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Abstract— Deploying safety-critical controllers in practice
necessitates the ability to modulate uncertainties in control
systems. In this context, robust control barrier functions—in
a variety of forms—have been used to obtain safety guarantees
for uncertain systems. Yet the differing types of uncertainty
experienced in practice have resulted in a fractured landscape
of robustification—with a variety of instantiations depending
on the structure of the uncertainty. This paper proposes
a framework for generalizing these variations into a single
form: parameterized barrier functions (PBFs), which yield safety
guarantees for a wide spectrum of uncertainty types. This leads
to controllers that enforce robust safety guarantees while their
conservativeness scales by the parameterization. To illustrate
the generality of this approach, we show that input-to-state
safety (ISSf) is a special case of the PBF framework, whereby
improved safety guarantees can be given relative to ISSf.

Index Terms— Safety guarantee, uncertainty, robust Control
Barrier Functions

I. INTRODUCTION

Control barrier functions (CBFs) [1] have become a popu-
lar tool for synthesizing safety-critical controllers due to their
generality and relative ease of synthesis and implementation.
Safety is encoded by a single scalar inequality constraint,
by which CBFs provide an easy-to-compute condition that
implies the safety of the system when satisfied. The efficacy
of this approach has been demonstrated in a variety of appli-
cations such as multi-agent systems [2], robotic manipulators
[3], autonomous vessels [4] and autonomous trucks [5]. One
of the main challenges in obtaining formal safety guarantees
with CBFs in practice is uncertainty: both of the internal
model used to synthesize the CBF controller, and the external
environment with which the system interacts. Since CBFs
use models to calculate safe actions, a mismatch between a
system and its model can lead degradations in safety [6].

Robustness against uncertainties is typically achieved by
introducing a robustifying term in the CBF condition. In
one of the first works on robust CBFs [7], a robustifying
term was added based upon a bound on the uncertainties
with the result being robust safety. Later, different observer
and identification techniques have been proposed to alleviate
the conservativeness of robust controllers by estimating the
uncertainty, or considering specific classes of uncertainties
[8]–[13]. Data-driven methods account for uncertainties in a
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Fig. 1. Illustration of the parameterized barrier function (PBF) framework.
PBF establishes safety guarantees for a wide range of robust safety-critical
controllers designed for systems with uncertainties.

similar fashion where a sufficient condition for the safety is
found using properties of uncertainties [14]–[16]. Learning
can also be utilized to estimate a robustifying term in an
episodic fashion [17]—this has been deployed successfully
on robotic systems [18]. In the case of stochastic estimation
techniques, probabilistic safety guarantees are obtained using
chance constraints with the standard deviation of the process
used as an upper confidence bound [19], [20].

To quantify the effect of uncertainties on safety, it is im-
portant to characterize how adding a robustness term impacts
the ability to satisfy a safety constraint. On one hand, various
studies focused on ensuring safety w.r.t. a more conservative
constraint for robustness [9]–[11]. Similar concepts were
investigated to improve the feasibility of a stability problem
with control Lyapunov functions before in [21], and of a
safety problem with CBFs more recently in [22]. On the other
hand, input-to-state safety (ISSf) [23], inspired from input-
to-state stability [24], enforces safety w.r.t. a relaxed safety
constraint that is parameterized by the robustifying term.
Arbitrarily small relaxation in the safety constraint can be
achieved, and the robustness-safety trade-off can be improved
with less conservative “tunable” ISSf conditions [25]. ISSf
has proven to be useful when implementing CBFs in practice;
for example, in safety aware control of quadrupeds [26],
and control of full-scale trucks [5]. However, the fact that
ISSf relaxes the safety constraint prevents the analysis of
conservative controller performance that may occur when
robustness terms overcome the uncertainty.

The first goal of this paper is to generalize the concept of
robust CBFs across various forms of robustification methods
in the literature. Second, we formulate parameterized barrier
functions (PBFs), where safety guarantees are parameterized
relative to a given safety constraint with a generalized
robust CBF. The parameterization allows for the relaxation
of the strict safety condition expressed in the robust CBF
formulation. This gives us flexibility to establish safety
guarantees for other levels sets of the CBF in the case that
the nominal robust CBF conditions are not met. Third, we
connect the ISSf framework to PBFs and show that it is
possible to obtain improved safety guarantees for ISSf-CBF-

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 5538



based controllers. An inverted pendulum example is used
throughout to illustrate the key concepts.

II. BACKGROUND

Consider a nonlinear control system of the form:

ẋ = f(t, x) + g(t, x)u, (1)

with state x ∈ Rn and input u ∈ Rm. The functions
f : R× Rn → Rn and g : R× Rn → Rn×m are locally Lip-
schitz continuous in x and piece-wise continuous in t. A
feedback controller k : R× Rn → Rm, u = k(t, x), that is
locally Lipschitz continuous in x and piece-wise continuous
in t implies there exists a time interval I(t0, x0) ⊆ R for
each initial condition x(t0) = x0 such that the closed loop
system has a unique solution x(t) for all t ∈ I(t0, x0) [27].
For convenience we take t0 = 0 and assume that the solution
exists for all time, that is, I(0, x0) = [0,∞) for all x0 ∈ Rn.

Safety is formally defined as the forward invariance of a
set in the state space. We define the 0-superlevel set of a
continuously differentiable function h : Rn → H, H ⊆ R:

S = {x ∈ Rn | h(x) ≥ 0} , (2)

such that S is nonempty and has no isolated points, and
we say that the system (1) with a controller u = k(t, x) is
safe w.r.t. the set S if x0 ∈ S =⇒ x(t) ∈ S for all t ≥ 0
and x0 ∈ S . Control barrier functions [1] give us tools to
synthesize controllers with safety guarantees.

Definition 1 ([1]). A continuously differentiable function h
is a control barrier function (CBF) for (1) on S if 0 is a
regular value1 and there exists a function α ∈ Ke

∞
2 such

that the following holds for all t ≥ 0 and x ∈ S:

sup
u∈Rm

[∇h(x)f(t, x) +∇h(x)g(t, x)u] > −α(h(x)). (3)

The existence of a CBF implies that the set of controllers:

KCBF(t, x) = {u ∈ Rm | ∇h(x)f(t, x) (4)
+∇h(x)g(t, x)u ≥ −α(h(x))}

is not empty, and the main result in [1] states that controllers
taking values in KCBF ensure safety:

Theorem 1 ([1]). Let h be a CBF for (1) on S. Then, any
controller u = k(t, x)∈KCBF(t, x) renders (1) safe w.r.t. S.

III. ROBUST CONTROL BARRIER FUNCTIONS

Safety guarantees established by CBFs may deteriorate in
the presence of an uncertainty in the model. Consider:

ẋ = f(t, x) + g(t, x)u+ f̃(t, x) + g̃(t, x)u, (5)

where the unknown functions f̃ : R≥0 × Rn → Rn and
g̃ : R≥0 × Rn → Rn×m are assumed to be locally Lipschitz
in x and piece-wise continuous in t. Uncertainties f̃ and g̃
are often called as additive and multiplicative uncertainties,

1If h(x) = q =⇒ ∇h(x) ̸= 0, then q is a regular value of h.
2Function α : R → R belongs to extended class-K∞ (α ∈ Ke

∞) if it is
continuous, strictly increasing, α(0) = 0, and lim

r→±∞
α(r) = ±∞.

respectively, emphasizing their relationship with the input u
in the dynamics. Their effect on safety is seen in ḣ:

ḣ(t, x, u) =

ḣn(t,x,u)︷ ︸︸ ︷
∇h(x)f(t, x) +∇h(x)g(t, x)u

+∇h(x)f̃(t, x)︸ ︷︷ ︸
Lf̃h(t,x)

+∇h(x)g̃(t, x)︸ ︷︷ ︸
Lg̃h(t,x)

u, (6)

where ḣn denotes the known portion of ḣ while the Lie
derivatives Lf̃h(t, x) and Lf̃h(t, x) are unknown. A con-
troller u = k(t, x) ∈ KCBF(t, x) yields:

ḣ(t, x, k(t, x)) ≥ −α(h(x)) + Lf̃h(t, x) + Lg̃h(t, x)k(t, x),
(7)

and no longer satisfies the condition ḣ ≥ −α(h).
In the literature this problem is often addressed by adding

a compensation term to the safety constraint (3) for robust-
ness against the uncertainty. To capture this term for a variety
of approaches, we generalize the notion of robust CBF, which
was first proposed in [7] using a specific compensation term
for a specific type of uncertainty.

Definition 2. A continuously differentiable function h is
a robust control barrier function (RCBF) for (5) on S
if 0 is a regular value of h and there exist functions
σ : R≥0 × Rn × Rm → R and α ∈ Ke

∞ such that the fol-
lowing holds for all t ≥ 0 and x ∈ S:

sup
u∈Rm

[
ḣn(t, x, u)− σ(t, x, u)

]
> −α(h(x)). (8)

The compensation term σ allows one to cancel the unde-
sired effects of uncertainties on safety. Similar to CBFs, the
existence of a RCBF yields a set of robustly safe controllers:

KRCBF(t, x) = {u ∈ Rm | ḣn(t, x, u)− σ(t, x, u) ≥ −α(h(x))} ,
(9)

and the following theorem, generalized from [7], gives a
sufficient condition to obtain robust safety results:

Theorem 2. Let h be a RCBF for (5) on S with σ satisfying:

Lf̃h(t, x) + Lg̃h(t, x)u+ σ(t, x, u) ≥ 0, (10)

for all t ≥ 0, x ∈ ∂S and u ∈ Rm. Then, any controller
u = k(t, x) ∈ KRCBF(t, x) renders (5) safe w.r.t. S.

Remark 1. Robust safety-critical controller design is often
formulated as the optimization problem:

k(t, x) = argmin
u∈Rm

∥u− kd(t, x)∥2 (11)

s.t. ḣn(t, x, u)− σ(t, x, u) ≥ −α(h(x)),

where kd : R≥0 × Rn → Rm is a desired controller.
A plethora of methods has been proposed in the literature

to design σ; see a list in Table I for RCBF-based methods
as well as an input-to-state safety-based method that will be
described in Section V. To illustrate robust safety we now
consider a certain class of uncertainty with bounded additive
term and no multiplicative term:

∥f̃(t, x)∥ ≤ p, g̃(t, x) = 0, (12)
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Method Summary σ(t, x, u)
R

C
B

F
[7] Bounded uncertainty: ∥f̃(t, x)∥ ≤ p. ∥∇h(x)∥p

[28]
Bounded uncertainty: ∥f̃(t, x)∥ ≤ p,

κ(h(x))∥∇h(x)∥pcontinuous non-increasing κ with κ(0) = 1

[15]
f̃ is a convex hull of functions ψi(x), i = 1, · · · , q, −mini∈{1,..,q} ∇h(x)ϕi(x)
g̃ is a convex hull of functions ρi(x), i = 1, · · · , q, −mini∈{1,..,q} ∇h(x)ρi(x)u

[12] [f̃ , (g̃ diag(u))⊤]⊤ = ψ(x, u)θ, and ∃A, b s.t. Aθ ≤ b inf
Aθ≤b

∇h(x)ψ(x, u)θ

[13]
Sector bounded nonlinear perturbation at input,

(Lgh(x)− Lgsh(x))u+ θ∥u∥∥Lgsh(x)∥i.e., ∃α, β defining gs = (α+ β)g/2 and θ = (β − α)/(β + α).
[8] f̂ estimates f̃ and bd defines an error band. −∇h(x)f̂(x) + bd(t)

[9]
b(t, x) = Lf̃h(t, x) is Lipschitz in t (constant Lb),

−b̂(t, x) + Lb/kbb̂ estimates b and kb is estimation gain.

[11]
Lf̃h(t, x) = ρ(t, x)θ, ∥θ∥ ≤ θ

min
{
∥ρ(t, x)∥θ,−ρ(t, x)θ̂(t) + ∥ρ(t, x)∥θ̃U (t)

}
θ̂ estimates θ and θ̃U is upper error bound.

[14]
f̃ and g̃ are Lipschitz in x (with Lf̃ , Lg̃),

N∑
i=1

(
λT
i F̃i − ∥λi∥(Lf̃ + Lg̃∥ui∥)∥x− xi∥

)
,

∃N data xi, ui and ẋi so F̃i = ẋi − f(xi) + g(xi)ui λi are Lagrange multipliers.

[16]
ḣn(t, x, u) = 0, ḣ is Lipschitz in x and u

min
i∈[1···N ]

[
−ḣi + Lx∥x− xi∥+ Lu∥u− ui∥

]
(with Lx, Lu), ∃N data xi, ui and ḣi

IS
Sf [25]

Bounded uncertainty, continuously differentiable ∥∇h(x)∥2

ϵ(h(x))ϵ(r) > 0 with dϵ
dr
(r) ≥ 0

TABLE I. A brief summary of robust control barrier function (RCBF) and input-to-state safety (ISSf) based methods for robust safety-critical control,
with the corresponding σ term used in (9), to provide safety with robustness against the uncertainties in (5).

for all t ≥ 0, x ∈ Rn with some bound p ≥ 0. Inspired by
[7], we will use a compensation term of the form:

σ(t, x, u) = ∥∇h(x)∥p, (13)

which, along with (12), implies that (10) is satisfied, and thus
the controller (11) with (13) keeps the set S safe. Results
obtained through Theorem 2 are illustrated using an inverted
pendulum example with a time varying uncertainty.

Example 1. Consider the inverted pendulum in Fig.2(a) that
consists of a massless rod of length l and a concentrated
mass m. The pendulum is actuated with a torque u, while
an unknown external force F (t) is acting horizontally on
the mass. With the angle θ, angular velocity θ̇, and state

x =
[
θ θ̇

]⊤
, the equation of motion of the pendulum reads:

ẋ =

[
x2

g
l sinx1

]
︸ ︷︷ ︸

f(t,x)

+

[
0
1

ml2

]
︸ ︷︷ ︸
g(t,x)

u+

[
0

F (t)
ml cosx1

]
︸ ︷︷ ︸

f̃(t,x)

, (14)

where the parameter g is the gravitational acceleration. All
the parameters used in this example are given in Table II.

The external force F (t) yields an additive uncertainty f̃
(g̃(t, x) ≡ 0). We assume that there exists an upper bound
F such that |F (t)| ≤ F , ∀t ≥ 0, which yields p = F

ml . A
piece-wise continuous force is considered for simulations:

F (t) = F
(
1− 2s(t− 5) + s(t− 10) + s(t− 15)

)
, (15)

where s is the Heaviside function.
We seek to design a control torque u such that we keep

the pendulum upright within a given safe region of angles,

even with the disturbance F (t). The set S is defined using:

h(x) = 1− 1

2
x⊤Ax, A =

[
2q21 q1q2

q1q2 2q22

]
, (16)

with parameters q1, q2 > 0 given in Table II. The resulting
set S is the black ellipse in Fig. 2(b). Note that ∇h(x) = 0
only if x = 0, while h(0)= 1, thus 0 is a regular value of h.

A desired controller is selected as:

kd(x) = ml2 (−g/l sinx1 −Kpx1 −Kdx2) (17)

with parameters Kp,Kd > 0. We use (11) as robust safety-
critical controller with σ in (13) and α(r) = αcr, αc > 0.
Simulation results are depicted in Fig. 2(b) as a blue curve.
The controller successfully keeps the system safe w.r.t. S.

To achieve robust safety, the compensation term σ is
typically designed based on certain properties of f̃ and g̃ such
as the upper bound p in (12); see Table I. In practice, these
properties may be hard to estimate, thus the compensation
(10) required for robust safety may not be realized. For
example, if p in (12) is not known precisely, one may rely
on an estimation p̂ of p instead, with the compensation term:

σ(t, x, u) = ∥∇h(x)∥p̂. (18)

Then, under-approximating the size of the uncertainty may
yield safety degradation, while over-approximation may in-

g = 10 m/s2 m = 2 kg l = 1 m
F = 2 N q1 = 4 1/rad q2 = 2 s/rad
αc = 8 1/s Kp = 0.6 1/s2 Kd = 0.6 1/s

TABLE II. Parameters used for Example 1.
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Fig. 2. (a) Inverted pendulum model. (b) The safe set S (black ellipse) and
simulated trajectories (colored curves) with the controller (11) for different
values of the estimated uncertainty bounds; cf. (13) and (18).

duce conservative behavior that is not captured by Theo-
rem 2. We illustrate these for the inverted pendulum problem.

Example 2. Consider the system in Example 1 and (18).
If the uncertainty is under-approximated (p̂ < p), (10) is not
satisfied and Theorem 2 cannot establish safety guarantees.
Indeed, simulations capture safety degradation where x(t)
leaves S; see the red curve in Fig. 2(b) for p̂ = p/2. If
the uncertainty is over-approximated (p̂ > p), (10) holds and
Theorem 2 implies that the set S is safe. The corresponding
simulation results, depicted in Fig. 2(b) as a green curve for
p̂ = 2p, comply with this. However, we observe conservative
behavior where x(t) evolves inside a smaller subset of S.

IV. PARAMETERIZED BARRIER FUNCTIONS

To quantify safety degradation and conservativeness
emerging from non-ideal compensation of uncertainties, we
extend the RCBF-based safety guarantees by introducing the
concept of parameterized barrier function.

Our key idea is to establish safety guarantees for other
superlevel sets of h than S. Thus, we introduce the set:

S∗ ≜ {x ∈ Rn | H(x, h∗) ≥ 0} , (19)

∂S∗ ≜ {x ∈ Rn | H(x, h∗) = 0} , (20)

where the function H : Rn ×H → R is given as:

H(x, h∗) ≜ h(x)− h∗; (21)

with h defining S in (2) and a parameter h∗ ∈ H⊆ R to be
determined. We have S∗ ⊃ S if h∗ < 0, S∗ = S if h∗ = 0,
and S∗ ⊂ S if h∗ > 0; see Fig. 1. We assume that the set
S∗ is nonempty and has no isolated points for any h∗ ∈ H.

Definition 3. Function H is a parameterized barrier function
(PBF) for (5) on S∗ if h is a RCBF for (5) on S∗ and h∗ is
a regular value of h.

Next, we state conditions for the safety of (5) w.r.t. S∗, to
ultimately capture safety degradation and conservativeness.

Theorem 3. Let H be a PBF for (5) on S∗ with h∗ ∈ H
and σ satisfying:

Lf̃h(t, x) + Lg̃h(t, x)u+ σ(t, x, u) ≥ α(h∗), (22)

for all t ≥ 0, x ∈ ∂S∗ and u ∈ Rm. Then, any controller
u = k(t, x) ∈ KRCBF(t, x) renders (5) safe w.r.t. S∗.

Proof. H is continuously differentiable since h is a RCBF
and h∗ is a constant, and we have:

Ḣ(t, x, u)= ḣn(t, x, u)+Lf̃h(t, x)+Lg̃h(t, x)u. (23)

For any controller u = k(t, x) ∈ KRCBF(t, x) this yields:

Ḣ(t, x, k(t, x)) ≥ −α(h(x)) + σ(t, x, k(t, x))

+Lf̃h(t, x) + Lg̃h(t, x)k(t, x). (24)

Considering x ∈ ∂S∗, i.e., h(x) = h∗, (22) implies that

Ḣ(t, x, k(t, x)) ≥ 0. (25)

Since h∗ is a regular value of h we have that 0 is a regular
value of H . Thus, the rest of the proof follows from [29].

Remark 2. Theorem 3 relaxes the sufficient condition (10),
which is based on certain known properties of the unknown
functions f̃ and g̃, and consequently establishes more accu-
rate safety guarantees. Indeed, Theorem 2 is a special case of
Theorem 3 with h∗ = 0. If (22) holds with h∗ < 0, condition
(10) may not hold and Theorem 2 cannot establish safety.
Still, Theorem 3 provides safety guarantees w.r.t. S∗ ⊃ S,
hence it quantifies safety degradation. If (22) holds with
h∗ > 0, condition (10) also holds, and Theorem 2 establishes
safety w.r.t. S . However, Theorem 3 provides safety w.r.t.
S∗ ⊂ S, hence it quantifies conservativeness.

More accurate safety guarantees can be established for the
compensation term in (18) through Theorem 3 as follows.

Corollary 1. Consider (5) with (12) and (18). Assume that
there exist δ, δ : H → R≥0 such that for any h∗ ∈ H:

δ(h∗) ≤ ∥∇h(x)∥ ≤ δ(h∗), (26)

∀x ∈ ∂S∗. If H is a PBF for (5) on S∗ with h∗ defined by:

α(h∗) =

{
δ(h∗)(p̂− p) if p̂ < p,

δ(h∗)(p̂− p) if p̂ > p,
(27)

then u = k(t, x) ∈ KRCBF(t, x) renders (5) safe w.r.t. S∗.

Proof. The choice (18) of the robustifying term σ implies:

Lf̃h(t, x)+Lg̃h(t, x)u+σ(t, x, u) ≥ ∥∇h(x)∥(p̂−p). (28)

This leads to (22) by using (26) and (27), and the rest of the
proof follows from Theorem 3.

Remark 3. The value of h∗ given by (27) quantifies safety
degradation and conservativeness. If the uncertainty is under-
approximated (p̂ < p), (27) yields h∗ < 0 and S∗ ⊃ S, while
over-approximation (p̂ > p) leads to h∗ > 0 and S∗ ⊂ S.

Example 3. Consider the setup of Example 2. Based on
(16), we get ∇h(x) = −Ax, and it can be shown that (26)
holds for any h∗ ∈ H = (−∞, 1] and for all x ∈ ∂S∗ with

δ(h∗) =
√

2λ(1− h∗) and δ(h∗) =
√

2λ(1− h∗), where
0 < λ ≤ λ are the eigenvalues of A. Since any h∗ < 1 is
a regular value of h, Corollary 1 establishes safety w.r.t. the
set S∗ with h∗ given by (27).

The value of h∗ is depicted in Fig. 3 with dashed line
along with h(x(t)) corresponding to the simulated trajec-
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Fig. 3. The time evolution of the RCBF, h(x(t)), for the simulations of
Example 2, and the safety guarantees established in Example 3 using the
PBF framework in the form of a lower bound h∗ for h(x(t)).

tories in Fig. 2(b). Observe that for the case of under-
approximation (p̂ < p, red) the PBF framework successfully
quantifies safety degradation by a lower bound h∗ < 0 for
h(x(t)), which complies with the simulation results. For the
case of over-approximation (p̂ > p, green) the bound h∗ > 0
captures the safe but conservative system behavior.

V. INPUT-TO-STATE SAFETY VIA PBFS

A well-known existing concept proposed to characterize
safety degradation is input-to-state safety (ISSf) [23]3. In
this section we show that ISSf is a special case of the PBF
framework (restricted to h∗ < 0). Then, we propose a method
that endows ISSf-CBF-based controllers with more accurate
safety guarantees (including h∗ = 0 and h∗ > 0).

In essence, ISSf gives ways to quantify safety degradation
in the presence of a bounded disturbance such as (12). This
inspired PBFs, as ISSf considers safety degradation in the
context of safety guarantees for another superlevel set of h:

SISSf =
{
x ∈ Rn

∣∣h(x)− α−1
(
−ϵ(h(x))p2/4

)
≥0

}
, (29)

with a continuously differentiable function ϵ : H → R>0 that
satisfies dϵ

dr (r) ≥ 0, ∀r ∈ H and α−1 ∈ Ke
∞ [25]. ISSf-CBFs

provide controllers with safety guarantees w.r.t. SISSf :

Definition 4. A continuously differentiable function h is an
input-to-state safe control barrier function (ISSf-CBF) for
(5) if there exist a function α ∈ Ke

∞ such that the following
holds for all t ≥ 0 and x ∈ Rn:

sup
u∈Rm

[
ḣn(t, x, u)

]
> −α(h(x)) +

∥∇h(x)∥2

ϵ(h(x))
. (30)

Remark 4. While the original ISSf formulation in [23] con-
siders dϵ

dr (r) = 0, our work in [5] shows that controller per-
formance can be improved by choosing dϵ

dr (r) > 0 through
experiments with a full-scale automated truck.

Theorem 3 in [25] establishes safety for (5) w.r.t. SISSf ,
if the controller takes values in the non-empty set:

KISSf(t, x) =
{
u ∈ Rm | ḣn(t, x, u) ≥ −α(h(x)) + ∥∇h(x)∥2

ϵ(h(x))

}
.

(31)

3Although ISSf was originally proposed for matched input disturbances,
in this study we extend it for additive type of uncertainties f̃ .

In the next theorem, we link ISSf-CBFs to the PBF frame-
work and establish the same result via PBFs.

Theorem 4. If h is an ISSf-CBF for (5) with (12), then H
is a PBF for this system on S∗ with:

σ(t, x, u) =
∥∇h(x)∥2

ϵ(h(x))
, (32)

and h∗ < 0 being the unique solution of:

h∗ − α−1
(
−ϵ(h∗)p2/4

)
= 0. (33)

Furthermore, any controller u = k(t, x) ∈ KISSf(t, x) ren-
ders (5) safe w.r.t. S∗ = SISSf ⊃ S.

Proof. First, we observe that (33) has a unique solution
h∗ based on the monotonicity properties of α−1 and ϵ.
Furthermore, S∗ = SISSf based on (29) and (33), while the
property ϵ(r) > 0 for all r ∈ H yields h∗ < 0 and S∗ ⊃ S.
Moreover, h∗ is a regular value of h thanks to the strict
inequality in (30); please refer to the proof of Theorem 3
in [25] for details. Hence, comparing (30) with (8) and
(32) establishes that H is a PBF. Finally, by noticing that
∥∇h(x)∥2

ϵ(h(x)) − ∥∇h(x)∥p ≥ − ϵ(h(x))p2

4 , (12) and (32) yield:

Lg̃h(t, x)u+ Lf̃h(t, x) + σ(t, x, u)≥−ϵ(h(x))p2/4. (34)

This inequality and (33) imply that condition (22) in Theo-
rem 3 holds, therefore (5) is safe w.r.t. S∗.

Next, we derive more accurate safety guarantees for ISSf-
CBF-based controllers via the PBF framework.

Corollary 2. Consider (5) with (12) and (32). Assume that
there exists δ : H → R≥0 such that for any h∗ ∈ H:

δ(h∗) ≤ ∥∇h(x)∥, (35)

∀x ∈ ∂S∗. If H is a PBF for (5) on S∗ with h∗ satisfying:

h∗−α−1
(
δ(h∗)2/ϵ(h∗)− δ(h∗)p

)
= 0, (36)

and ϵ(h∗) ≤ 2δ(h∗)/p holds, then u=k(t, x)∈KRCBF(t, x)
renders (5) safe w.r.t. S∗ ⊆ SISSf .

Proof. Based on (12), (32) and ϵ(h∗) ≤ 2δ(h∗)/p, it can be
shown that the following holds for all x ∈ ∂S∗:

Lg̃h(t, x)u+Lf̃h(t, x)+σ(t, x, u) ≥ δ(h∗)2

ϵ(h∗)
−δ(h∗)p. (37)

Using (36) gives (22), and Theorem 3 yields safety w.r.t. S∗.
Moreover, h∗≥α−1

(
− ϵ(h∗)p2

4

)
holds, thus S∗ ⊆ SISSf .

Remark 5. Since S∗ ⊆ SISSf , the PBF framework provides a
tighter safety guarantee than ISSf theory. Indeed, all cases of
h∗ < 0, h∗ = 0 and h∗ > 0 can occur in (36), corresponding
to safety degradation, safety and conservativeness.

Example 4. Consider the inverted pendulum problem in
Example 1. We utilize the controller (11) with σ in (32),
ϵ(r) = ϵ0e

λr, ϵ0 > 0 and λ ≥ 0. Two simulation results
are given in Fig. 4, with ϵ0 = 1, λ = 0 (orange dashed-
dotted curve), and ϵ0 = 1, λ = 4 (brown dashed curve). Both
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Fig. 4. Safety guarantees established in Example 4 for ϵ0 = 1 with λ = 0
and λ = 4 using the ISSf approach (SISSf ) and the PBF framework (S∗).
While the ISSf case (cyan and red ellipses) does not capture the conservative
behavior, the PBF framework yields more accurate safety guarantees (orange
and brown ellipses) for simulated trajectories (orange and brown curves).

simulated trajectories stay within S. Indeed, while the former
parameter pair yields a more conservative result, introducing
λ alleviates the conservativeness as discussed in Remark 4.

Boundaries of the corresponding SISSf sets, calculated by
solving (33), are also plotted by cyan solid and red dashed el-
lipses. As expected, these sets obtained from the ISSf theory
fail to evaluate the conservativeness. The boundaries of the
sets S∗, after solving (36), are plotted by orange and brown
solid lines in Fig. 4. Indeed, they are more accurate bounds
on the trajectories of the system. This shows that the PBF
framework provides flexibility to quantify conservativeness.

VI. CONCLUSION

This work focused on establishing safety guarantees for
control systems with uncertainties. We proposed parameter-
ized barrier functions (PBFs) that generalize existing robust
control barrier function (RCBF) formulations. We high-
lighted that the PBF framework offers flexibility to evaluate
not only safety, but safety degradation and conservativeness
of RCBF-based controllers. Moreover, we showed that input-
to-state safety (ISSf) can be viewed as a special case of the
PBF framework, and we derived improved safety guarantees
for ISSf-CBF-based controllers. Future research may extend
the PBF framework to sampled-data systems to analyze
robustness against inter-sampling effects in continuous-time.
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