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Feedback Optimization of Incentives for Distribution Grid Services

Guido Cavraro

Abstract— Energy prices and net power injection limitations
regulate the operations in distribution grids and typically ensure
that operational constraints are met. Nevertheless, unexpected
or prolonged abnormal events could undermine the grid’s
functioning. During contingencies, customers could contribute
effectively to sustaining the network by providing services. This
paper proposes an incentive mechanism that promotes users’
active participation by essentially altering the energy pricing
rule. The incentives are modeled via a linear function whose
parameters can be computed by the system operator (SO) by
solving an optimization problem. Feedback-based optimization
algorithms are then proposed to seek optimal incentives by
leveraging measurements from the grid, even in the case when
the SO does not have a full grid and customer information.
Numerical simulations on a standard testbed validate the
proposed approach.

I. INTRODUCTION

The massive deployment of distributed energy resources
(DERs) is dramatically changing distribution networks
(DNs). Prosumers, i.e., entities that can be both producers
and consumers of energy [1] will populate DNs and could
provide services, e.g., by contributing to voltage profile
improvements. Nevertheless, grid instabilities might arise if
DERs are not properly managed.

Literature Review: Many works proposing control
schemes for regulating net power injections in DNs as-
sume that DERs apply power setpoints, possibly directly
dispatched from the SO, aiming at the grid’s well-being.
However, prosumers may have priorities misaligned with
those of the SO and refuse to cooperate. The work [2] treated
the case in which the prosumer compliance is modeled
with a Bernoulli distribution. SOs could leverage economic
incentives like discounts on the energy price to encourage
rational prosumers, i.e., aiming at maximizing their benefits,
to provide grid services [3], [4] during abnormal operations,
e.g., heat or cold waves [5]. The work [6] proposes an
incentive-based mechanism facilitating the contribution of
local flexible resources to the congestion management of
DNs, fulfilling the SO’s and prosumers’ objectives. Authors
of [7] develop an incentive scheme in which an aggregator
coordinates several prosumers and determines the user pay-
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ments by solving an asymmetric Nash bargaining model. A
review of incentive mechanisms for DNs is provided in [3].

Market-based algorithms to incentivize DERs to provide
services to the grid while maximizing their objectives and
economic benefits were designed in the literature [8]-[10].
For example, customers may be incentivized to adjust the
output powers of DERs in real-time to aid voltage regula-
tion [11], control the aggregate network demand [12], and
follow regulating signals [13]. The work [14] proposes a
pricing mechanism for energy communities ensuring that
operational constraints are satisfied and that the surplus
of each community member is higher than the one under
standalone settings. A trading scheme for increasing the
exchange of electricity from prosumers to a distribution
network meeting the network constraints is designed in [15].

Statement of Contributions: In this paper, we devise an
incentive mechanism to promote the participation of pro-
sumers in providing grid services. We assume that prosumers
are subject to a Net Energy Metering (NEM) tariff design.
NEM is a system that allows DERs owners to send excess
energy back to the grid in exchange for credits on their utility
bills. Under NEM 1.0, the system’s first version, homeowners
with solar panels could send excess energy back to the grid
and receive credits at the retail rate [16]. The goal of the
SO is to design optimal incentive functions that promote
the satisfaction of operational constraints while minimizing
the cost for the SO. The incentives make rational prosumers
change their power demand to support grid operations by
essentially altering the energy price and are designed so
that the prosumers are not penalized or rewarded if they
do not change their behavior. When the SO has full grid
information, i.e., it knows the network topology, the power
demands and generations, and the prosumer preferences,
the incentives can be computed by solving an optimization
problem. When instead partial information is available, we
propose a feedback control framework. Power and voltage
measurements compensate for the lack of information and
are used to iteratively update the incentives until convergence
to the optimal ones. We formally characterize the proposed
framework under common choices of incentives and pro-
sumer preferences, even though our approach can be applied
when these are general differentiable functions, and provide
numerical results over the standard IEEE 33 bus feeder.

Notation: Lower- (upper-) case boldface letters denote
column vectors (matrices). The identity matrix, the vector of
all ones, and the vector of all zeros are denoted by I, 1, O;
the corresponding dimension will be clear from the context.
The sets of real numbers and nonnegative real numbers are
denoted as R and R™, respectively. The two norm of a matrix
A is defined by ||A|| = v/ Amax(ATA), where Apax(ATA)
is the largest eigenvalue of AT A.



II. GRID MODELING

We model a low voltage! DN with N + 1 buses with
an undirected graph G = (N,€&), where nodes N =
{0,1,..., N} are associated with the electrical buses and
whose edges represent the electric lines. The substation, la-
beled as 0, is modeled as an ideal voltage generator (the slack
bus) imposing the nominal voltage of 1 p.u. Each bus, except
the substation, is assumed to be a prosumer [1]. Prosumer n
can generate the active power 7, € R, potentially exploiting
behind-the-meter DERs. Also, prosumer n has an active and
reactive power demands d,, € Ry and ¢,, € R. The net active
power injection is

Pn =Tn — dn~ (1)

Net powers take positive (negative) values, i.e., pp,qn > 0
(Pns qn < 0) when they are injected into (absorbed from) the
grid. When p,, > 0, n behaves like a generator; when p,, < 0,
n behaves like a load. Let d € RY and r € R collect all
the demands and DER outputs. Potentially, each prosumer n
may have some flexibility in the net power injection, i.e.,

pn€p,Pn], n=1....N. ()

If n’s power injection is non flexible load, e.g., n hosts
a critical load, then p = p,,. The model (2) potentially
captures load limitations enforced to not compromise the
network’s operation, e.g., dynamic operating envelopes [17].
The limitation (2) is then equivalent to

dy €D, =[d,,dn), n=1,...,N. 3)

n?

Denote by v,, € R the voltage magnitude at bus n € N,
and let the vector v € RY collect the voltage magnitudes of
buses 1,..., N. Voltage magnitudes are nonlinear functions
of the power injections; however first-order Taylor expansion
of the power flow equation yields [1]

v=Rp+Xq+w )

where R € RY*Y and X € RY*V are symmetric and
positive definite matrices [1] and w € Rf . R and X
represent the sensitivity of the voltage magnitudes w.r.t. net
power injection variations.

III. INCENTIVES FOR GRID SERVICES

According to the NEM 1.0, prosumer n net power injec-
tion is charged following the rule

Y(Pn) = —7pn + o

where 7 > 0 is the retail rate and 7y captures non-volumetric
surcharges, e.g., the connection charge [16]. When the pro-
sumer net consumes (produces), the first term in v(p,,) is
positive (negative), meaning that n is charged (remunerated).
Without loss of generality, we assume that the coefficients
m,my are the same for all the prosumers and fixed. Indeed,
the price coefficients are defined in the contract between the

IThe proposed methods are suitable for applications in both low-voltage
and medium-voltage DNs. However, to keep the notation light, we will focus
hereafter on single-phase low-voltage networks.

utility and the customers and are usually updated once every
several months or a few years.

The surplus of customer n is the difference between the
comfort and the payment from consumption

=U,(dn) — 7dy, + 7rp, — 7o (5)

where we used (1). The utility of consumption U,,(d,,) is as-
sumed to be strictly concave and continuously differentiable
with a marginal utility function VU,,. We denote the inverse
marginal utility by f,, := (VU,)"1,¥n € N.

We assume that each prosumer n acts rationally, i.e., aims
to maximize its surplus. That is, n sets its power demand as
the solution of the following prosumer optimization problem

dAn = arg dlnea% Sn(dny Tn) (6)

n n

The optimal demand can be easily computed as
dy = [fu(™)]D, - ™

where [-]p, denotes the projection onto the set D,,.

Even though (2) typically ensures that the network oper-
ates correctly, unexpected or abnormal events, like sudden
generation drops or heat and cold waves, might affect the
network operations. The SO could then ask the prosumers to
provide grid services to avoid grid damages and instabilities
and compensate them by means of incentives captured by
continuously differentiable functions g, (d,,&,) parameter-
ized in &,. For each n € N/ and &, the incentive computed
at the nominal consumption d,, should be zero, i.e.,

gn(a?mfn) = 0. (®)

Equation (8) ensures that an agent is not charged or remu-
nerated if it does not provide ancillary services, i.e., if it
keeps is demand at d,,. The function parameters for all the
prosumers are collected in the vector £ = [& ... &n] T
The incentive g, (d,,&,) essentially shapes prosumer n
surplus (5), which becomes

Sn(dnvrrugn) = Sn(drurn) +gn(dna§n) )]
and the solution of the new prosumer optimization problem

dy,(&n) = arg drneal))( Sn(dns7ns&n) (10)
is favorable for grid operations, see Figure 1. The SO’s goal
is to find the £ that minimize the cost of sustaining the
distribution grid while ensuring that operational constraints
are met, i.e., to solve the incentive optimization problem2

£ = argmﬁinZgn(d;(fn),ﬁn) —mdy(§n) — o + 7Ty

(11a)

st. v<v<v (11b)
P, <10 <Py (I1c)

d (&) > 0 (11d)

2Though in the following we will consider problem (11), in principle our
approach is suitable and can be easily extended also when the problem of
interest include other constraints, e.g., line flow limits. Also, constraints on
£ could be added to comply with possible regulatory frameworks.
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Fig. 1. The incentive function shapes prosumer n surplus. Here, the utility
of consumption is quadratic and the incentive function is linear. When &,
is negative, the demand is reduced, see the left panel. \Yhen &n is positive,
the demand increases, see the left panel. Heed that gn, (dn, &n) equals zero,
meaning that no remuneration is given to n if it does not provide services.

where the vector d*(&) collects all the d,(&,)’s. The
constraint (11b) captures voltage operational constraints;
whereas (11c) enforces the power exchange with the external
network to be within a desired interval, possibly modeling
the case in which the grid is required to behave as a
Virtual Power Plant. Finally, (11d) guarantees that the loads
remain nonnegative. The interactions between the utility
company (leader) and prosumers (followers) is a Stackelberg
game [18], where the players select the optimal strategy by
solving the optimization problems (10) and (11).

IV. FEEDBACK ALGORITHMS FOR THE COMPUTATION OF
THE OPTIMAL INCENTIVES

The optimal incentive £€* can be computed by directly
solving problem (11) when the SO has full network informa-
tion, i.e., it knows the grid parameters R, the power demands
d and q, the DER power outputs r, the user preferences U,,’s,
and the incentive functions g,,’s. However, such a scenario
of perfect grid information is unusual in distribution net-
works, for instance, because of a lack of real-time metering
infrastructure. Hence, we propose the following feedback
optimization algorithms in which the missing information is
compensated by measurements and problem (11) is solved
iteratively. To that aim, it is convenient to introduce the
Lagrangian of (11)

LEXNA v, T, p) = g(d(€),€) — 71 7d" (€) + ¢
X (v=9) AT (v—v) — v d(€)

+ (po — Do) — ppo — p,)- (12)

where ¢/ = ) (7, —m) and g is the sum of all the g,,.
Collect the Lagrange multipliers in

T \T T T T
0:: |:A A :u /J 1 %4 9

3N+2
0 € Ry .

1) A Dual Ascent Method and a Primal-Dual Method:
First, consider the case in which the SO does not have avail-
able real-time information about behind-the-meter generation
r, and reactive power demand q,, of prosumers 1,...,N. A

dual ascent algorithm solving (23) reads

Et+1) = argmm L(&(t),0(t)) (13a)
At +1) = r(t) +e(v(t) — V)]Rf (13b)
At +1) = [A{) +e(v—v(t RY (13¢c)
it +1) = [a(t) + elpo(t) = Po)]p,  (13d)
p(t+1) = [u(t) +e(p, — po(t))] s, (13e)
v(t+1) = [v(t) +ed*(t)] g (13f)

The incentive parameters are iteratively updated in (13) until
convergence to their optimum values. The values of v(t) and
po(t) are directly measured.

If the minimization in (13a) cannot be easily performed,
the next first-order primal-dual method can be pursued

£(t+1) = £(t) — e( VA" () Vag(d" (1), £(1))

+ Vpolt) (A(t) — p(t)) — V' (t)w(t) - 7Va*(£)1)
+ Veg(d* (1), £(1)) + V(1) (X(t) — A1) (142)
(13b) — (131) (14b)

Note that to implement the primal update (14a), one needs
the measurement of the demand d*(¢), the sensitivity of the
demand to the incentive signal given by the gradient matrix
Vd*(t), and the sensitivity of the power-flow model to the
incentives given by the gradients Vv (t) and Vpo(t). These
matrices can be computed knowing the prosumer utility
functions (the U,’s) and the network model, or estimated
from historical data (e.g., from previous demand response
events).

2) A Zero-Order Feedback-Based Methods: Second, con-
sider the most extreme case when also the sensitivity ma-
trices above are unknown and the SO has available only
demand and voltage measurements. We propose to use a
zero-order method to seek saddle points of (12) similar
to, e.g., [19]. In particular, we employ a double-evaluation
approach for approximating the gradient of the Lagrangian:

VL(t) = %? £ (&m).00)) - £ (E-w.60)] 15
where perturbed incentives & 4 (t) and ' (t) are applied to
the system with &, () := &(t) = o¢(t). Here, 0 > 0 is a
parameter that controls the magnitude of perturbation, and
¢(t) € RY is a perturbation signal which can be either
chosen as a random or deterministic process. In Section VI,
we show an application in which ¢(¢) is a random signal.
With approximation (15) at hand, the zero-order method is

E(t+1) = £(t) — eVL(t)
(13b) — (13f).

(16a)
(16b)

Observe that (16a) can be implemented in a complete model-
free fashion provided that the measurements of demand,
voltages, and aggregate power are available.

Remark 1: Algorithms (13), (14), and (16) have a
feedback control implementation. Indeed, voltage and
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Fig. 2. Block scheme representation of the feedback control system.

power measurements enable the Lagrange multipliers up-
dates (13b)—(13f) when the values of v and py cannot be
directly computed via the power flow equations because of
lack of information. A schematic representation of the overall
closed-loop system is given in Figure 2. In our setup, the
system’s state consists of the primal and the dual variables;
the renewable generations, the prosumer utility functions
U,’s, and the reactive power demand act as a system’s input.

V. CONVEXIFICATION OF THE INCENTIVE OPTIMIZATION
PROBLEM AND STABILITY ANALYSIS

An SO can use the methods described in Section IV to
solve the incentive problem (11), which is possibly non-
convex. In the following, we introduce commonly adopted
choices of functions and parameters resulting in a convex
problem that allows for explicit algorithm formulation and
stability analysis.

a) Quadratic utility functions: similar to what is com-
monly done in the literature, e.g., see [18], [20], consider the
quadratic prosumer utility functions

Un(dy) = —%di 4 Budn, an €RY By >m (17)

b) Unbounded power demand: the prosumers can
choose the d,,’s to be an arbitrary nonnegative number, i.e.,
we disregard (2). The projection in (7) would just complicate
the notation hereafter without adding anything conceptually
and can be performed easily in practical applications.

c) Linear incentive functions: we consider linear incen-
tive functions of the form [21]

Heed that a prosumer is not charged or remunerated if it
does not change its power demand, i.e., g, (dn,&,) = 0.

d) Approximated power exchange: We consider the
linearized power flow equation (4). Also we neglect the
power losses and approximate the power delivered to the
distribution network through the substation as

po=-Y pn=1"(d-1).

Together with the approximation (4), the former equation
yields the convex optimization problem reported in the
following. The SO could however in principle solve an opti-
mization problem considering the true power flow equations.

The former choices yield the next quantities. The nominal
(i.e., the one in the absence of incentives) demand and the

net power injection for prosumer n obtained by solving the
prosumer optimization problem can be written as
~ — T . ~
dp = L, D =Ty — dp.
o2
It is clear that the demand is a decreasing function of the
energy price. The surplus (9) becomes

Sn(dn; fnv Tn) = _%di + Bndn - 7rdn + 7y,
— o + En(dn - Czn)

and the optimal consumption (7) for prosumer n is

5n_ﬂ+§n:dn+£i
(07 (67

dy, (&n) =

The new surplus maximizer is a linear perturbation of the
one without incentives. Collect all the optimal consumptions
with or without incentives in the vectors d*(£) and d. Then,

d=AB-rAl (18)
d*(¢) =d+ A¢ (19)
with A = diag(a), a = [£ ... =]', A positive

definite. Constraint (11d) can belreformulated in terms of &
as

.

>l -0, B:=[h B ... BN] . (20)
Under d*(&), the power delivered to the DN is

po(€,r)=1TAE+1Td—1"r. 1)

Also, the remuneration due to the prosumers, i.e., the sum
of the incentives, for their services is quadratic in £. Indeed:

> 0n(d5(6n), &n) — 7 (n) + 7 — o =
Sy T ) = €T A BT E e
—a,  an n = VPn

where b := —7Al, c¢:=—>" 7(pn). Using (4) and (19),
the voltage magnitudes become a function of the incentive

v(igr)=—-RAE+Rr+v (22)

with v := Xq— Rd+w. Equations (18) — (22) can be used
to approximate (11) with the strictly convex problem

¢ =arg msin ETAE+Db e+ (23a)
st (20)— 21) — (22)

vIv<v (23b)

Py <Po < Do (23¢)

We will hereafter assume that the feasible set described by
equations (20), (21), (22), (23b), and (23c) is non empty.
Hence, problem (23) admits a unique minimizer. Defining

.= [-AR AR Al -A1 -I]', & cRONtDN
p=[v-9)" (v-¥)" d'1-p,
Bo_aTl 7T1T—,@]T, ¢ER3N+2



problem (23) can be rewritten as

£ = arg min ETAE D E 4 (24a)
st. PE+¢p <0 (24b)

and its Lagrangian (cf. (12)) is
LEO)=,"AE+D E+c+0" (BE+ ). (25)

We can use (25) to derive the equations of the dual ascent
algorithm (13) or the primal-dual strategy (14) under the
assumpion introduced earlier. The next result provides a con-
dition for the convergence of algorithm (13) for the special
case in which the renewable generation r is constant. The
stability characterization of the primal-dual algorithm (14)
and of the zero-order method (16) is left to future research.

Proposition 5.1: The dual ascent control scheme (13) is
globally uniformly asymptotically stable if

e<4|®@ AL (26)
Proof: The minimizer w.r.t. the primal variable of the
Lagrangian (25), which is
A—l
£0)=-=—(b+276)

can be used to obtain the dual problem
MaXgpsn+2 h(0), where

-1 -1 T TA-1
h(o):eT((pr’A b)70T<I>A4(I> O*bi b

The former problem has zero duality gap with (23) because
the Slater’s conditions hold true [22]. The gradient of h is
PA'DT ®A~'b
SE (g
2 2
and the dual ascent algorithm (13) becomes

6(t+1) = £(6(t)). £(6) = [0+ cVh(6)] v o

Vh(6)

By recalling that the projection is a nonexpansive operator,
the map f is a contraction under condition (26). Indeed,

1£(6) — £(6")]| =
= [[[6+ eVh(8)]gsnsz — [6"+ €VR(8)] o]

(- 00

DA DT

<= H 00
< [1-=2 "o
Now, we need to show that 3k € )0, 1] such that
PA DT
T @

Denote by Apin and Ay ax the minimum and the maximum
eigenvalues of PA~1® . We have that A\, = PA 1S,
Being A positive definite, BA~1® " is positive semidefinite.
Also, since ® is full column rank, <I>A’1T<I>T is full rank
and Apin > 0. Noting that HI — e%“ = max{1 —
5Amin, 5 Amax — 1}, equation (27) is equivalent to the system

2
k < ¢Amin
iz, o
— 2 .
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Fig. 4. Minimum nodal voltage magnitude vs. the number of iterations.

If (26) holds true, (27) is satisfied with & > 0 and meet-
ing (28). The global asymptotic stability then follows. MW

VI. NUMERICAL ILLUSTRATION

Here, we validate the incentive mechanism and the
feedback-based optimization algorithms from Section IV
on a realistic distribution feeder. The IEEE 33-bus radial
distribution network [23] was simulated using PandaPower
with 32 loads chosen randomly from 114 apartments sourced
from the UMass Trace Repository [24] to be placed at each
of the 32 load nodes. A normalized retail price ™ was set at
1.0 and the prosumer quadratic utility function coefficients
oy, were chosen uniformly at random between 0.3 and 3.0.
A solar farm was connected to bus 31 with a capacity of 6
times its default node load size. The voltages are required
to be in the range [0.95 p.u.,1.05 p.u.]. Virtual power plant
bounds of £0.2 MW were placed around the power going
into the feeder.

In the first set of numerical simulations, we considered
a static case in which the utility function parameters, the
reactive power demands, and the generations were fixed.
The solar farm was disconnected causing some of the nodal
voltage magnitudes to drop below 0.95 p.u. and initiating
the incentive mechanism. The parameters of the algorithms
were set to: € = 0.5 for the dual ascent; ¢ = 0.3 for the
first-order algorithm; o = 0.02 and € = 0.05 for the zero-
order method. A vector of uniform random variables between
-1 and 1 was chosen for {(¢). The proposed algorithms are
compared by showing their total incentive, minimum nodal
voltage magnitude, and feeder power versus the number of
iterations, in Figures 3, 4, and 5, respectively. As expected,
the more information we have about the prosumers, the
faster we can approach an optimal £. Dual ascent utilizes
complete knowledge of the prosumer utility functions to
converge the fastest, while the first-order algorithm utilizes
only the prosumer sensitivities to incentives to converge at a
slightly slower rate. However, the zero-order algorithm has
no knowledge of the prosumers and requires exploration to
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time-varying case.

slowly find effective values of & with respect to the voltage
and virtual power plant bounds.

In the second set of simulations, we tested the algorithms
in a time-varying setting. The solar farm output is chosen ac-
cording to the ISO New England aggregated solar production
in the Western Massachusetts Zone on 9/19/2016 [25]. The
incentive mechanism makes the prosumers adapt to the solar
farm’s volatility and ensures the fulfillment of the voltage and
power constraints. Figure 6 shows the total incentive trajec-
tories. The algorithms track the optimal incentives. Again,
the dual ascent provides the best performance, followed by
the primal-dual and then by the zero-order method.

VII. CONCLUSION

We have presented an incentive mechanism that, by essen-
tially changing the energy price, makes rational users change
their demand and provide grid services, e.g., voltage and
power regulation. The incentives are described here with
affine functions. The function parameters that achieve the
desired grid performance and minimize the cost for the
SO can be computed by solving an optimization problem.
When the problem cannot be directly solved because some
grid/customer information is not available, we devised feed-
back control algorithms that iteratively update the incentives
until convergence to the optimum. Future research direc-
tions include studying the convergence properties of our
algorithms in time-varying cases and considering nonlinear
incentive functions.
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