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Abstract— Recent achievements in quantum control have
resulted in advanced techniques for designing controllers
for applications in quantum communication, computing, and
sensing. However, the susceptibility of such systems to noise
and uncertainties necessitates robust controllers that perform
effectively under these conditions to realize the full potential
of quantum devices. The time-domain log-sensitivity and a
recently introduced robustness infidelity measure (RIM) are two
means to quantify controller robustness in quantum systems.
The former can be found analytically, while the latter requires
Monte-Carlo sampling. In this work, the correlation between
the log-sensitivity and the RIM for evaluating the robustness
of single excitation transfer fidelity in spin chains and rings
in the presence of dephasing is investigated. We show that
the expected differential sensitivity of the error agrees with
the differential sensitivity of the RIM, where the expectation
is over the error probability distribution. Statistical analysis
also demonstrates that the log-sensitivity and the RIM are
linked via the differential sensitivity, and that the differential
sensitivity and RIM are highly concordant. This unification
of two means (one analytic and one via sampling) to assess
controller robustness in a variety of realistic scenarios provides
a first step in unifying various tools to model and assess
robustness of quantum controllers.

I. INTRODUCTION

Emerging quantum devices are potentially able to out-
perform classical computational devices in performing com-
plex and challenging tasks in quantum optics [1], quantum
cryptography [2] and quantum machine learning [3]. Robust
control design is essential to avoid errors in quantum devices
that will propagate and amplify as system size scales [4].

However, the proven techniques of robust control have
limited applicability in the control of quantum systems. Stan-
dard robust control design and analysis based on small-gain
theorem techniques requires closed-loop systems that are
well-posed and internally stable [5]. The marginal stability
characteristic of all coherent, “closed-loop” quantum systems
is thus incompatible with the prerequisites of classical robust
control. Further, while the tools of classical control theory are
designed to guarantee stability and asymptotic performance,
the benefits of quantum technology stem from coherence,
a quality that originates with the imaginary-axis poles of
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quantum systems and rapidly decays with time. As such,
quantum control problems such as state transfer or operation
of quantum logic gates are generally time-based, depreciating
the premium on asymptotic behavior.

In this letter we consider the task of optimal state trans-
fer in a simple quantum register, focusing on the control
paradigm of energy landscape shaping. The task is formu-
lated as a time-invariant control problem, and optimization
techniques are used to identify controllers that yield high
fidelity [6], [7]. Uncertainties in the quantum device model
and environmental interactions necessitate optimal fidelity
controls in the presence of these uncertainties. Various meth-
ods to obtain robust and/or optimal controllers exist [8]–[10].
Model-based methods study the problem as an adversarial
game between low error and robustness [11], [12], whereas
model-agnostic methods deploy learning algorithms that rely
on input-output measurements to generate robust controllers.

We examine the correlation between two distinct ro-
bustness measures, the time-domain log-sensitivity and a
robustness infidelity measure (RIM). Our analysis of the
RIM and log-sensitivity is general and not strictly limited
to the time-domain or spin systems. Our motivation is
to initiate the study of consistent properties between the
robustness measures as a first step in development of a
unified robustness theory for quantum control. Indeed, while
various robustness measures have been used, they have
often provided discordant results. Moreover, reliable robust
control design is important for the successful application of
quantum technologies across domains in the noisy real-world
setting. In traditional control theory, sensitivity quantifies the
performance of a closed-loop system under uncertainties.
The time-domain log-sensitivity can be computed analyti-
cally [13]. Alternatively, the RIMp [14] evaluates controller
robustness based on the pth order Wasserstein distance of
the error distribution under uncertainty relative to the ideal
distribution. Previous work [13] extensively analyzes the log-
sensitivity in chains and rings of N particles with structured
perturbations and indicates small log-sensitivity is possible
for extremely high-fidelity controllers.

Classically a conflict exists between minimum error and
minimum sensitivity of the error quantified as S(jω) +
T (jω) = I , where S is the tracking error and T the sensi-
tivity of the error relative to unstructured uncertainties [15].
Attempts to embed S and T in a single criterion have been
proposed, e.g., the “mixed-sensitivity,” and its reformulation
for ∆-structured uncertainties as µ∆

([
ST TT

]T)
[5].

Thus the RIMp may be viewed as a mixed-sensitivity ap-
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proach for uncertainties structured by their PDFs where both
the error (or infidelity) and its robustness (the variance of its
PDF) are encoded in a p-Wasserstein distance.

Additionally, the RIM1 is connected to randomized bench-
marking that averages the fidelity over the Clifford group
used to quantify robustness of quantum circuits by character-
izing the error per gate [16]. Moreover, the RIM1 formalizes
the already common approach of optimizing for the average
infidelity to obtain robust quantum controllers [17].

The letter is organized as follows. Sec. II introduces the
model used throughout this analysis. Sec. III introduces and
unifies the log-sensitivity and the RIM to measure robustness.
In Sec. IV, we formulate the hypothesis tests to compare the
two measures and present our results. Sec. V concludes.

II. PHYSICAL MODEL

We consider a quantum register comprised of an array of
quantum bits. The system can be modeled as a coupled spin
system with Hamiltonian

H :=

N∑
m ̸=n

Jmn (XnXm + YnYm + κZnZm) (1)

where N is the number of qubits and Xn, Yn, Zn are
the N -fold Pauli operators acting on the nth particle [18].
Jmn = Jnm denotes the interaction between particles n and
m and can be interpreted as the undirected edge between
nodes n and m on a graph. Only 1D spin networks are
considered here, with either a chain (linear register) or a ring
(quantum router) topology, constraining the couplings to be
zero except for Jn,n±1 (chain) and additionally J1,N = JN,1

for rings. We assume uniform coupling for all non-zero
J and κ = 0. We further restrict the dynamics to the
single excitation subspace and the case where control is
achieved by external bias fields that shift the energy levels of
particle n by ∆n, resulting in an effective single excitation
subspace Hamiltonian Hss given by a matrix with diagonal
elements ∆n and off-diagonal elements Jmn. The closed
system with no interaction with the environment evolves
according to ρ̇(t) = − i

ℏ [Hss, ρ(t)], where ρ(t) is density
operator describing the state of the system [19], [20].

To study the robustness of a nominally closed quantum
system to environmental interaction we introduce a pertur-
bation in the form of dephasing in the Hamiltonian basis.
This modifies the evolution of the perturbed state ρ̃(t) to

˙̃ρ(t) = − i

ℏ
[Hss, ρ̃(t)] + L(ρ̃(t)) (2)

where L(·) = − 1
2 [V, [V, (·)]] is the Lindblad decoherence

superoperator, and [·, ·] is the commutator. We represent the
dephasing terms as V = V † =

∑N
k=1 ckΠk, where Πk is

the projector onto the kth shared eigenspace of Hss and V ,
and ck is the associated eigenvalue of V . Pre- and post-
multiplying (2) by Πk and Πℓ, respectively, and noting that
{Πk} is a resolution of the identity on CN , gives

ρ̃(t) =

N∑
k,ℓ=1

e−t(iωkℓ+γkℓ)Πkρ0Πℓ, (3)

where ωkℓ = (1/ℏ) (λk − λℓ) and γkℓ are the decoherence
rates and ρ0 is the (known) initial state of the system.

To permit robustness analysis in a linear time-invariant
(LTI) framework, we recast (2) as

˙̃r(t) = Ar̃(t) + Lr̃(t) (4)

by expanding (2) with respect to a suitable set {σn} of N2

Hermitian basis matrices for CN2

[21], [22]. Here, r̃(t) ∈
RN2

is the vectorized representation of ρ̃(t) in the basis {σn}
with components r̃k(t) = Tr(ρ̃(t)σk). The matrices A,L ∈
RN2×N2

are defined by [22]

Akℓ = Tr

(
i

ℏ
Hss[σk, σℓ]

)
, (5a)

Lkℓ =
1

ℏ
Tr(V σkV σℓ)−

1

2ℏ
Tr

(
V 2 (σkσℓ + σℓσk)

)
. (5b)

The solution to (4) is given by r̃(t) = et(A+L)r0, where r0
is the expansion of ρ(0).

III. ROBUSTNESS ASSESSMENT

A. Performance and Perturbation Model

We consider the fidelity error of the excitation transfer
from the initial state ρ(0) to a desired output state ρout at a
read-out time T as the measure of performance. We restrict
our analysis to spin rings and chains of size N = 5 and
N = 6. For chains, we consider transfer from spin 1 to
desired output states OUT = {⌊N/2⌋ + 1, N}. For rings,
we consider transfers from spin 1 to OUT = 2 through
⌈N/2⌉. All controllers are optimized to maximize fidelity
under varying conditions as described in [14], [20]. We
evaluate the nominal fidelity error in the LTI formalism as
e(T ) = 1 − cr(T ) where c ∈ R1×N2

is the transpose of
rOUT.

To model the dephasing processes, we use the set of 1000
dephasing operators specific to spin networks of size N = 5
or 6, as employed in [20], normalized and tested to meet
the physical complete positivity constraints [23]. We denote
this set of dephasing operators by {Sµ} ∈ RN2×N2

where
µ indexes each dephasing operator and the elements of Sµ

are given by (5b) for the LTI representation. To modulate the
strength of the perturbation we introduce the dimensionless
scalar δ ∈ [0, 0.1].

The perturbed trajectory specific to Sµ and δ is

r̃(t;Sµ, δ) = et(A+δSµ)r0. (6)

This gives the perturbed performance measure

ẽ(T ;Sµ, δ) = 1− ceT (A+δSµ)r0 (7)

where ẽ(T ;Sµ, δ) denotes the error evaluated at time T under
the dephasing process Sµ at strength δ.

B. Log-Sensitivity

In accordance with [20], we choose the log-sensitivity
as one measure of robustness, calculated in two distinct
ways: analytically and numerically. In the analytical case
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we calculate it directly from (7) as in [20]. For a given
controller and dephasing process we have

s(Sµ, T ) =
1

e(T )

∂ẽ(T ;Sµ, δ)

∂δ

∣∣∣∣
δ=0

=
−1

e(T )
ce(TA)(TSµ)r0.

(8)
The form of the last term in (8) only holds for this specific
dephasing model where [A,Sµ] = 0. For a given controller,
we average the s(Sµ, T ) values to yield sa(S, T ) where the
subscript a denotes ‘analytic’ and we drop µ to indicate
averaging over the entire set {Sµ}.

In a complementary manner, we approximate the proba-
bility density function p(δ, e) by sampling the fidelity error
ẽ(T ;Sµ, δ) of one controller for 1000 dephasing operators
and a range of δ, and calculating a kernel density estimator
(KDE). We quantize the dephasing strength δ into 1001
steps. For each controller, we then produce a 1001 × 1000
array of samples by evaluating ẽ(T ;Sµ, δ) at each step of
δ for each dephasing operator Sµ. From this array, we
extract the estimated fidelity error distribution through the
MATLAB function ksdensity. Selecting a suitable kernel
radius for the KDE is crucial to obtain a good estimator.
We leverage the MATLAB function smoothingspline
to produce a functional representation of the mean error
denoted as ê(T ;S, δ), where µ is dropped to indicated that
averaging over the dephasing operators has already taken
place. We then calculate a numerical derivative of the mean
error estimate at δ = 0 so that

sk(S, T ) =
1

e(T )

∂ê(T ;S, δ)

∂δ

∣∣∣∣
δ=0

(9)

provides the KDE-based log-sensitivity for a given controller.

C. RIM

Under uncertain dynamics, the fidelity error is a sample
drawn from the probability distribution Pδ(e = e) of a
random variable e. The subscript signifies that the probability
distribution depends on the noise strength δ. The RIM1(δ)
(robustness infidelity measure) is the first order Wasserstein
distance of Pδ(e = e) from the maximally robust probability
distribution, i.e., the Dirac delta distribution at minimum
infidelity 0. Note that the p-Wasserstein distance between
two measures µ(dx), ν(dy) is the minimum over all trans-
ference plans of the average p-moment of |x− y| or cost of
transferring µ to ν [24]. We can simplify the RIM1 as the
first raw moment of the error probability distribution [14],

RIM1(δ) = EPδ
[e] , (10)

where EPδ
[·] =

∫
X (·)Pδ(e = e) de is the expectation

operator w.r.t. the probability distribution of the error Pδ(e)
over some appropriate domain X . The RIM1 aims to capture
both infidelity and robustness in a single measure and extends
the infidelity by a noise strength δ. At δ = 0, there is no
uncertainty so the RIM1 is just the nominal fidelity error
(infidelity) e(T ). A further generalization is the RIMp as
the pth order Wasserstein distance can be used, but this is
not considered here.

D. Unifying Differential Sensitivity with the RIM

We can relate the RIM1 with the differential sensitivity

ζ(Sµ, T ) =
∂ẽ(T ;Sµ, δ)

∂δ

∣∣∣∣
δ=0

(11)

by considering the expectation EPδ
[ζ]. The dependence

of the function Pδ(e = e) and ζ on δ requires careful
attention, but for our decoherence noise model, we can use
reparametrization [25] to write an equivalent expectation
operator for our decoherence noise model that isolates the
dependence of Pδ(e = e) on δ to just the error e with a new
probability distribution function independent of δ.

One way to do this is to note that the stochasticity of e
is entirely due to the uncertainty of the dephasing operators
Sµ, which is represented by the random variable S, with δ
being a deterministic scale parameter.

Theorem 1: For the decoherence noise model, the ex-
pected differential sensitivity is the differential sensitivity of
the RIM1 i.e. EP(S)[ζ(Sµ, T )] =

∂RIM1(δ)
∂δ

∣∣∣
δ=0

.
Proof: We first unpack the differential sensitivity using the
definition of the derivative,

∂ẽ(T ;Sµ, δ)

∂δ

∣∣∣∣
δ=0

= lim
ϵ→0+

ẽ(T ;Sµ, δ + ϵ)− ẽ(T ;Sµ, δ)

ϵ

∣∣∣∣
δ=0

= lim
ϵ→0+

ẽ(T ;Sµ, ϵ)− ẽ(T ;Sµ, 0)

ϵ
. (12)

We apply the expectation operator EP(S) [·] on (12) and sim-
plify using the reparametrization trick: EP(S)[·] ↔ EPδ

[·],

EP(S)[ζ(Sµ, T )] = EP(S)

[
lim

ϵ→0+

ẽ(T ;Sµ, ϵ)− ẽ(T ;Sµ, 0)

ϵ

]
= lim

ϵ→0+

EP(S) [ẽ(T ;Sµ, ϵ)− ẽ(T ;Sµ, 0)]

ϵ

= lim
ϵ→0+

EPϵ
[ẽ(T ;Sµ, ϵ)− ẽ(T ;Sµ, 0)]

ϵ

= lim
ϵ→0+

RIM1(ϵ)− RIM1(0)

ϵ

=
∂RIM1(δ)

∂δ

∣∣∣∣
δ=0

.

Swapping the limit and the expectation in the second line
is justified as long as the limit in the mean of the sequence
{ ẽ(T ;Sµ,ϵ)−ẽ(T ;Sµ,0)

ϵ }ϵ>0 exists. □
Note that Thm. 1 does not necessarily hold in the general

case, as removing the dependence on δ via reparametrization
is not always possible.

IV. RESULTS

A. RIM Preprocessing

To compare the log-sensitivity and RIM1(δ), we need to
extract a representative dephasing noise scale δ to use for
RIM1(δ) since the log-sensitivity is independent of δ. A
priori, for the two measures RIM1(δ1) and RIM1(δ2), for
some δ1, δ2 ∈ [0, 0.1] noise scale parameters and δ1 ̸= δ2, the
measure values or controller rank ordering w.r.t. the values do
not necessarily coincide or agree. We quantify the agreement
using rank-correlation analysis via Kendall’s tau τ(δ1, δ2) for
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Fig. 1: RIM1(δ) for 100 controllers sorted in increasing order
of error (to the right) for the ring spin transfer problem for
N = 6 with O = 4.

Fig. 2: Kendall’s tau τ(δ1, δ2) heat map showing agreement
between RIM1(δ1) and RIM1(δ2) measures for 0.1 >
δ1, δ2 > 0.005 for the ring spin transfer problem for N = 6
with O = 4.

100 controllers which are ranked according to their respective
RIM1 values. For the spin transfer problems considered here,
we found that for δ1 = 0.05, the rank correlation is strongest
(around > 0.8) for δ2 ∈ (0.005, 0.1). Fig. 1 shows the
RIM1(δ), δ ∈ [0, 0.1], for 100 individual controllers sorted
in increasing order of error (to the right) for the spin ring
transfer problem with N = 6, OUT = 4. Fig. 2 shows the
results of our rank-correlation analysis for the same transfer
problem.

B. Hypothesis Test Formulation: Robustness Measure Con-
cordance and Robustness-Performance Trade-off

Given two forms of the log-sensitivity and the RIM1, we
expect that if all give a trustworfthy measure of robustness,
they should show a concordant trend across all controllers for
the same problem defined by ring or chain size and transfer.
Based on the fundamental limitation S(s) + T (s) = I
of classical feedback control, we also anticipate that the
controllers exhibiting good robustness (small log-sensitivity
or RIM1) should have diminished performance (larger fi-
delity error). To test these hypotheses, we establish a pair
of hypothesis tests based the Kendall τ rank correlation
coefficient. To test concordance or discordance of robustness

measures we establish one-tailed tests for concordance (right
tail for τ > 0) or discordance (left tail for τ < 0) as

• H0: no correlation of sa(S, T ), sk(S, T ) and RIM1;
• H1+/−: positive/negative correlation of same metrics.

The rank correlation is computed in a pairwise manner
between robustness measures. To test the trend between e(T )
and the robustness measures, we establish a second one-tailed
test (left tail) for anti-concordance as

• H0: no correlation of e(T ) and sa(S, T ), sk(S, T ), or
RIM1;

• H1: negative correlation between same metrics.
With the combination of ring and chain sizes and transfer
problems at our disposal, this provides a total of 36 test
cases for each hypothesis test for chains and 45 test cases
for each hypothesis test for rings. Within each test, we
have 100 samples based on the best (highest fidelity without
decoherence) 100 controllers.

For each test, we evaluate the statistical significance as

pτ =

{
1− Φ(Zτ ), for concordance
Φ(Zτ ), for discordance,

(13)

where Zτ is the Kendall τ test statistic given as Zτ =

τ
(√

2(2n+5)
9n(n−1)

)−1

[26], n = 100 is the number of samples,
and Φ(·) is the normal cumulative distribution function. We
set the significance level at a standard 95% so that α = 0.05.
We reject (accept) the null hypothesis if pτ < α (pτ ≥ α).

C. Hypothesis Test Results: Robustness Measure Concor-
dance and Robustness-Performance Trade-off

Applying the hypothesis test to the correlation between
the robustness measures provides mixed results. On one
hand, across all test cases, sa(S, T ) and sk(S, T ) are highly
concordant. However, the correlation between the RIM1 and
either measure of the log-sensitivity provides inconclusive
results—neither concordant nor discordant. This indicates
that utilization of the log-sensitivity and RIM1 as defined
in Sec. III does not provide an equivalent robustness mea-
sure. Table I displays the results of the hypothesis test for
concordance of the robustness measures for the set of chain
controllers, illustrating the inconsistent trends between ana-
lytic log-sensitivity and RIM1 but consistent trend between
sa(S, T ) and sk(S, T ).

Applying the hypothesis test to the trend between per-
formance and robustness reveals similar, mixed results. For
both chain and ring controllers, this trend is highly negative
for the log-sensitivity versus e(T ), rejecting H0 for H1 in
all test cases, indicative of a trade-off between performance
and robustness. However, the trend between RIM1 and e(T )
is highly concordant in some cases while anti-concordant
in others, a further indicator of dissonance between the
robustness measures. Figure 3 shows a typical plot of the
log-sensitivity and RIM1 versus controller index. Though
the trend of log-sensitivity versus e(T ) is opposite to that of
RIM1 versus e(T ), the plot shows that both measures capture
the same “jumps”, indicating that there is concordance in
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TABLE I: Excerpt of hypothesis test for concordance of robustness
measures for chain controllers optimized with different algorithms
{A,B,C}. Light shading indicates discordant trends. Dark shading
indicates failure to reject H0.

sa(S, T ) vs. sk(S, T ) sa(S, T ) vs. RIM1

Transfer τ pτ τ pτ
N= 5 OUT= 3 A 1.000 0.000 0.201 0.002
N= 5 OUT= 3 B 1.000 0.000 0.487 0.000
N= 5 OUT= 3 C 1.000 0.000 0.319 0.000
N= 5 OUT= 5 A 1.000 0.000 0.258 0.000
N= 5 OUT= 5 B 1.000 0.000 −0.556 0.000
N= 5 OUT= 5 C 1.000 0.000 0.207 0.001
N= 6 OUT= 4 A 1.000 0.000 0.000 0.498
N= 6 OUT= 4 B 1.000 0.000 −0.214 0.001
N= 6 OUT= 4 C 1.000 0.000 −0.202 0.001
N= 6 OUT= 6 A 1.000 0.000 −0.134 0.024
N= 6 OUT= 6 B 1.000 0.000 −0.639 0.000
N= 6 OUT= 6 C 1.000 0.000 0.029 0.336

Fig. 3: Plot of sa(S, T ), sk(S, T ), and RIM1 versus con-
troller index (ranked by error) for a 6-chain, 1 → 4 transfer.
The strong correlation between log-sensitivity measures is
evident along with the negative correlation between log-
sensitivity and e(T ). Conversely, we see a concordant trend
between RIM1 and e(T ).

the ability of each measure to detect the relative robustness
between controllers, as predicted by Theorem 1.

To explore these relative differences, we consider the rela-
tionship between the differential sensitivity ζ{a,k}(S, T ) and
the adjusted R̃IM1 = RIM1− e(T ) where the nominal error
is removed to retain the ”spread” of the RIM1. Reapplying
the hypothesis test with the differential sensitivity, calculated
both analytically and through the KDE, and R̃IM1 results
in strong positive concordance between all three measures
for the 45 ring test cases and 36 chain test cases with p-
values near zero. Furthermore, the hypothesis test for anti-
concordance between ζ{a,k}(S, T ) and the R̃IM1 versus
e(T ) rejects H0 in favor of H1 in the majority of test cases,
while any test cases that do not meet the α < 0.05 threshold
are the same for all robustness measures. Specifically, for the
ring controllers, nine of the 45 test cases fail to meet the sig-
nificance threshold, while for the chains, 15 of the 36 cases
do not meet the threshold. As shown in Table II, however,
the data is consistent across the three robustness measures
for each controller set, suggesting greater trustworthiness in

TABLE II: Excerpt of hypothesis test for trend between differential
sensitivity and R̃IM1 versus e(T ) for chain controllers optimized
with different algorithms {A,B,C}. Shaded cells indicate failure
to reject H0.

ζa(S, T ) vs. e(T ) R̃IM1 vs. e(T )
Transfer τ pτ τ pτ
N= 5 OUT= 3 A 0.0069 0.4597 −0.0271 0.3449
N= 5 OUT= 3 B −0.0416 0.2698 −0.0469 0.2448
N= 5 OUT= 3 C 0.0788 0.1227 0.0756 0.1327
N= 5 OUT= 5 A 0.0339 0.3084 −0.0069 0.4597
N= 5 OUT= 5 B −0.1317 0.0261 −0.1426 0.0178
N= 5 OUT= 5 C −0.1560 0.0107 −0.1754 0.0049
N= 6 OUT= 4 A −0.3665 0.0000 −0.4097 0.0000
N= 6 OUT= 4 B −0.2529 0.0001 −0.2590 0.0001
N= 6 OUT= 4 C −0.2117 0.0009 −0.2246 0.0005
N= 6 OUT= 6 A −0.2574 0.0001 −0.3220 0.000
N= 6 OUT= 6 B −0.2178 0.0007 −0.2343 0.0003
N= 6 OUT= 6 C 0.0238 0.3626 −0.0008 0.4952

the differential sensitivity and R̃IM1 to assess robustness.

D. On the Differential Sensitivity and Adjusted RIM1

Thm. 1 in Sec. III-D shows that the expected differential
sensitivity is the differential sensitivity of the RIM1. We
confirm this with numerical evidence beyond concordance
of R̃IM1 and ζa(S, T ). Given δ small enough, a forward
difference approximation of ∂RIM1

∂δ

∣∣
δ=0

shows strong agree-
ment with the value of the ζa(S, T ). Specifically, quantizing
the range of δ by 1001 points so that δ(n) = 0.0001n
for n ∈ [1, 1000], the relative error in ζa(S, T ) and
(RIM1 − e(T )) /δ(1) = R̃IM1/δ(1) does not exceed 0.1%
across all test cases.

Additionally, we see that R̃IM1 has the capability to
provide a robustness assessment for values of δ beyond δ = 0
where the differential sensitivity is no longer valid. Fig. 4
displays characteristic plots of R̃IM1 as a function of δ
ordered by increasing differential sensitivity. Fig. 4a shows
a characteristic trend of faster increasing R̃IM1 for those
controllers with the larger differential sensitivity, suggesting
that these controllers display robustness properties at greater
perturbation strength in accordance with ζa(S, T ) at δ = 0.
Fig. 4b displays the same overall trend but with outliers
that indicate the existence of controllers with more global
robustness properties that are not captured by the differential
sensitivity at δ = 0.

V. CONCLUSION

Although the log-sensitivity and RIM1 have merit as
stand-alone measures of robustness, they are not concor-
dant measures. However, they are linked by the differential
sensitivity, and we have shown that the expectation of the
differential sensitivity over the set of dephasing operators
is equivalent to the derivative of RIM1 at δ = 0. This
result is not limited strictly to the time-domain or to spin
systems. Existing robust control methods can benefit from
these measures by using them to post-select synthesized
open-loop controllers or directly optimize for controllers
that minimize a given robustness measure. Both measures
agree locally, near δ = 0, but the RIM can be used for a
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(a) Larger perturbation behavior for a 5-ring 1 → 2 transfer

(b) Larger perturbation behavior for a 6-ring 1 → 4 transfer

Fig. 4: R̃IM1 as a function of δ compared to ζa(S, T ).

more global (w.r.t. δ) a posteriori robustness assessment of
controls.

These results are a positive step in unification of ro-
bustness measures, but more work is required to make
the results more generally applicable. Firstly, the type of
perturbations considered must be generalized. Specifically,
it is necessary to investigate whether this unification of
robustness measures holds under the case of Hamiltonian
and/or controller uncertainty simultaneously with dephasing
and dissipation. Secondly, investigation of the relationship
between higher order differential sensitivity measures and
higher orders of the RIM is necessary to improve higher
order robustness of controllers as the number of perturbations
under consideration increases. Finally, a test on physical sys-
tems is required to assess how well the proposed robustness
measures compare to physically measurable performance in
the setting of perturbations and uncertainty.
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Glaser, “Optimal control of coupled spin dynamics: Design of NMR
pulse sequences by gradient ascent algorithms,” Journal of magnetic
resonance, vol. 172, no. 2, pp. 296–305, 2005.

[18] K. Joel, D. Kollmar, and L. F. Santos, “An introduction to the
spectrum, symmetries, and dynamics of spin-1/2 Heisenberg chains,”
American Journal of Physics, vol. 81, no. 6, pp. 450–457, Jun. 2013.

[19] K. Blum, Density matrix theory and applications; 3rd ed. (Springer
series on atomic, optical, and plasma physics). Berlin: Springer,
2012.

[20] S. O’Neil, F. Langbein, E. Jonckheere, and S. Shermer, Robustness of
energy landscape control to dephasing, arXiv:2303.05649v1 [quant-
ph] 10 March 2023, 2023.

[21] C. Altafini and F. Ticozzi, “Modeling and control of quantum
systems: An introduction,” IEEE Transactions on Automatic Control,
vol. 57, pp. 1898–1917, 2012.

[22] F. F. Floether, P. de Fouquieres, and S. G. Schirmer, “Robust quantum
gates for open systems via optimal control: Markovian versus non-
Markovian dynamics,” New Journal of Physics, vol. 14, pp. 1–26,
2012.

[23] S. G. Schirmer and A. I. Solomon, “Constraints on relaxation
rates for N -level quantum systems,” Physical Review A, vol. 70,
p. 022 107, 2 2004. DOI: 10.1103/PhysRevA.70.022107.

[24] C. Villani, Optimal Transport, Old and New (Grundlehren der Math-
ematischen Wissenschaften). Berlin: Springer-Verlag, 2009, vol. 338.

[25] D. P. Kingma and M. Welling, “An introduction to variational
autoencoders,” Foundations and Trends ® in Machine Learning,
vol. 12, no. 4, pp. 307–392, 2019. DOI: 10.1561/2200000056.

[26] H. Abdi, “The Kendall rank correlation coefficient,” in Encyclopedia
of measurements and Statistics, N. Salkind, Ed., Thousand Oaks, CA,
USA: Sage, 2007.

7183


