (tk, x(tk)). Specifically, if
zk ∈ Z3 ⊆ Zcoast, then no impulse is applied, and (12a)
implies that V (t, x(t)) is nonincreasing along the flow f
for all t ∈ [tk, tk + ∆t) until the next impulse opportunity
at tk+1 = tk + ∆t. Next, if zk ∈ Z4, then a nonzero
impulse is applied, (12c) implies that V is nonincreasing
during the impulse, and (12b) implies that V (t, x(t)) is
nonincreasing along the flow f for all t ∈ (tk, tk + ∆T )
until the next impulse opportunity at tk+1 = tk+∆T . Thus,
V (tk+1, x(tk+1)) ≤ V (tk, x(tk)) for all (tk, σ(tk)) ∈ D,
so the origin is uniformly stable by the same argument as
Lemma 1. ■

Compared to [18], [21], [22], Theorem 2 imposes stricter
conditions on the flows (12a)-(12b) in order to allow relaxed
conditions on the jumps (12c) and the jump times. In [21],
[22], it is assumed that the flows are destabilizing and jumps
are exponentially stabilizing, whereas Theorem 2 says that if
we can restrict the flow (12a)-(12b) to the set in (10) where
V̇ ≤ 0, as is often possible in practice, then the jump (12c)
only needs to be stabilizing, not exponentially stabilizing.
This coasting strategy can reduce control usage compared
to the exponentially stabilizing impulses in [21], [22], and
is distinct from the coasting strategy in [30] because of the
explicit inclusion of a minimum time between impulses. Note
that (12a)-(12b) are identical to (7a)-(7b), so a controller as
in Theorem 2 will further render Sv in (10) forward invariant

if x(t0) ∈ Sv(t0) and Z3∪Z4 = D×Sv . Finally, we present
a result on asymptotic stability that we will use in Section IV.

Corollary 1. Let the conditions of Theorem 2 hold. If there
exists β1, β2 ∈ Kr and ∆Tmax ∈ R>0 such that 1) (13a)-
(13b) hold and 2) either 2a) (13c)-(13d) hold or 2b) (13e)-
(13f) hold

V (t+∆t, p(t+∆t, t, x))− w ≤ −β2(w), ∀(·) ∈ Z1 (13a)
V (t+∆T, p(t+∆T, t, y))− w ≤ −β2(w), ∀(·) ∈ Z2(13b)
ψv(t+∆t, t, x) ≤ −β1(w), ∀(·) ∈ Z3 (13c)
ψv(t+∆T, t, y) ≤ −β1(w), ∀(·) ∈ Z4 (13d)
V (t, y)− w ≤ −β2(w), ∀(·) ∈ Z4 (13e)
σ ≥ ∆Tmax =⇒ u(t, σ, x) ̸= 0, ∀(·) ∈ D × X (13f)

where (·) = (t, σ, x), y = g(t, x, u(t, σ, x)), w = V (t, x),
then the origin is uniformly asymptotically stable [35,
Def. 4.4].

Proof. See [36, Corollary 1]. ■

That is, if the Lyapunov function V is nonincreasing as
in Theorem 2, and either the flows (13c)-(13d) or the jumps
(13e)-(13f) cause V to strictly decrease, then the origin is
asymptotically stable. Again, we provide alternative “one-
step MPC” conditions (13a)-(13b) in case (13c)-(13f) cannot
be satisfied because x(t) /∈ Sv(t). If we further assume
that β1 and β2 are linear functions, then the conditions in
Corollary 1 become special cases of [18, Thm. 1].

E. Examples of Bounding Functions

In this subsection, we discuss in more detail how to
develop ψh and ψv to use in the preceding theorems. Suppose
second order dynamics such that x = [rT, ṙT]T ∈ Rn for flow
dynamics r̈ = fr(x). First, an obstacle avoidance constraint
can be written using the following form of CBF h [37]:

κ(t, x) = ρ− ∥r − r0(t)∥ (14a)
h(t, x) = κ(t, x) + γκ̇(t, x) (14b)

ψh(t+ δ, t, x) = max
{
h(t, x),

κ(t, x) + (γ + δ)κ̇(t, x) +
(
1
2δ

2 + γδ
)
κ̈max

}
(14c)

where ρ ∈ R>0 is the obstacle radius, γ ∈ R>0 is a constant,
r0 : T → Rn/2 is the center of the obstacle, and κ̈max ∈ R≥0

is an upper bound on the possible values of κ̈ between t and
t+ δ. We use formula (14c) for the bound ψh because κ in
(14a) is not thrice differentiable, so we cannot make use of
any higher order derivatives. Next, the rate of change of a
Lyapunov function V (t, x) can be upper bounded as

ψv(t+ δ, t, x) = V̇ (t, x)+max{0, V̈ (t, x)}δ+ 1
2

...
V maxδ

2(15)

where
...
V max ∈ R≥0 is an upper bound on the values of

...
V .

1) Decreasing Conservatism: Note that the upper bounds
derived in [6]–[8], [11], [28], [29] and implemented above
were intended for relatively short horizon times τ − t. For
very large horizon times, these upper bounds can become
overly conservative. We can optionally decrease this conser-
vatism by breaking the interval τ − t into nψ ∈ N smaller
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intervals. To this end, let δ = (τ − t)/nψ and τj = t + jδ,
and for a scalar function h : T × X → R, replace ψh as
above with ψ∗

h : T × X → Rnψ with elements defined as

[ψ∗
h(τ, t, x)]j = ψh(τj , τj−1, p(τj−1, t, x)) (16)

for j = 1, · · · , nψ . That is, ψ∗
h makes nψ exact state

predictions using p in (3), which could be more expensive to
compute, and bounds the evolution between these predictions
using the original ψh function. This division is analogous to
MPC with a control horizon of 1, a prediction horizon of
nψ , and a discretization margin encoded in ψh. In the above
work, all statements of the form ψa(·) ≤ 0, where a is h or
v, can be equivalently replaced by ψ∗

a(·) ≤ 0 elementwise.
We will demonstrate the utility of this strategy in Section IV.

IV. SIMULATIONS

We validate the above methods by simulating an impulsive
system representative of spacecraft docking in low Earth
orbit. Let X = R4, U = R2, let µ ∈ R>0 be constant,
and let

f(·) =


x3
x4

−µx1/(x21 + x22)
3/2

−µx2/(x21 + x22)
3/2

 , g(·) =


x1
x2

x3 + u1
x4 + u2

 . (17)

Let there be four CBFs hi of the form (14b) for various
obstacles ri(t) ∈ R2, with ψhi as in (14c). Let there be
an additional constraint κ5(t, x) = (r − r5)

T(ṙ5/∥ṙ5∥) ≤
0 with associated CBF h5 also as in (14b). That is, κ5
encodes that the controlled satellite r must always lie behind
an uncontrolled target satellite r5(t) ∈ R2. Let xt(t) =
[r5(t)

T, ṙ5(t)
T]T. We choose a Lyapunov function V (t, x) =

(x− xt(t))
TP (x− xt(t)) and approximation ψ∗

v as in (15)
and (16). Let γ1, γ2 ∈ R≥0 and J ∈ R>0 be constants. The
chosen control law is

u =

{
0 ψv(·) ≤ γ1V (t, x) and ψhi(·) ≤ 0, i ∈ I
u∗ else

(18a)
where (·) = (t+∆t, t, x), I = {1, 2, 3, 4, 5}, and u∗ is

u∗ = argmin
u∈R2

uTu+ Jd2 (18b)

s.t. ψ∗
v(t+∆T, t, g(t, x, u)) ≤ γ1V (t, x) + d (18c)
V (t, g(t, x, u)) ≤ γ2V (t, x) + d (18d)
ψhi(t+∆T, t, g(t, x, u)) ≤ 0, i ∈ I . (18e)

We assume that the optimization (18) is always feasible,
though we note that this is difficult to guarantee when there
are multiple CBFs [2], [27], [38]. We simulated (18) using
various choices of ∆T , and then repeated these simulations
with ψh in (18e) replaced with ψ∗

h as in (16) with nψh =
10. The resultant trajectories, converted to Hill’s frame for
visualization, are shown in Fig. 1, and full results are shown
in the video below1. A comparison to a trajectory pre-planner
is also shown in Fig. 1, and details on select trajectories are
shown in Figs. 2-3. All simulation code and parameters can
also be found below2.
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Fig. 1: Trajectories of (1) and (17) subject to the control (18)
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Fig. 2: Control inputs along selected trajectories in Fig. 1
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Fig. 3: Lyapunov function along selected trajectories in Fig. 1

All of the simulations in Fig. 1 remained safe, and eight of
the nine trajectories converged to the target. The trajectory
using ψh with ∆T = 60 was so conservative that it im-
mediately turned away from the target, whereas trajectories
using ψ∗

h still converge with much larger ∆T , though the
rate of convergence is slow for ∆T ≥ 420. This is because
ψ∗
h implements (14c) with a smaller, less conservative, δ than

ψh alone. That said, this decreased conservatism came at an
average computational cost per control cycle, for ∆T = 45,
of 0.22 s using ψ∗

h and 0.022 s using ψh, both run on

1https://youtu.be/_o-FAGbvfgg
2https://github.com/jbreeden-um/phd-code/tree/

main/2023/LCSS%20Impulsive%20Control
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a 3.5 GHz CPU. The total fuel consumption varied from
188 m/s (∆T = 30 with ψh) to 18.2 m/s (∆T = 300 with
ψ∗
h). For comparison, the pre-planned trajectory consumed

between 12.2 m/s and 13.9 m/s depending on the choice of
∆T . This improvement is expected since (18) only considers
T seconds of the trajectory at a time, whereas a pre-planner
can optimize over longer sequences.

V. CONCLUSIONS

We have developed a methodology for extending the
provable set invariance guarantees provided by CBFs to
systems with impulsive actuators subject to a minimum dwell
time constraint, and for ensuring asymptotic stability in the
same systems. We encoded the resulting conditions in an
optimization-based control law, which was successful in a
simulated spacecraft docking. The conditions presented are
generally nonlinear in the control input, thus leading to
controllers that are nonlinear programs. We showed how
one can reduce the conservatism of these controllers, in
exchange for greater computational cost, by dividing the
safety prediction horizon into multiple intervals using an
MPC-like strategy. Future research directions might consider
extensions to systems with disturbances, methods to further
decrease conservatism, or the use of ITCBFs with optimal
trajectory planning.
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