
An Improved Data Augmentation Scheme for Model Predictive Control
Policy Approximation

Dinesh Krishnamoorthy Senior Member

Abstract— This paper considers the problem of data genera-
tion for MPC policy approximation. Learning an approximate
MPC policy from expert demonstrations requires a large data
set consisting of optimal state-action pairs, sampled across
the feasible state space. Yet, the key challenge of efficiently
generating the training samples has not been studied widely.
Recently, a sensitivity-based data augmentation framework for
MPC policy approximation was proposed, where the parametric
sensitivities are exploited to cheaply generate several additional
samples from a single offline MPC computation. The error due
to augmenting the training data set with inexact samples was
shown to increase with the size of the neighborhood around
each sample used for data augmentation. Building upon this
work, this letter paper presents an improved data augmentation
scheme based on predictor-corrector steps that enforces a user-
defined level of accuracy, and shows that the error bound
of the augmented samples are independent of the size of the
neighborhood used for data augmentation.

I. BACKGROUND

A. Pre-computed control policies

Implementing optimization-based controllers such as
model predictive control (MPC) for fast dynamic systems
with limited computing and memory capacity has motivated
research on pre-computing and storing the optimal control
policy offline such that it can be used online without recom-
puting the optimization problem. This was first studied under
the framework of explicit MPC for linear time-invariant
systems [1]. However, the synthesis of the explicit MPC
law does not scale well, since the number of piecewise
affine polyhedral regions required to capture the MPC control
law can increase exponentially with problem size. Extension
to nonlinear systems and economic objectives are also not
trivial.

An alternative approach is to approximate the optimal
policy using parametric function approximators, such as deep
neural networks, which are broadly studied under the context
of learning from demonstrations. The idea of approximating
an MPC policy using neural networks was first proposed in
[2], but this idea remained more or less dormant (due to
the high cost of offline training). However, with the recent
promises of deep learning, there has been an unprecedented
surge of interest in approximating control policies, see for
example recent tutorial paper [3] and the references therein.

Research developments in this direction have been pre-
dominantly devoted to understanding the safety and per-
formance of approximate policies [4]–[7]. Although, these

The author is with the Department of Mechanical Engineering, Eind-
hoven University of Technology, 5600 MB, Eindhoven, The Netherlands.
d.krishnamoorthy@tue.nl

are very important developments in the direction of MPC
policy approximation, a major challenge of this approach
that hinders practical implementation is the cost of training
the policy, which is not well studied in the literature, as also
noted in [8].

B. High cost of offline learning

Consider the “expert” policy which is given by solving the
MPC problem

V ∗(x(t)) = min
xk,uk

N−1∑
k=0

ℓQ(xk, uk) + ℓP (xN) (1a)

s.t. xk+1 = f(xk, uk, d) ∀k ∈ I0:N−1 (1b)
x ∈ X , u ∈ U , xN ∈ Xf (1c)
x0 = x(t) (1d)

where x ∈ X ⊆ Rnx , u ∈ U ⊆ Rnu , and d ∈ Rnd denote
the states, inputs, and the model parameters, respectively.
f : Rnx × Rnu × Rnd → Rnx denotes the system model,
ℓQ : Rnx×Rnu → R and ℓP : Rnx → R denote the stage and
terminal cost, which are parameterized by the tuning weights
Q and P , respectively, which are treated very generically in
this letter to include different MPC formulations, including
economic stage and terminal costs. N is the length of
the prediction horizon, (1c) denotes the path and terminal
constraints, and (1d) denotes the initial condition constraint.
Solving (1) at each time step and implementing the first
control input gives the implicit MPC policy u∗ = π∗(x(t)).

Approximating the expert policy π∗(x) using supervised
learning requires a data set consisting of the expert demon-
strations in the form of optimal state-action pairs D :=
{(xi, u

∗
i)}

Ns
i=1, which tells us what action u∗

i the expert (i.e.,
MPC) would take at state xi. Using this data set, we can
learn a parameterized policy π(x; θ) that tells what actions
to take as a function of the current state x, such that π(x; θ)
mimics π∗(x). The data set D is generated by solving the
MPC problem offline for different realizations of xi, ideally
covering the entire feasible state space Xfeas.

The availability of a sufficiently rich training data set
covering the entire state space is a key stipulation for satis-
factory learning [4], [8]. In fact, it has also been shown that
the learned policy can result in instability when insufficient
demonstrations are used for policy fitting [9], [10]. This
means the MPC problem (1) must be solved for several
different state realizations xi, the size of which increases
exponentially as the problem dimension increases, (much
like the scalability issues with explicit MPC, albeit offline).
For example, if we want to include at least s samples

IEEE Control Systems Letters paper presented at
2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

Copyright ©2023 IEEE 4772

along each dimension, then we need to generate at least
Ns = snx samples. To this end, the first challenge is the
cost of generating the data set D := {(xi, u

∗
i)}

Ns
i=1.

Assume now that a sufficiently rich data set D has been
generated offline covering X , and an approximate policy
π(x; θ) is learned and has passed the necessary statistical
validations and is certified for online use. Now, if any of
the MPC tuning parameters Q, P change, or if the model
parameter d is updated online (which is not uncommon), then
this renders the learned policy π(x; θ) useless. A new training
data set D now has to be generated using the modified
MPC formulation and the approximate policy must be re-
trained and re-validated from scratch. This is perhaps one
of the biggest drawbacks of MPC policy approximation. In
theory, this can of course be circumvented by training a
parametric function that is also a function of the weights
and model parameters π(p; θ), where for example p :=
[x, vec(Q), vec(P), d]T and π : P → U with P being the
the combined state and parameter space. However, this makes
the offline training problem even more expensive since the
dimension of p can be extremely large. Despite the surge of
interest in MPC policy approximation, its practical impact
will depend on addressing the pivotal challenge of offline
data generation.

C. Data Augmentation

In machine learning literature, and more particularly,
computer vision and image classification, the issue of data-
efficiency is addressed using a simple yet powerful technique
known as “Data Augmentation”, broadly defined as a strategy
to artificially increase the number of training samples using
computationally inexpensive transformations of the existing
samples [11]–[13]. When the data set is a collection of
images (i.e. pixel-based data), data augmentation techniques
include geometric transformations (such as rotate, translate,
crop, flip, etc.), photometric transformations (such as col-
orize, saturation, contrast, brightness, etc.), and elastic trans-
formation (such as deformation, shear, grid distortion, etc.)
of existing images to artificially augment several additional
training samples.

Unfortunately, when it comes to data sets consisting of
optimal state-action pairs sampled from an optimal policy
such as π∗(x), the existing data augmentation methods are
not applicable. By data augmentation for optimal policy
observations, we mean the following: Given an optimal
state-action pair (xi, u

∗
i) observed by querying the expert

policy π∗(xi), we would like to augment additional data
points using computationally inexpensive transformations
that would tell us what the optimal action u∗

j would be
for states xj := xi + ∆x in the vicinity of xi. If we can
get a reasonable approximation ûj ≈ u∗

j without actually
querying the expert, then the inexact optimal state-action pair
(xj , ûj) can be augmented to the set of demonstrations used
for learning the policy. In other words, instead of simply
learning from a given set of expert demonstrations, we would
like to augment additional samples that are inferred from the

expert demonstrations, thereby enabling us to generalize to
states not included in the original set of expert queries.

Noting that the MPC problem (1) is parametric in the ini-
tial condition, a sensitivity-based data augmentation scheme
amenable for optimal state-action pairs was recently pro-
posed in [14], where it was shown that augmenting additional
samples using parametric sensitivities only require the solu-
tion to a system of linear equations, which is computationally
much cheaper than solving the optimization problem. In [14],
the error bound between the expert policy and approximate
policy learned from the augmented data set was shown to
depend on the size of the region ∆x used for data aug-
mentation. Therefore, if we want a certain desired accuracy,
depending on the problem Lipschitz properties, this limits the
size of ∆x that can be used for data augmentation. Building
on our recent work [14], the main contribution of this letter
paper is an improved data augmentation scheme, where the
augmented data samples are enforced to be within an user-
specified accuracy by using additional corrector steps. This
would make the error bound independent of the size of
∆x, thereby enabling us to augment samples from a larger
neighborhood ∆x without jeopardizing accuracy.

II. SENSITIVITY-BASED DATA AUGMENTATION

A. Preliminaries

For the sake of generality, we rewrite the MPC problem
(1) in the standard parametric NLP form

Π(p) : min
w

J(w, p) (2a)

s.t. c(w, p) = 0, g(w, p) ≤ 0 (2b)

where p ∈ Rnp includes current state of the system xi,
vectorized tuning parameters Q,P , system model parameters
d, or any other parameter that can change during online
deployment. w ∈ Rnw denotes the primal decision variables
(with the optimal action u∗

i ∈ Rnu contained within w∗),
J : Rnp × Rnw → R denotes the objective function,
c : Rnp × Rnw → Rnc and g : Rnp × Rnw → Rng denotes
the set of equality and inequality constraints, respectively.

The Lagrangian of the optimization problem (2) is given
by L(w, λ, µ, p) = J(w, p)+λTc(w, p)+µTg(w, p) where
λ ∈ Rnc and µ ∈ Rng are the dual variables. For the
inequality constraints, we define gA ⊆ g as the set of active
inequality constraints (i.e. gA(w, p) = 0) and assume strict
complimentarity (i.e., µA > 0). The first order necessary
conditions of optimality can be denoted compactly as,

φ(s(p), p) :=

∇L(w, λ, µ, p)
c(w, p)
gA(w, p)

 = 0 (3)

µA > 0, µĀ = 0, gĀ(w, p) < 0

Any primal-dual vector s∗(p) := [w∗, λ∗, µ∗]T is called a
KKT-point if it satisfies the first order necessary conditions
of optimality (3).

Assumption 1: The cost and constraints J(·, ·), c(·, ·), and
g(·, ·) of the NLP problem Π(p) are twice continuously
differentiable in the neighborhood of the KKT point s∗(p).

4773

Assumption 2: Linear independence constraint qualifica-
tion, second order sufficient conditions and strict comple-
mentarity holds for Π(p).
The above assumption implies that the primal-dual solution
vector s∗(pi) is a unique local minimizer of Π(p). Given
Assumptions 1 and 2, it was shown in [15] that for parametric
perturbations ∆p in the neighborhood of pi, there exists a
unique, continuous, and differentiable vector function s(pi+
∆p) which is a KKT point satisfying LICQ and SOSC for
Π(pi + ∆p), and that the solution vector satisfies ∥s∗(pi +
∆p)−s∗(pi)∥ ≤ Ls∥∆p∥, where the notation ∥·∥ by default
denotes Euclidean norm.

Theorem 1 ([14]): Given Assumptions 1 and 2, let u∗
i

be the optimal policy obtained by querying Π(pi) for some
pi ∈ P . Then additional samples {(pi+∆pj , u

∗
i +∆uj)}j in

the neighborhood of pi with the same active constraint set gA
can be augmented to the data set without querying Π(pi +
∆pj), where ∆uj ⊂ ∆sj is given by the linear predictor
∆sj = Hi∆pj .

Proof: Taylor series expansion of s∗(p) around pi, gives

s∗(pi +∆pj) = s∗(pi) +
∂s∗

∂p
∆pj +O(∥∆pj∥2) (4)

Since s∗(p) satisfies (3) for any p in the neighborhood of pi,
using the implicit function theorem, we have

∂

∂p
φ(s∗(p), p)

∣∣∣∣
p=pi

=
∂φ

∂s

∂s∗

∂p
+

∂φ

∂p
= 0

⇒∂s∗

∂p
= −

[
∂φ

∂s

]−1
∂φ

∂p
=: Hi

Substituting this in (4) and ignoring the higher order terms,
we get the linear predictor

s∗(pi +∆pj) ≈ ŝ(pi +∆pj) = s∗(pi) +Hi∆pj︸ ︷︷ ︸
:=∆sj

(5)

which contains the inexact optimal action ûj = u∗
i + ∆uj .

Remark 1 (Matrix factorization and inverse): The main
computation in the linear predictor involves getting Hi.
Notice that the first term ∂φ

∂s is nothing but the KKT matrix,
which is already factorized when solving the NLP Π(pi)
using e.g. IPOPT [16]. More importantly, augmenting any
number of data samples using a single data sample (pi, u

∗
i)

requires computing Hi only once! That is, in the simplest
case, using only a single NLP solve at xi, and a single linear
solve (to compute Hi), we can efficiently augment several
data samples ∆sj = Hi∆pj .

To understand the effect of augmenting the data set with
inexact samples, consider the case where the true solution
manifold of Π(p) is given by s∗(p) for all p ∈ P , which
is sampled at Ns discrete points {pi}Ns

i=1 ∈ P . Assume that
there exists a piece-wise affine inexact solution manifold,
denoted by ŝ(p) for all p ∈ P given by the linear predictor
(5) within a neighborhood ∆Pi around each pi for all i =
1, . . . , Ns. We make the following assumption regarding the
neighborhood ∆Pi.

Assumption 3: For all i = 1, . . . , Ns, the neighborhood
∆Pi is chosen around each pi such that pi ∈ ⟨∆Pi⟩,⋃Ns

i=1 ∆Pi = P , and that the active constraint set remains
the same within each neighborhood ∆Pi, and the solution
vector satisfies ∥s∗(pi +∆p)− s∗(pi)∥ ≤ Ls∥∆p∥.
We construct the idea of such a piece-wise affine inexact
manifold ŝ(p) given by the linear predictor (5), so that the
augmented data points are considered to be sampled from this
inexact manifold. Learning the policy then involves fitting a
parametric function π(x, θ) to the augmented training data
set û(p) ⊂ ŝ(p), such that

θ1 = argmin
θ

Ns+M∑
i=1

∥π(pi; θ)− û(pi)∥2 (6)

Assumption 4: The functional form of π(p; θ) has suffi-
ciently rich parametrization and ∃ θ̂ such that û(p) = π(p; θ̂).

Theorem 2 ([14]): Consider a problem with the same
setup as in Theorem 1, where the base data set D0 with
Ns samples is obtained by querying Π(p), which is aug-
mented with M inexact samples from û(p) using (5). Under
Assumptions 3 and 4,

∥π(p; θ1)− π∗(p)∥ ≤ max
({

LpiR
2
i

}Ns

i=1

)
(7)

in probability as M →∞ holds if θ1 is a consistent estimator
of (6), with Ri := sup∆p∈∆Pi

∥∆p∥.
Proof: Due to the continuity and differentiability of

s∗(pi) [15], the following holds for all ∆p ∈ ∆Pi,

∥ŝ(pi +∆p)− s∗(pi +∆p)∥ ≤ Lpi
∥∆p∥2 ≤ Lpi

R2
i

Aggregating over all the regions results in the inequality

∥ŝ(p)− s∗(p)∥ ≤ max
({

LpiR
2
i

}Ns

i=1

)
∀p ∈ P

Since u ⊂ s(p), we have ∥û(p)− u∗(p)∥ ≤ ∥ŝ(p)− s∗(p)∥,
which quantifies the maximum deviation between the opti-
mal policy and the augmented inexact samples. If θ1 is a
consistent estimator of (6), then inequality (7) follows under
Assumption 4.

From this we can see that the error due to learning a policy
based on augmented data samples depends on the problem
Lipschitz properties Lpi

, and the size of the neighborhood
∆pi used to augment the data samples. If one were to use
a large neighborhood ∆pi in order to reduce the number of
offline NLP computations, then this can potentially affect the
performance of the learned policy.

B. Data augmentation with user-enforced accuracy

In order to address this issue, we now propose an improved
data augmentation scheme, where in addition to the linear
predictor, corrector steps are taken to reduce the approxima-
tion error. Adding the KKT conditions to the linear predictor
step, and setting ∆p = 0 gives us the SQP correction step H ∇c ∇gA

∇cT 0 0
∇gTA 0 0

 ∆w
∆λ+ λ∗

∆µA + µ∗
A

+

∇Jc
gA

 = 0 (8)

4774

pi pi +∆p

s
∗(pi +∆p)

s
∗(pi) +Hi∆p

ŝ(pi +∆p)

S(p) = {s(p)|‖∇L((s(p))‖ ≤ ǫtol)}

s
∗(pi)

s
∗(p)

s

p

Fig. 1: Schematic illustration of the proposed sensitivity-
based data augmentation. Blue line indicate the linear predic-
tor step, and the orange arrows indicate the corrector steps.
The set S(p) is shown in gray.

Expanding ŝ(pi+∆pj) := [ŵij , λ̂ij , µ̂ij]
T, the approximate

solution is updated asŵij

λ̂ij

µ̂ij

 =

ŵij

0
0

−
 H ∇c ∇gA
∇cT 0 0
∇gTA 0 0

︸ ︷︷ ︸

:=Mij

−1 ∇Jc
gA

︸ ︷︷ ︸
:=Qij

(9)

where H (Hessian of the Lagrangian), ∇c, ∇gA,∇J , c, and
gA that make up Mij and Qij are all evaluated at ŝ(pi +
∆pj). The corrector steps are taken, until the optimality
residual defined by ∥∇L(ŝ(pi + ∆pj))∥ is less than some
user defined tolerance ϵtol. If the active constraint set gA
remains the same (cf. Assumption 3), then the corrector step
corresponds to a Newton direction on the KKT condition (cf.
(8)). For detailed description of the corrector step, see the
extended version [17] or [18] and the references therein. The
proposed data augmentation scheme with predictor-corrector
steps is summarized in Algorithm 1.

Theorem 3: Consider a problem with the same setup as in
Theorem 1, where the base data set D0 with Ns samples is
obtained by querying Π(p), which is augmented with M =
Nsm inexact samples from ŝ(p) using Algorithm 1. Under
Assumption 4,

∥π(p; θ1)− π∗(p)∥ ≤ r(p) (10)

holds in probability as M →∞ if θ1 is a consistent estimator
of (6), where r(p) := sups(p)∈S(p) ∥s(p) − s∗(p)∥, with
S(p) := {s(p)|∥∇L(ŝ(p))∥ ≤ ϵtol}.

Proof: At the solution manifold s∗(p), we have
∇L(s∗(p)) = 0. From the continuity of the cost and con-
straints, ∃ S(p) := {s(p) | ∥∇L(s(p))∥ ≤ ϵtol} containing
the solution manifold s∗(p) in its interior (cf. Fig. 1) for
all p. Solving the corrector steps until the bound on the
optimality residual satisfies ∥∇L(ŝ(p))∥ ≤ ϵtol (cf. line 10
in Algorithm 1) implies that the ŝ(p) ∈ S(p). Defining the
maximum distance from the exact solution manifold s∗(p)
to the boundary of the set S(p) for any p as

r(p) := sup
s(p)∈S(p)

∥s(p)− s∗(p)∥

Algorithm 1 Improved predictor-corrector sensitivity-based
data augmentation.

Input: Π(p), P , D = ∅, ϵtol

1: for i = 1, . . . , Ns do
2: Sample pi ∈ P
3: s∗(pi)← Solve Π(pi)
4: Extract u∗

i from the solution vector s∗(pi)
5: D ← D ∪ {(pi, u∗

i)}
6: Hi ← −

[
∂φ(s∗(pi),pi)

∂s

]−1
∂φ(s∗(pi),pi)

∂p

7: for j = 1, . . . ,m do
8: Sample ∆pj ∈ ∆Pi in the neighborhood of pi
9: ŝ(pi +∆pj)← s∗(pi) +Hi∆pj ▷ predictor

10: while ∥∇L(ŝ(pi +∆pj))∥ > ϵtol do ▷ corrector

11: ŝ(pi +∆pj)←

ŵij

0
0

−M−1
ij Qij

12: end while
13: Extract û∗

j from the solution vector ŝ∗(pi+∆pj)
14: end for
15: end for

Output: D

results in the inequality ∥ŝ(p) − s∗(p)∥ ≤ r(p). Since u ⊂
s(p), we have ∥û(p)−u∗(p)∥ ≤ ∥ŝ(p)−s∗(p)∥. Furthermore,
from Assumption 4, we have that

∥û(p)− u∗(p)∥ =∥π(p; θ̂)− π∗(p)∥ ≤ r(p)

Our result follows, if θ1 is a consistent estimator of (6).
The bound r(p) clearly depends on ϵtol, which can be

controlled by the user, as opposed to the bound in Theorem 2,
which depends on the distance from the original sample.

Remark 2 (Augmented samples): The augmented samples
can be approximated from the NLP sample, or another
previously augmented sample (similar to a path-following
scheme). In either case, corrector steps are taken until the
optimality residual is less than ϵtol. Therefore, Theorem 3 is
valid in both cases.

Remark 3 (Active constraint set): Note that if a parturba-
tion in p changes the active constraint set gA, this would
induce non-smooth points in the solution manifold s∗(p).
Capturing the non-smooth points in s∗(p) using piecewise-
linear prediction manifolds requires solving a predictor-
corrector QP [18], [19]. However, in the context of data
augmentation, a simpler alternative could be to discard
any samples pi + ∆p that induce a change in the active
constraint set. In other words, Assumption 3 limits the size
of the neighborhood around which additional samples can be
augmented.

III. NUMERICAL EXPERIMENTS

We demonstrate the performance of the data augmentation
framework using the benchmark inverted pendulum problem
with the nonlinear dynamics ml2ω̈ = u − bω̇ − mgl sinω
described by the two states, angle ω, and angular velocity

4775

TABLE I: Comparison of the total CPU time required to generate the different data sets, and the maximum error.

full NLP predictor only predictor-corrector
CPU time [s] CPU time [s] Max Error CPU time [s] Max Error

Case 1 466.42 4.92 1.34 11.95 0.0074
Case 2 456.21 0.45 12.51 8.67 0.028
Case 3 542.73 0.15 79.88 12.96 0.018

ω̇. We consider the case where the expert policy is given by
a nonlinear model predictive controller with an objective to
drive the pendulum to its inverted position. The input u is
the torque, which is used to maintain the pendulum at its
inverted position of ω = 3.14 rad, ω̇ = 0 . In this example,
we have p = [ω, ω̇]T and P = [0, 2π] × [−5, 5]. Note
that we deliberately choose this simple example to facilitate
visualization of the exact and inexact solution manifolds to
illustrate the data augmentation schemes.

To approximate the MPC policy, we wish to generate
100×100 state-action data pairs using a grid-based sampling
strategy to evenly cover the parameter space P , which would
normally take 104 offline NLP computations. In each of the
following cases, we also solve the full NLP to compute π∗(p)
at each sample to serve as a benchmark. The NLP problems
Π(p) are solved using IPOPT with MUMPS linear solver.
The optimization problem and the NLP sensitivities were
formulated using CasADi v3.5.1 [20]. All augmented
samples are based on the sensitivity updates from the exact
sample obtained by solving the NLP. All computations were
performed on a 2.6 GHz processor with 16GB memory.

Case 1: Solve 100 offline NLP problems: In this case,
we queried the NMPC expert to generate Ns = 100 samples
using a 10×10 grid as shown in Fig. 2 in red circles. Using
each data sample, we further augment additional 100 data
samples around each pi, leading to a total of M = 104

augmented data samples using only the linear predictor as
done in [14], as well as the proposed improved predictor-
corrector data augmentation scheme. These are shown in
Fig. 2 in gray dots, where it can be seen that both the data
augmentation schemes are able to sufficiently capture the
solution manifold. The maximum error due to approximation
when using only the linear predictor is 1.34, whereas the
maximum error was 0.0074 with the improved data augmen-
tation.

Case 2: Solve 9 offline NLP problems: We then consider
the case where we queried the NMPC expert only Ns = 9
times using a 3 × 3 grid as shown in Fig. 2 in red circles.
Using each data sample, we further augment additional 1089
data samples around each sample, leading to a total of
9081 augmented data samples using only 9 offline NLP
computations. Since the size of the neighborhood increases,
the inexact solution manifold using only the linear predictor
is now visbily different from the exact solution manifold
(with 9 piecewise affine manifolds), with the maximum error
of 12.5. On the other hand, when using the improved data
augmentation scheme, the maximum error is only 0.028.
This shows that despite the large neighborhood used for data
augmentation, we can get the generate data samples with a
desired accuracy at only marginally increased computational

Fig. 2: Data set with optimal state-action data pairs for the
inverted pendulum example. Red circles indicate samples
where the MPC problem is solved exactly, and gray dots
indicate samples that are augmented using only the linear
predictor [14] (left subplots), and the proposed approach
using additional corrector steps (right subplots).

cost (cf. Table I).

Case 3: Solve only 1 offline NLP problem: We then
consider the extreme case, where we only solve Ns = 1
offline NLP problem as shown in Fig. 2. Using this single
NLP computation, we augment 10000 data samples using
a 100 × 100 grid. Using only the linear predictor, naturally
we get a single affine manifold, leading to large approxima-
tion errors. However, using the improved data augmentation
scheme, we are still able to augment data samples with a
desired accuracy, where the maximum error is only 0.018,
as opposed to 79.88.

The total CPU time to generate the data samples using
the two data augmentation schemes, as well as solving
all the data points exactly along with the maximum error
are summarized in Table I, which also shows the trade-
off between computation cost and accuracy. Since the main
focus of this letter is on data generation, and not on policy

4776

approximation itself, closed-loop simulation results using the
learned policy for the different cases is not shown here.
However, the interested reader can find this in the extended
version [17].

IV. DISCUSSION

The challenge of generating large data sets, if at all
considered in the current works, is mainly addressed via
efficient sampling techniques. This warrants a discussion
on how our proposed data augmentation scheme fits in the
context of the different sampling strategies that have been
proposed in the literature. A recursive sampling algorithm
was proposed in [21], where new sample locations are chosen
with higher resolution as long as neighboring values are still
differing. The authors in [8] recently proposed an algorithm
to efficiently generate large data sets based on geometric ran-
dom walks instead of independent sampling, where starting
from a feasible state, small steps are taken iteratively along
a random line until each step is feasible. A control oriented
sampling strategy was proposed in [22] based on the premise
that it is unlikely that all states from the feasible region are
equally likely to be observed during closed-loop operation.
In this approach, starting from a feasible initial state, the
consecutive samples are selected based on noisy closed-loop
simulations, such that the samples are selected from a tube
of closed loop trajectories likely to be observed in operation.
All these sampling strategies help us decide where to sample
the state-space, and at each sample location, the optimization
problem is solved exactly to get the corresponding optimal
action. As such all these algorithm naturally lend itself to
our proposed data augmentation scheme. For example, if
a sample location determined using any sampling strategy
[8], [21], [22] is within a neighborhood of a previously
computed sample satisfying the assumptions of Theorem 1,
then one can use the proposed data augmentation instead of
solving the MPC problem exactly. Thus the proposed method
complements the different sampling strategies [8], [21], [22].

V. CONCLUSION

To summarize, this paper presented an improved data
augmentation scheme for cheaply generating the training
data samples for MPC policy approximation using only a
fraction of the computation effort. We showed that by using
additional corrector steps we can enforce a desired level
of accuracy in the augmented samples (cf. Algorithm 1),
which amounts to a few additional linear solves. By doing
so the approximation error does not depend on the size of
the neighborhood used for data augmentation, but on the
user-defined optimality residual (cf. Theorem 3), which
allows us to augment samples from larger neighborhoods
while without jeopardizing accuracy. This was demonstrated
on a inverted pendulum control problem, which clearly shows
the trade-off between accuracy and computational effort. The
proposed data augmentation approach can be used with any
sampling strategy, as well as for a broad class of learning
from demonstration problems including imitation learning
with interactive expert, value function approximation, and
inverse optimal control.

REFERENCES

[1] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The ex-
plicit linear quadratic regulator for constrained systems,” Automatica,
vol. 38, no. 1, pp. 3–20, 2002.

[2] T. Parisini and R. Zoppoli, “A receding-horizon regulator for nonlinear
systems and a neural approximation,” Automatica, vol. 31, no. 10, pp.
1443–1451, 1995.

[3] A. Mesbah, K. P. Wabersich, A. P. Schoellig, M. N. Zeilinger, S. Lucia,
T. A. Badgwell, and J. A. Paulson, “Fusion of machine learning and
mpc under uncertainty: What advances are on the horizon?” in 2022
American Control Conference (ACC). IEEE, 2022, pp. 342–357.

[4] M. Hertneck, J. Köhler, S. Trimpe, and F. Allgöwer, “Learning
an approximate model predictive controller with guarantees,” IEEE
Control Systems Letters, vol. 2, no. 3, pp. 543–548, 2018.

[5] X. Zhang, M. Bujarbaruah, and F. Borrelli, “Near-optimal rapid mpc
using neural networks: A primal-dual policy learning framework,”
IEEE Transactions on Control Systems Technology, vol. 29, no. 5,
pp. 2102–2114, 2020.

[6] J. A. Paulson and A. Mesbah, “Approximate closed-loop robust model
predictive control with guaranteed stability and constraint satisfaction,”
IEEE Control Systems Letters, 2020.

[7] B. Karg, T. Alamo, and S. Lucia, “Probabilistic performance validation
of deep learning-based robust NMPC controllers,” International Jour-
nal of Robust and Nonlinear Control, vol. 31, no. 18, pp. 8855–8876,
2021.

[8] S. W. Chen, T. Wang, N. Atanasov, V. Kumar, and M. Morari, “Large
scale model predictive control with neural networks and primal active
sets,” Automatica, vol. 135, p. 109947, 2022.

[9] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics. JMLR Workshop and Conference Proceedings, 2011, pp.
627–635.

[10] M. Palan, S. Barratt, A. McCauley, D. Sadigh, V. Sindhwani, and
S. Boyd, “Fitting a linear control policy to demonstrations with a
kalman constraint,” in Learning for Dynamics and Control. PMLR,
2020, pp. 374–383.

[11] T. Tran, T. Pham, G. Carneiro, L. Palmer, and I. Reid, “A bayesian
data augmentation approach for learning deep models,” in Advances
in neural information processing systems, 2017, pp. 2797–2806.

[12] L. Taylor and G. Nitschke, “Improving deep learning with generic data
augmentation,” in 2018 IEEE Symposium Series on Computational
Intelligence (SSCI). IEEE, 2018, pp. 1542–1547.

[13] C. Shorten and T. M. Khoshgoftaar, “A survey on image data aug-
mentation for deep learning,” Journal of Big Data, vol. 6, no. 1, pp.
1–48, 2019.

[14] D. Krishnamoorthy, “A sensitivity-based data augmentation framework
for model predictive control policy approximation,” IEEE Transactions
on Automatic Control, vol. In-Press, 2021.

[15] A. V. Fiacco, “Sensitivity analysis for nonlinear programming using
penalty methods,” Mathematical programming, vol. 10, no. 1, pp. 287–
311, 1976.

[16] H. Pirnay, R. López-Negrete, and L. T. Biegler, “Optimal sensitivity
based on IPOPT,” Mathematical Programming Computation, vol. 4,
no. 4, pp. 307–331, 2012.

[17] D. Krishnamoorthy, “An improved data augmentation scheme for
model predictive control policy approximation,” arXiv:2303.05607
[eess.SY], 2023.

[18] V. Kungurtsev and J. Jäschke, “A predictor-corrector path-following al-
gorithm for dual-degenerate parametric optimization problems,” SIAM
Journal on Optimization, vol. 27, no. 1, pp. 538–564, 2017.

[19] J. F. Bonnans and A. Shapiro, “Optimization problems with pertur-
bations: A guided tour,” SIAM review, vol. 40, no. 2, pp. 228–264,
1998.

[20] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi – A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
no. 1, pp. 1–36, 2019.

[21] J. Nubert, “Learning-based approximate model predictive control
with guarantees - joining neural networks with recent robust MPC,”
Master’s thesis, ETH Zürich, 2019.

[22] D. Krishnamoorthy, A. Mesbah, and J. A. Paulson, “An adaptive
correction scheme for offset-free asymptotic performance in deep
learning-based economic MPC,” IFAC-PapersOnLine, vol. 54, no. 3,
pp. 584–589, 2021.

4777

