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Abstract— This paper presents a novel stabilizing control
design strategy for driftless control-affine systems with an
arbitrary degree of nonholonomy. The proposed approach
combines a time-varying control component that generates
motion in the direction of prescribed Lie brackets with a state-
dependent component, ensuring the stability of the equilibrium.
The coefficients of the state-dependent component are derived
in such a way that the trajectories of the resulting closed-
loop system approximate the gradient flow of a Lyapunov-like
function. In the case of a quadratic Lyapunov function, this
guarantees the exponential stability of the equilibrium. The
usability of this approach is demonstrated on general two-input
systems having the fourth degree of nonholonomy. The proposed
stabilization scheme is illustrated with several examples.

I. INTRODUCTION

In recent decades, an increasing body of research has been
dedicated to control problems for nonholonomic systems.
These systems are characterized by non-integrable state
and velocity constraints, which significantly complicate the
development of control strategies. In practice, such systems
describe the motion of many important engineering objects,
such as mobile robots, wheeled systems, autonomous under-
water vehicles, robotic manipulators, rolling bodies, etc. [1].
A large number of fundamental results exist on the control
of nonholonomic systems, with comprehensive reviews of
the main approaches provided, e.g., in [2]–[5]. It is worth
noting that, as demonstrated in Brockett’s seminal work [6],
nonholonomic systems cannot be stabilized using a smooth
time-invariant feedback law. While they can be stabilized
using a time-varying feedback law [7] or a discontinuous
time-invariant control [8], to date, there is no universally
applicable methodology for stabilizing control design for
general nonholonomic systems.

A wide range of approaches for controlling general non-
holonomic systems relies on Lie-algebraic techniques. An
essential assumption in this context is that the system’s vector
fields, along with their iterated Lie brackets, span the entire
tangent space at each point of the state space. Several authors
have leveraged this assumption to devise time-periodic con-
trol laws, aiming to make the trajectories of nonholonomic
systems approximate those of an extended system. For in-
stance, an algorithm for computing time-periodic feedback
controls to approximate collision-free paths was introduced
in [9]. Other studies, such as [10], [11], have exploited an
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unbounded sequence of oscillating controls with unbounded
frequencies to approximate the trajectories of the extended
system. In [12], it was shown that the solutions of oscillating
systems can be approximated by the solutions of an averaged
one, provided that the control frequencies tend to infinity. An
approach for generating admissible paths of nonholonomic
systems via solutions of an auxiliary parabolic PDE was
described in [13], and auxiliary energy reduction technique
was applied to the motion planning problem with homotopy
class constraints in [14]. The complexity issue for open-loop
controls that generate motion in the direction of higher-order
Lie brackets was addressed in [15], [16] for systems with
two inputs. A significant number of publications provide
stabilization strategies for three-dimensional nonholonomic
systems and multidimensional chained-form systems, as seen
in [17]–[22]. However, the stabilization of general classes
of systems with arbitrary degrees of nonholonomy remains
an open challenge.

In this paper, we address the stabilization problem for
high-order nonholonomic systems. Our control design builds
upon the concept introduced in [23] for the controllability
rank condition without iterated Lie brackets. This concept
was further extended in [5], [24], [25] to encompass second-
degree nonholonomic systems, trajectory tracking, and ob-
stacle avoidance problems. The primary contribution of
the present paper lies in providing time-varying feedback
functions that ensure the exponential stability of the given
equilibrium for systems with an arbitrary degree of non-
holonomy. The developed approach is versatile in that it can
be combined with known open-loop controls, which steer
the system’s motion towards the direction of predetermined
Lie brackets. Once such open-loop controls are provided, we
combine them with state-dependent coefficients defined by
the system’s vector fields and their iterated Lie brackets. In
particular, we illustrate the proposed scheme with general
two-input systems having a degree of nonholonomy of 4.
Additionally, this paper presents a modified algorithm for
computing the state-dependent coefficients that simplifies
control design compared to the approach in [5], [24], [25],
[26]. A key aspect of this modification involves replacing
the matrix of the system’s vector fields and their Lie brackets
with a new one featuring a sparse structure.

The rest of this paper is organized as follows. Section II
contains the problem statement along with necessary no-
tations and definitions. The main results are presented in
Section III and proved in Section V. Section IV illustrates
the stabilization of the kinematic model of a car with two
off-hooked trailers and a model nilpotent system.
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II. PROBLEM STATEMENT, NOTATIONS, DEFINITIONS

Consider a driftless control-affine system

ẋ =

m∑
k=1

ukfk(x), x ∈ D ⊂ Rn, u ∈ Rm, (1)

where x = (x1, ..., xn)
⊤ is the state, u = (u1, ..., um)⊤ is

the control, m < n, 0 ∈ D, and fk : D → Rn are smooth.
We focus on constructing a feedback law u = h(t, x), which
exponentially stabilizes the equilibrium x∗ = 0 of (1), i.e.
ensures that the solutions x(t) of the closed-loop system
with x(0) from a given neighborhood of x∗ satisfy ∥x(t)∥ =
O(e−λt) as t → ∞, with some λ > 0.

To classify systems (1), we follow the line of [27].
Definition 1: Let ∆1 = span{f1, . . . , fm}, ∆i = ∆i−1 +

[∆i−1,∆i−1], where [∆i−1,∆i−1] = span{[g, h] : g ∈
∆i−1, h ∈ ∆i−1} for i = 2, 3, ... (here, and in the sequel,
[g, h](x) = ∂h(x)

∂x g(x) − ∂g(x)
∂x h(x) denotes the Lie bracket

of g and h). A number ν ∈ N is the degree of nonholonomy
of (1) at x ∈ D, if ∆ν−1(x) ̸= ∆ν(x) = ∆ν+1(x) = ... .
In the sequel, we assume dim (∆ν(x)) = n in D, so that (1)
is controllable. Similar to [8], [23], we exploit the concept
of sampling. For a given ε > 0, we define a partition πε of
[0,+∞) into Tj=[tj , tj+1), tj=εj, j=0, 1, . . . .

Definition 2: Given a feedback u = h(t, x), h : [0,+∞)×
D → Rm, ε > 0, and x0 ∈ D, a πε-solution of (1) corre-
sponding to x0 and h(t, x) is a continuous function x(t) ∈ D
defined for t ≥ 0 satisfying the initial condition x(0) = x0

and the differential equations ẋ =
∑m

k=1 hk(t, x(tj))fk(x),
t ∈ (tj , tj+1), for each j = 0, 1, 2, . . . .
Let us mention that sampled data techniques are widely used
for controlling nonholonomic systems, see, e.g., [28], [29].
In our paper, we propose a hybrid approach in which the
state-dependent control components remain constant over the
ε-time interval and depend on the state of the system at jε.
Meanwhile, the time-dependent control components evolve
continuously.

Notations: ℓ = 1, ν – the integer ℓ varies from 1 to ν ∈ N;
Bδ(x) and Bδ(x) – the open and the closed δ-neighborhoods
of an x ∈ Rn with δ > 0, respectively;
Iℓ = (i1, . . . , iℓ) – ℓ-dimensional multi-index;
fIℓ(x) =

[
fi1 ,

[
fi2 ,

[
. . .

[
fiℓ−1

, fiℓ
]]]]

(x) – ℓ-th order it-
erated Lie bracket; for I1∈{1, ...,m}, fI1 is a vector field
of (1); L∞([0, ϵ];Rm) – the class of essentially bounded
measurable functions on [0, ε] with values in Rm.

III. STABILIZING CONTROLLERS FOR SYSTEMS WITH AN
ARBITRARY DEGREE OF NONHOLONOMY

A. Control strategy

In this section, we propose a stabilizing control design
methodology for a ν-th degree nonholonomic system (1),
ν ≥ 2. Suppose that the vector fields of (1) satisfy the
controllability rank condition, i.e. there are sets of multi-
indices Sℓ⊆{1, ...,m}ℓ, ℓ = 1, ν, s. t.

∑ν
ℓ=1 |Sℓ| = n, and

span
{
fIℓ(x) | Iℓ ∈ Sℓ, ℓ = 1, ν

}
= Rn for all x ∈ D. (2)

Equivalently, condition (2) can be formulated as

Assumption 1: There are sets of multi-indices Sℓ ⊆
{1, ...,m}ℓ, ℓ = 1, ν , |Sℓ| = nℓ ∈ N, s. t.

∑ν
ℓ=1 nℓ = n, and

F(x) =
(
fIℓ(x)

)
Iℓ∈Sℓ,ℓ=1,ν

is nonsingular matrix in D.
For the sake of convenience, we assume that (2) contains

only left-iterated Lie brackets; however, this assumption is
not restrictive since any iterated Lie bracket can be repre-
sented as a linear combination of left-iterated Lie brack-
ets [30]. The main idea behind our control design approach
is to reduce the stabilization problem for (1) to constructing
input functions that generate motion along the required
Lie brackets. Namely, consider a parameterized time-varying
feedback law of the form u = uε(t, x) with

uε(t, x) =

ν∑
ℓ=1

ε
1
ℓ−1

∑
Iℓ∈Sℓ

ϕ
(ε)
Iℓ

(t, aIℓ(x)). (3)

Here, ε > 0 is a parameter, ϕ
(ε)
Iℓ

: R+ × R → Rm

are time-varying components, and aIℓ : D → R are
state-dependent coefficients. The components of the vec-
tors ϕ

(ε)
Iℓ

are denoted by ϕ
(ε,k)
Iℓ

, i.e., for any α ∈ R,
ϕ
(ε)
Iℓ

(t, α)=(ϕ
(ε,1)
Iℓ

(t, α), ..., ϕ
(ε,m)
Iℓ

(t, α))⊤∈Rm.
Our main goal is to prove that, under a proper choice of in-

puts ϕ(ε,k)
Iℓ

(t, α), system (1) can be stabilized by controls (3)
with the state-dependent coefficients aIℓ(x) defined similarly
to the approach of [5], [23], but for an arbitrary degree of
nonholonomy.

B. Construction of state-dependent coefficients

Let us denote by x(t;x0, u(·)), t ∈ [0, ε] the solution of
system (1) corresponding to the initial condition x(0) = x0 ∈
D and admissible control u(·) ∈ L∞ ([0, ε];Rm).

Assume for a moment that there is a family of param-
eterized inputs ϕ

(ε)
Iℓ

(t, α), Iℓ ∈ Sℓ, ε > 0, α ∈ R, which
satisfies:
P1) ϕ

(ε)
Iℓ

(t, α) are continuous in (t, α) ∈ R+×R, ε-periodic
in t for each fixed α, and there are constants CIℓ > 0

such that ∥ϕ(ε)
Iℓ

(t, α)∥ ≤ CIℓ |α|1/ℓ for all t ≥ 0, α ∈ R;
P2) there exists a δ̂ > 0 such that, for any column vector

ᾱ = (αIℓ)
T
Iℓ∈Sℓ,ℓ=1,ν

∈ Bδ̂(0) ⊂ Rn, the solution
x(t;x0, u(·)) of system (1) with x0 ∈ D and the control

u(t) =

ν∑
ℓ=1

ε
1
ℓ−1

∑
Iℓ∈Sℓ

ϕ
(ε)
Iℓ

(t, αIℓ) (4)

is represented at time t = ε as

x(t;x0, uε(t, ᾱ)) = x0 + εF(x0)ᾱ+Ω(ε, x0, ᾱ), (5)

provided that ε > 0 is small enough, where the matrix
F(x0) is given in Assumption 1 and Ω(ε, x0, ᾱ) ∈ Rn.

P3) there exist ϖ>0, η>0, and ε0>0 such that the re-
mainder of (5) satisfies the estimate ∥Ω(ε, x0, ᾱ)∥ ≤
ϖε1+η∥ᾱ∥ for all x0 ∈ D, ᾱ ∈ Bδ̂(0) ⊂ Rn, ε ∈
(0, ε0].

We will demonstrate that the construction of control func-
tions outlined above can be applied to develop explicit sta-
bilizing control schemes for certain classes of nonholonomic
systems.



Theorem 1: Assume that the vector fields f1, ..., fm :
D → Rn satisfy the rank condition (2) with some ν ≥ 2,
D is a domain containing the point 0 ∈ Rn, and the vector
functions ϕ

(ε)
Iℓ

: R+ × R → Rm satisfy conditions P1)–P3).
Let the feedback control be defined by (3) with the column
vector a(x) = (aIℓ(x))

⊤
Iℓ∈Sℓ,ℓ=1,ν

∈ Rn obtained from

a(x) = −γF−1(x)x, γ > 0. (6)

Then for any δ > 0 such that Bδ(0) ∈ D and any γ̄ ∈ (0, γ),
there exists an ε̄ > 0 such that, for any x0 = x(0) ∈ Bδ(0)
and ε ∈ (0, ε̄], the corresponding πε-solution x(t) of the
closed-loop system (1), (3) satisfies the properties

∥x(t)∥=O(e−γ̄t/ν), ∥uε(t, x)∥=O(e−γ̄t/ν2

) as t→∞. (7)
The proof of Theorem 1 is given in Section V.
Remark 1: In general, formulas (6) can be extended

to a(x) = −γF−1(x)∇V (x), where V satisfies
the estimates α1∥x−x∗∥2m≤V (x)≤α2∥x−x∗∥2m,
β1V (x)2−

1
m≤∥∇V (x)∥2≤β2V (x)2−

1
m ,

∥∥∥∂2V (x)
∂x2

∥∥∥ ≤
µV (x)1−

1
m , with some x∗ ∈ D constants α1, α2, β1, β2, µ >

0, and m ≥ 1. Such a(x) ensures an exponential decay rate
of the πε solutions any given x∗ ∈ D for m = 1 and a
polynomial decay rate for m > 1. This can be proved by
exploiting the estimation techniques from [31].

C. Construction of time-dependent inputs

1) General strategy: Theorem 1 gives a constructive so-
lution of the stabilization problem for general nonholonomic
systems, provided that there exist time-varying inputs satis-
fying properties P1)–P3). For the construction of such inputs,
some known results can be applied [5], [10], [11], [24], [32].
In this section, we discuss possible explicit approaches for
the construction of time-varying inputs.

2) Nonholonomic systems with two inputs: The class of
systems with two inputs is of special interest in the literature:

ẋ = u1f1(x) + u2f2(x), x ∈ Rn, u ∈ R2. (8)

There are several approaches devoted to the steering problem
for (8), e.g., [15], [16]. Although the results of the above-
mentioned papers do not yield a straightforward solution
to the stabilization problem, they provide constructive ways
for defining control inputs which generate the motion along
a given Lie bracket. In this subsection, we demonstrate
an implementation of such time-varying inputs into control
strategies of the form (4).

To simplify presentation, we restrict this brief paper to the
consideration of left-iterated Lie brackets of length ν ≤ 4. It
is clear that the constant controls

ϕ
(ε,1)
1 (t, α)=ϕ

(ε,2)
2 (t, α)=α, ϕ

(ε,2)
1 (t, α)=ϕ

(ε,1)
2 (t, α)=0

(9)
can be used to steer (8) along the vector fields fI , I ∈ {1, 2}:

x(ε;x0, ϕ
(ε)
1 (·, α)) = x0 + εαf1(x

0) +O(ε2),

x(ε;x0, ϕ
(ε)
2 (·, α)) = x0 + εαf2(x

0) +O(ε2) for small ε > 0.

Moreover, by computing the Chen–Fliess expansion with

ϕ
(ε,1)
12 (t, α)=

√
4κ12π|α| cos (2κ12πt/ε) ,

ϕ
(ε,2)
12 (t, α)=

√
4κ12π|α|sign(α) sin (2κ12πt/ε) ,

(10)

ϕ
(ε,1)
112 (t, α)= (4κ112π)

2
3 |α|

1
3 cos (2κ112πt/ε) ,

ϕ
(ε,2)
112 (t, α)=− 2 (4κ112π)

2
3 |α|

1
3 sign(α) cos (4κ112πt/ε) ,

(11)

ϕ
(ε,1)
1112(t, α)=2 (2κ1112π)

3
4 |α|

1
4 cos (2κ1112πt/ε) ,

ϕ
(ε,2)
1112(t, α)=−6 (2κ1112π)

3
4 |α|

1
4 sign(α) sin (6κ1112πt/ε) ,

(12)
we obtain, for small ε > 0:

x(ε;x0, ε−
1
2 ϕ

(ε)
12 (·, α)) = x0 + εα[f1, f2](x

0) +O(ε
3
2 ),

x(ε;x0, ε−
2
3 ϕ

(ε)
112(·, α)) = x0 + εα[f1, [f1, f2]](x

0) +O(ε
4
3 ),

x(ε;x0, ε−
3
4 ϕ

(ε)
1112(·, α)) = x0 + εα[f1, [f1, [f1, f2]]](x

0) +O(ε
5
4 ).

Here, κ12, κ112, and κ1112 are arbitrary nonzero integers. To
ensure P3), we need the non-resonance assumption.

Assumption 2: There are no resonances of order up to
4 in each of the following tuples: (κ12, κ112, κ1112),
(κ12, 2κ112, κ1112), (κ12, κ112, 3κ1112), and
(κ12, 2κ112, 3κ1112).

Theorem 1 directly implies the following result.
Theorem 2: Let the rank condition (2) hold with D = R5,

ν = 4, S1 = {1, 2}, S2 = {(1, 2)}, S3 = {(1, 1, 2)}, S4 =
{(1, 1, 1, 2)}:

rank {f1, f2, [f1, f2], [f1, [f1, f2]], [f1, [f1, [f1, f2]]]} = 5.
(13)

Suppose that the controls u1, u2 are defined by formulas (3)
with ν = 4 and a(x) = −γx, where the time-varying in-
puts ϕ(ε)

1 (t, α), ϕ(ε)
12 (t, α), ϕ

(ε)
112(t, α), ϕ

(ε)
1112(t, α) are defined

by (9), (10), (11), (12), respectively, and Assumption 2 is
satisfied. Then the assertion of Theorem 1 holds.

D. Simplified formulas for state-dependent coefficients

Suppose that, in each set of columns fIℓ of the matrix
F(x) from Assumption 1, there is an nℓ × nℓ block, nℓ =
|Sℓ|, with nonzero determinant. Without loss of generality,
assume that these blocks are located on the main diagonal
of F(x), which can always be achieved by an appropriate
change of variables. Then, we introduce the modified rank
condition.

Assumption 3: There exist Sℓ ⊂ {1, . . . ,m}ℓ, ℓ = 1, ν,

|Sℓ| = nℓ ∈ N, such that
ν∑

ℓ=1

nℓ = n, and the following nℓ×

nℓ matrices are nonsingular in D: F̃ℓ(x) =
(
f ℓ
Iℓ
(x)

)
Iℓ∈Sℓ

,

where the vectors f ℓ
Iℓ

: Rn → Rnℓ are defined as f ℓ
Iℓ
(x) =(

fIℓ,nℓ−1+1(x), . . . , fIℓ,nℓ−1+nℓ
(x)

)⊤
, ℓ = 1, ν, with fIℓ,j

standing for the j-th element of fIℓ , n0 := 0.
Assumption 3 allows us to exploit the matrix

F̃(x) =

 F̃1(x) 0 . . . 0
...

...
. . . . . .

0 0 0 F̃ν(x)

 , (14)

which is simpler to invert than the matrix F(x).
This property may be particularly advantageous for high-

dimensional systems, where employing matrix F(x) results



Fig. 1. Time plots of the norm of the solution (blue) of system (16), (17),
(18) and the function ∥x(0)∥e−γt/4 (red).

in unwieldy expressions for a(x). The principal conclusion of
this section is that, under certain mild additional assumptions,
the vector of state-dependent coefficients can be expressed as

a(x) = −γF̃−1(x)x, γ > 0. (15)

Theorem 3: Assume that f1, ..., fm : D → Rn satisfy
Assumption 3 with some ν ≥ 2, D is a domain containing
the point 0 ∈ Rn, and the vector functions ϕ

(ε)
Iℓ

: R+×R →
Rm satisfy conditions P1)–P3). Suppose also that
P4) ∥F(x)−F̃(x)∥≤c∆∥x∥ for all x∈D, with some c∆≥0.
Let the feedback control be defined by (3) with a(x) defined
by (15). Then there exist δ > 0 and ε̄ > 0 such that, for any
x0 = x(0) ∈ Bδ(0) and ε ∈ (0, ε̄], the corresponding πε-
solution x(t) of the closed-loop system (1), (3) satisfies (7).
The proof of Theorem 3 is outlined in Section V-B.

IV. EXAMPLES

A. Car with two trailers model

Consider the kinematic model of a car with two off-hooked
trailers presented, e.g., in [26]:

ẋ = u1f1(x) + u2f2(x), x ∈ R5, u ∈ R2, (16)

f1(x) = (cosx3, sinx3, 0, sin(x3 − x4), f15(x))
⊤,

f2(x) = (0, 0, 1,−d0 cos(x3 − x4), f25(x))
⊤,

f15(x) = sin(x3 − x5) + (d1 + 1) sin(x4 − x3) cos(x4 − x5),

f25(x) = d0(d1 + 1) cos(x3 − x4) cos(x4 − x5)− d0 cos(x3 − x5).

Here, (x1, x2) represents the coordinates of the center of
the car, x3, x4, and x5 represent the angles between the
horizontal line and longitudinal axes of the car, the first,
and the second trailers, respectively, u1 denotes the driving
velocity, and u2 stands for the steering velocity of the front
axle, and d0, d1 are length parameters. Stabilizing controls
for (16) were proposed in [26] through a transformation to
privileged coordinates and the construction of a nilpotent
quasihomogeneous approximate system. In this section, we
demonstrate the exponential stabilizability of system (16)
using the controls outlined in Theorems 2 and 3. It is
noteworthy that, unlike the results presented in [26], this
approach does not require any specific (and sometimes cum-
bersome) transformations. In this case, condition (2) holds
in a neighborhood of the origin with ν = 4, S1 = {1, 2},
S2 = {(1, 2)}, S3 = {(1, 1, 2)}, S4 = {(1, 1, 1, 2)}, and the
5× 5 matrix F(x) has the form

Fig. 2. Time plots of the norm of the solution of system (16), (17), (15)
with the sparse matrix F̃ given by (19).


cosx3 0 sinx3 0 0
sinx3 0 − cosx3 0 0

0 1 0 0 0
sin(x3 − x4) −d0 cos(x3 − x4) f34(x) f44(x) f54(x)

f15(x) f25(x) f35(x) f45(x) f55(x)

 ,

where the expressions for fij(x) can be found in [26].
We apply the functions ϕ

(ε)
1 , ϕ(ε)

2 , ϕ(ε)
12 , ϕ(ε)

112, ϕ(ε)
1112 given

by (9)–(12) to satisfy conditions P1)–P3). Then, the control
design scheme proposed in Theorem s 1 and 2 results in the
following time-varying feedback law of the form (3):

uε(t, x) =ϕ
(ε)
1 (t, a1(x))+ϕ

(ε)
2 (t, a2(x))+ε−

1
2ϕ

(ε)
12 (t, a12(x))

+ ε−
2
3ϕ

(ε)
112(t, a112(x)) + ε−

3
4ϕ

(ε)
1112(t, a1112(x)),

(17)
a(x) = −γF−1(x)(x1, x2, x3, x4, x5)

⊤, γ > 0. (18)

According to Theorem 1, the solutions of system (16), (17),
(18) exponentially tend to 0 with the decay rate ∥x(t)∥ =
O
(
e−γ̄t/4

)
as t → ∞, where γ̄ can be made arbitrary close

to γ by choosing a small enough ε. Fig. 1 illustrates the
behavior of solutions of system (16), (17), (18). In particular,
it depicts time-plots of the norm of the solutions together
with the graph of ∥x(0)∥e−γt/4. The results of numerical
simulations illustrate the exponential convergence of the
norm to 0, confirming the theoretical estimate provided by
Theorem 1. For this example, we take the mechanical
parameters d0 = d1 = 0.1, and the control parameters
ε = 0.1, γ = 3, κ1112 = 5, κ112 = 6, κ12 = 8, with
the initial condition x(0) =

(
1,−1, π

4 ,
π
4 ,−

π
4

)⊤
. Let us

underline that the parameters κ12, κ112, κ1112 are chosen
according to the non-resonance Assumption 2. To illustrate
the results of Section III-D, consider the matrix

F̃(x) =


cosx3 0 0 0 0

0 0 − cosx3 0 0
0 1 0 0 0
0 0 0 f44(x) 0
0 0 0 0 f55(x)

 . (19)

The matrix F̃(x) can be represented in the block-diagonal
form (14) with the change of variables x̃1 = x1, x̃2 =
x3, x̃3 = x2, x̃4 = x4, x̃5 = x5. According to Theo-
rem 3, we can take controls of the form (16) with a(x̃) =
−γF−1(x̃)(x̃1, x̃2, x̃3, x̃4, x̃5)

⊤. Fig. 2 presents the time plot
of the norm of the solution of system (16), (17) with F̃(x)
and the same parameters as before. It should be noted that
the solution exhibits exponential convergence, albeit slower
compared to functions (18). Nevertheless, the main advan-
tage of the proposed modification is simpler computations,
which are especially beneficial for high-dimensional systems.



Fig. 3. Time plot of the norm of the solution of system (20), (21) (blue)
and the function ∥x(0)∥e−γt/4 (red).

B. Nilpotent system with the growth vector r = (2, 3, 5, 6)

Consider the nonlinear system presented in [15]:

ẋ = u1f1(x) + u2f2(x), x ∈ R6, u ∈ R2, (20)

f1(x) = (1, 0,−x2,−x1x2,−x2
2, (x

2
1 − x2

2)x2)
⊤,

f2(x) = (0, 1, x1, x
2
1, x1x2, (x

2
2 − x2

1)x1)
⊤.

For all x ∈ R6, system (20) satisfies the rank condition (2):

span {f1(x), f2(x), [f1, f2](x), [f1, [f1, f2]](x),
[f2, [f2, f1]](x), [f1, [f1, [f1, f2]]](x)} = R6,

so that ν = 4, S1 = {1, 2}, S2 = {(1, 2)}, S3 =
{(1, 1, 2), (2, 2, 1)}, S4 = {(1, 1, 1, 2)}. Applying the con-
struction of Theorem 1, we obtain the following feedback
law for system (20):

uε(t, x) =ϕ
(ε)
1 (t, a1(x))+ϕ

(ε)
2 (t, a2(x))+ε−

1
2ϕ

(ε)
12 (t, a12(x))

+ε−
2
3ϕ

(ε)
112(t, a112(x))+ε−

2
3ϕ

(ε)
221(t, a221(x))

+ε−
3
4ϕ

(ε)
1112(t, a1112(x)),

(21)
where ϕ

(ε)
1 , ϕ

(ε)
2 , ϕ

(ε)
12 , ϕ

(ε)
112, ϕ

(ε)
1112 are defined

in (9)–(12), the function ϕ
(ε)
221 is obtained from (11)

by interchange of indices 1 ↔ 2, and a(x) =
(a1(x), a2(x), a12(x), a112(x), a221(x), a1112(x))

⊤,
a1(x) = −γx1, a2(x) = −γx2, a12(x) = −γ

2x3,
a112(x) = γ

(
1
2x1x3 − 1

3x4

)
, a221(x) = γ

(
1
3x5 − 1

2x2x3

)
,

a1112(x) = − γ
24

(
6(x2

1 − x2
2)x3 − 8x1x4 + 8x2x5 − 3x6

)
.

Fig. 3 shows the time plot of the norm of the solution x(t)
to system (20), (21) for x(0) = (1,−1, 1,−1, 1,−1)⊤ and
parameters γ = 3, ε = 0.1, κ12 = 3, κ112 = 1, κ221 = 5,
κ1112 = 13. The plot of the function ∥x(0)∥e−γt/4 is shown
in red. The results of numerical simulations illustrate the
accuracy of the decay rate estimate from Theorem 1.

V. PROOF OF THE MAIN RESULT

A. Proof of Theorem 1

For a given δ > 0 such that D0 = Bδ(0) ⊂ D, we define
Mf , MF , L > 0, such that, for all x ∈ D0, i = 1,m,
∥F−1(x)∥ ≤ MF ,

∥∥∥∂fi(x)
∂x

∥∥∥ ≤ L, ∥fi(x)∥ ≤ Mf . The
above constants exist under the assumptions of Theorem 1
due to continuity of the corresponding maps. To simplify the
presentation, we denote the solution of system (1) with the
initial condition x0 and control uε(t, x0) at time t as x(t),
i.e x(t) := x(t;x0, u(·)).

In the first step, we estimate the norm of the
control (3) and of the vector x(t) on [0, ε], for

any ε>0. With this purpose, consider the function
U(x0):=

∑ν
ℓ=1 ε

1
ℓ−1

∑
Iℓ∈Sℓ

∥ϕ(ε)
Iℓ

(t, aIℓ(x
0))∥, which is

defined for any x0∈D. From P1) and the Hölder inequality,

U(x0) ≤
ν∑

ℓ=1

ε
1
ℓ−1∥a(x0)∥1/ℓCℓ, (22)

where Cℓ =
√
m
(∑

Iℓ∈Sℓ

(
CIℓ

) 2ℓ
2ℓ−1

)1− 1
2ℓ

> 0. Thus, for
all t ≥ 0, ε > 0, x0 ∈ D,

∥uε(t, x0)∥ ≤
ν∑

ℓ=1

ε
1
ℓ−1∥a(x0)∥1/ℓCℓ. (23)

Let d > 0 be the distance from the set D0 to the boundary
of D, and let ε1 > 0 be any number satisfying the inequality

Mf

√
m

ν∑
ℓ=1

ε
1
ℓ
1 ∥a(x)∥1/ℓCℓ < d for all x ∈ D0. (24)

If D = Rn, ε1 > 0 can be arbitrary. Then, for all t ∈ [0, ε],

∥x(t)− x0∥ ≤
∫ t

0

m∑
k=1

∥fk(x(t))∥|uε
k(x

0, t)|dt

≤ Mf

√
m

ν∑
ℓ=1

ε
1
ℓ ∥a(x0)∥1/ℓCℓ < d.

(25)

This means that, for any x0 ∈ D0 and ε ∈ (0, ε1], the
solution x(t) of system (1) with control uε(t, x0) of the
form (3) satisfies the property x(t) ∈ D for all t ∈ [0, ε1].

Let us analyze property P2) with ᾱ = a(x0) defined
by (6). Together with P3), this implies that

∥x(ε)∥ = ∥x0 + εF(x0)a(x0) + Ω(ε, x0, a(x0))∥
= ∥x0(1− εγ) + Ω(ε, x0, ᾱ)∥
≤ ∥x0(1− εγ)∥+ϖγMFε

1+η∥x0∥.

Given any γ̄ ∈ (0, γ), let ε2 be such that ε2 <

min
{
ε1,

1
γ ,

1
ϖMF

(
1− γ̄

γ

)}
. Then, for any ε ∈ (0, ε2],

∥x(ε)∥ ≤ ∥x0∥(1 − γ̄ε). Repeating the above argumen-
tation for x(jε) ∈ D0 for j = 1, 2, . . . , we conclude
that x(t) ∈ D for all t ≥ 0, and ∥x(jε)∥ ≤ ∥x0∥(1 −
γ̄ε)j ≤ ∥x0∥e−γ̄jε for any j ∈ N. Together with esti-
mate (25) this implies that, for any j ∈ N, t ∈ [j, (j +
1)ε], ∥x(t)∥ ≤ ∥x0∥e−γ̄jε +Mf

√
mU(x(jε))ε. From (22),

U(x(jε))ε ≤
∑ν

ℓ=1 ε
1
ℓ ∥a(x(jε)))∥1/ℓCℓ ≤ Cu∥x(jε)∥

1
ν ≤

Cu∥x0∥ 1
ν e−

γ̄jε
ν , where Cu =

∑ν
ℓ=1(δ)

1
ℓ−

1
ν M

1
ℓ

FCℓ. Thus,
for t → ∞,

∥x(t)∥ = O
(
e−γ̄t/ν

)
and ∥uε(t, x)∥ = O

(
e−γ̄t/ν2

)
,

so that the assertion of Theorem 1 holds with ε̄ = ε2.

B. Proof of Theorem 3

This result is proved similarly to Theorem 1. The main
difference concerns estimating the remainder Ω in repre-
sentation (5). In this case, we have ∥x(ε)∥ = ∥x0 +
εF̃(x0)a(x0)+ε(F(x0)−F̃(x0))a(x0)+Ω(ε, x0, a(x0))∥ ≤
∥x0∥(1− εγ) + c∆γε∥x0∥2 +ϖγMFε

1+η∥x0∥.



Assuming 0 < δ < 1
c∆

(
1− γ̂

γ

)
with any γ̂ ∈ (0, γ),

we get ∥x(ε)∥ ≤ ∥x0∥(1 − εγ̂) + ϖγMFε
1+η∥x0∥. The

remainder of the proof proceeds along the same line as the
proof of Theorem 1.

VI. CONCLUSIONS

The main theoretical contribution of this work, summa-
rized in Theorem 1, provides an explicit design for time-
varying controllers that exponentially stabilize the equilib-
rium of a general driftless control-affine system. Unlike
previous papers [5], [23]–[26], the controllability rank condi-
tion (2) incorporates Lie brackets of arbitrary length, making
the proposed control strategies suitable for systems with
higher degrees of nonholonomy. Our general construction
is adapted for a specific class of two-input systems with
iterated Lie brackets up to length 4, as detailed in Theorem 2.
A significant refinement involves a control design scheme
using a sparse matrix, which encodes the dominant compo-
nents of the vector fields from the controllability conditions,
leading to a simplified formula for control coefficients (15)
in Theorem 3. Numerical simulations, presented for a car
model with off-hooked trailers in Section IV, confirm the
efficiency of both design schemes – using the original
vector fields and the sparse matrix – as shown in Figs. 1
and 2. Consequently, the simplified design from Theorem 3
shows potential benefits for future applications to large-
scale systems by exploiting the sparsity of the corresponding
matrix F̃ . The exponential envelopes, illustrated in Figs. 1
and 3, demonstrate the agreement of theoretical decay rate
estimates (7) with numerical simulation, allowing for the
tuning of the gain parameter γ in equations (6) and (15) to
achieve the desired exponential behavior of the closed-loop
system with an appropriate choice of the small parameter ε. It
is essential to note that all proofs and numerical simulations
are conducted for πε-solutions of the closed-loop system. A
thorough analysis of the effects of sampling, along with the
question of whether the proposed control design methodol-
ogy ensures the stabilization of classical solutions, is left for
future research.
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