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Abstract— A lane-change maneuver on a congested highway
could be severely disruptive or even infeasible without the
cooperation of neighboring cars. However, cooperation with
other vehicles does not guarantee that the performed maneuver
will not have a negative impact on traffic flow unless it is
explicitly considered in the cooperative controller design. In
this letter, we present a socially compliant framework for
cooperative lane-change maneuvers for an arbitrary number
of CAVs on highways that aims to interrupt traffic flow as
minimally as possible. Moreover, we explicitly impose feasibility
constraints in the optimization formulation by using reachabil-
ity set theory, leading to a unified design that removes the need
for an iterative procedure used in prior work. We quantitatively
evaluate the effectiveness of our framework and compare it
against previously offered approaches in terms of maneuver
time and incurred throughput disruption.

I. INTRODUCTION

DESPITE great advances in the field of autonomous driv-
ing over the last two decades, strict safety requirements

have prevented it from being realized on a large scale [1].
Guaranteeing safety could be very difficult, especially in
high-speed scenarios, or when there are multiple interacting
agents in the scene. Introducing the concept of connectivity
is a potential remedy here, due to its capability for enhancing
the situational awareness of autonomous vehicles (AVs) by
providing them with external streams of information [2],
[3]. In addition, this technology makes AVs capable of
being cooperative with each other by sharing their real-time
state information. Therefore, connected AVs (CAVs) have a
notably higher capability, compared to AVs, to handle safety-
critical scenarios. In addition to safety, this capability helps
to improve driving efficiency and comfort as well [4].

Among different scenarios, highway driving, due to its
relatively high speed, is one of the most attractive yet chal-
lenging ones in which CAVs have a great potential to help
in increasing safety and efficiency. Different studies exist
in the literature that aim to tackle a highway autonomous
driving problem, such as an autonomous car following design
[5], [6]. Automating a lane change maneuver, which is an
intuitively more challenging task due to its higher dimen-
sionality compared to a longitudinal maneuver design, has
also gained attention from the research community. Many
research attempts on autonomous lane change have been
published, either as an advisory system [7], [8] to check the
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feasibility of a lane change, or as a motion planner [9]–[11].
Although the autonomous lane-change maneuver exhibits
promising results, the maneuver may become infeasible
without the cooperation of other vehicles. To address the
infeasibility issue, various research investigated cooperation
among several CAVs to perform a lane change maneuver
[12]–[14]. Yet, most studies ignored the negative effects
of the lane-change maneuver on the surrounding vehicles.
Specifically, Wang et al. [15] showed that restricting an
AV’s negative impacts on neighboring vehicles can result
in improved traffic performance.

In a series of our previous studies, we have focused on
designing a cooperative framework for a group of CAVs
to perform a lane-change maneuver in a highway scenario
by considering and reducing the negative effects of this
maneuver on the cooperative agents [16]–[18]. We address
the scenario depicted in Fig. 1, in which a CAV must pass a
slow uncontrolled vehicle and make a lane change to the fast
lane by cooperating with a pair of CAVs on the fast lane. This
task was divided into two phases: positioning the cooperating
vehicles in an appropriate and safe formation only by altering
their longitudinal locations, and then performing a lane-
change maneuver to change the ego vehicle’s lateral position.

In this letter, we extend our previous research in multiple
directions. First, our framework leverages cooperating with
an arbitrary number of CAVs on the fast lane by considering
the global impact of the maneuver. Secondly, we utilize the
developments in reachability set theory to explicitly impose
feasibility constraints in the optimization problem itself.
This leads to our unified formulation for coordination which
removes the need for an iterative procedure used in [17] and
thus improves upon our previous methods. To the best of
our knowledge, our design advances the state of the art by
allowing the ego vehicle to cooperate with more than one
pair of vehicles to further reduce highway traffic disruption.

The remaining sections of this letter are structured as
follows. Section II briefly discusses the modeling frame-
work’s prerequisites. Section III summarizes earlier work and
describes our proposed framework. In Section IV, we demon-
strate the efficacy of our approach through simulations. The
final section V contains concluding remarks.

II. PRELIMINARIES

We consider motion planning of CAVs on a highway to
cooperatively enable an ego CAV to pass a slow uncontrolled
vehicle (see Fig. 1 for a CAV group of size four). This lane
change maneuver can be decomposed into longitudinal and
lateral phases. First, cooperating CAVs and the ego CAV
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Fig. 1: A scenario of three potential CAVs on the fast lane,
and a CAV C which is behind a slow uncontrolled vehicle
U and aims at performing a lane change.

adjust their longitudinal position such that there is a safe and
feasible gap for the ego CAV to perform a lane change. Then,
the ego CAV performs an optimal lane-change maneuver. In
this letter, we focus solely on the first component, i.e., the
longitudinal motion planning of CAVs. Let C be the ego
CAV which aims at performing a lane change to the fast
lane, and passes a slow uncontrolled vehicle denoted by U .
The set of all cooperative CAVs on the fast lane at time
t ∈ R, which are in the communication range of CAV C, is
given by S(t). The set of cooperative CAVs on the fast lane
can be located between potential human-driven vehicles F
and B from front and back, respectively. For simplicity in
notation, let S(t) = {1, . . . ,m}, where 1 is the CAV farthest
ahead and m is the last.

We model the longitudinal dynamics of CAV i ∈ S(t) as
a double integrator, i.e.,

ẋi(t) = vi(t),

v̇i(t) = ui(t),
(1)

where xi(t), vi(t), and ui(t) denote position, speed, and ac-
celeration at t ∈ R, respectively, and xi(t) = [pi(t), vi(t)]

>

be the state of the CAV i at time t. Let t0 denote the
time at which the longitudinal component of the maneuver
is triggered, while tf is the time when this component is
completed. Without loss of generality, hereafter we consider
t0 = 0 to simplify the notation.

For each CAV i ∈ S(t) the control input and speed are
bounded by:

umin ≤ ui(t) ≤ umax, (2)

0 ≤ vmin ≤ vi(t) ≤ vmax, (3)

where umin, umax are the minimum and maximum control
inputs and vmin, vmax are the minimum and maximum speed
limit, respectively.

To guarantee rear-end safety between CAV i ∈ S(t) and
a preceding CAV k ∈ S(t), we impose the following speed-
dependent constraint,

pk(t)− pi(t) ≥ ε+ ϕ vi(t), (4)

where ε and ϕ ∈ R>0 are the standstill distance and reaction
time respectively.

In contrast to approaches that neglect the negative effects
of a lane change on the surrounding traffic [9]–[14], we
borrow a metric called disruption from [18] to explicitly
consider the adverse impact that the maneuver might have

on the fast-lane traffic. For any vehicle i ∈ S(t), the total
disruption at time t > 0 is denoted by Di(t), and given by:

Di(t) = γx∆x
i (t) + γv∆v

i (t), (5a)

∆x
i (t) = (xi(t)− (xi(0) + vi(0) · t))2, (5b)

∆v
i (t) = (vi(t)− vd)2, (5c)

where ∆x
i (t) and ∆v

i (t) are the position and flow disruptions.
We define the disruption metric using not only the expected
change in the final positions of the CAVs in the fast lane but
also the change in their final speed. The position disruption
metric ∆x

i (t) is a measure of the discrepancy in the terminal
position of the cooperating vehicle in the fast lane when
compared to its position had it not cooperated at all and
cruised with its initial speed over [0, t]. The flow disruption
∆v

i (t) is defined as the speed deviation of the vehicle at time
t from a desired flow speed, vd.

To make the dimensions consistent in (5a), weight factors
γx and γv are defined as follows:

γx =
γ

(max(vmax − v0, vmin − v0) · tavg)2
, (6a)

γv =
(1− γ)

max(vmax − vd, vmin − vd)2
, (6b)

where γ ∈ [0, 1] is a tuning parameter to place more
emphasis on position or flow disruption, while the design
parameter tavg is the desired average time to complete the
longitudinal component of the maneuver.

III. MODELING FRAMEWORK

A. Previous Formulations

In this section, we compare the performance of our pro-
posed approaches primarily against two formulations devel-
oped in the recent past ( [17], [18]) to tackle the problem of
a cooperative lane-change maneuver on a highway.

In both [17] and [18], a multi-step iterative approach
is presented: Step 1: CAV C determines an optimal
terminal maneuver time t∗f and control input (accelera-
tion/deceleration) u∗C(t), t ∈ [0, tf ] that minimizes a given
objective function, while satisfying vehicle dynamics and
safety constraints with the slow vehicle in front of it (i.e.,
vehicle U in Fig. 1). Step 2: An optimal pair of CAVs
(i∗, i∗+ 1) is identified from S(t∗f ) in the fast lane. Step 3:
In case no feasible pair is identified, the terminal time t∗f is
relaxed and the series of optimization problems is re-solved
from Step 1. Step 4: A planning algorithm may be executed
to determine the optimal trajectory that minimizes an energy
cost subject to dynamics and terminal state constraints.

The major differences between the two approaches in
[17] and [18] are: (1) In Step 1 (purple block in Fig. 2),
for both approaches, the objective function consists of a
weighted sum of the time required for the maneuver and
the energy cost for CAV C over the same time. In [17],
the terminal speed vC(t∗f ) is constrained to be close to some
given vd (i.e., desired speed of fast lane) while in [18], this is
expressed as a terminal cost rather than a hard constraint. (2)
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In Step 2 (yellow blocks in Fig.2), the optimal pair is chosen
such that it minimizes a measure of disruption incurred by
the cooperating vehicles. In [17], the disruption metric is
limited to position (i.e., ∆x

i (t∗f ) + ∆x
i+1(t∗f ) from (5b)) and

the decision variables also include the terminal positions
of the cooperative pair. However, in [18], the disruption
metric additionally accounts for deviation in speed (i.e.,
Di(t

∗
f ) +Di+1(t∗f ) from (5a)). (3) In Step 3 (red dotted line

in Fig. 2), the minimum disruption found has to be below
a specified threshold Dth; otherwise, the terminal time is
relaxed as t′f = λt∗f (where λ > 1) and another iteration
takes place from Step 1. (4) Step 4 (blue block in Fig. 2) is
not required for approach [18] as it is combined with Step
2, in which the planned trajectory is found in conjunction
with the optimal pair of CAVs that minimizes the combined
disruption. However, it is a necessary component for [17].

Note that: (1) The first optimization problem solved to
find the terminal time t∗f in Step 1 does not account for
any CAVs in S(·); (2) an iterative process is followed
to determine the feasibility of the obtained terminal time,
which may be severely time-consuming due to the need for
multiple iterations depending on the initial conditions; (3) the
disruption measured only accounts for the pair of cooperating
vehicles in the fast lane (i, i+1), but not the vehicles behind
the selected pair, i.e., CAVs j > i+ 1, j ∈ S(·).

Fig. 2: Block diagrams of different approaches for longitu-
dinal positioning of CAVs in a cooperative lane change.

B. Cooperating with more CAVs on the fast lane

First, we introduce the principle of collaboration with all
CAVs in the cooperative set of CAV C. We shall illustrate
this approach with the formulation developed for an arbitrary
set of cooperating CAVs denoted by S(t∗f ) = {1, . . . ,m},
and CAV C aims at performing a lane change given a final

time t∗f and its final states (see Fig.1). Considering Step 1
is intact, the solution of this section determines the terminal
states of the cooperative CAVs on the fast lane and a location
into which CAV C merges (top green block shown in Fig.
2). We define global disruption as the cost incurred by all the
cooperating CAVs in S(·) due to the lane-change maneuver
initiated by CAV C. It should be noted that the optimal pair
of CAVs which CAV C merges between is a decision variable
that needs to be computed along with other decision variables
such that they minimize the global disruption of CAVs in the
fast lane. There may be situations where two candidate sets
of CAVs are separated by an HDV. In such circumstances,
we simply generate solutions for both sets and select the one
with the lowest global disruption measure.

1) Safety constraints among CAVs on the fast lane: Since
we aim to find terminal states of CAVs on the fast lane, we
impose rear-end safety constraints for CAVs in the fast lane
only at time t∗f , and let a trajectory planner (III-D) ensure
safety during t ∈ [0, t∗f ). Thus, we have the following rear-
end safety constraints.

xF (t∗f )− x1(t∗f ) ≥ ϕv1(t∗f ) + ε, (7a)

∀j ∈ S(t) \ {m} :

xj(t
∗
f )− xj+1(t∗f ) ≥ ϕvj+1(t∗f ) + ε, (7b)

xm(t∗f )− xB(t∗f ) ≥ ϕvB(t∗f ) + ε. (7c)

The rationale for considering (7c) is that CAV m should not
take an action that disturbs vehicle B (potentially an HDV),
so it considers the safety constraint with the vehicle behind
it as well.

2) Feasible set of final states: As our optimization formu-
lations seek to derive the terminal states for all the vehicles
in the set of cooperative vehicles, it is crucial to determine
their feasible set. Given the double integrator dynamics (1)
for all CAVs i ∈ S(t∗f ), we apply geometry analysis tools
in [19], [20] to determine a parametric representation for the
reachable set. This reachable set defines the set of states -
positions and velocities - that a vehicle can attain at a given
time under control input constraints (2) (see Fig. 3).
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Fig. 3: Reachable set for a double integrator with initial
conditions x0 = 0 and v0 = 0 at time t = 0.5.
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Defining µ = umax−umin

2 and ν = umax+umin

2 the implicit
form of the bounding curves of the reachable set at time t
for a double integrator is parabolic in state and given by:

pupper(xi, vi, t) =− t2

2
+

1

4

(
vi − vi(0)− νt

µ
+ t

)2

−
xi − xi(0)− tvi(0)− ν t2

2

µ
, (8a)

plower(xi, vi, t) =
t2

2
− 1

4

(
−vi + vi(0) + νt

µ
+ t

)2

−
xi − xi(0)− tvi(0)− ν t2

2

µ
. (8b)

The reachable set can now be established as

pupper(xi, vi, t) ≤ 0 ∪ plower(xi, vi, t) ≥ 0. (9)

This is a convex constraint and can be expressed in the
decision variables and added to the list of constraints in the
final optimization problem for terminal states of CAV i.

3) Safety constraint of CAV C with corresponding vehicles
on the fast lane: Focusing on cases that CAV C does not
merge in front of vehicle F or behind vehicle B, which are
uncontrolled vehicles, we need to consider safety constraints
based on the target location of CAV C and cooperative CAVs
on the fast lane. In what follows, we first provide the safety
constraints for a sample case shown in Fig. 1. Starting with
listing safety constraints based on the location of CAV C in
(10)-(13), in (14) we show that several of these constraints
are disjunctive, meaning they cannot be satisfied at the same
time. Next, we formalize these constraints by incorporating
binary variables in (15), and extend it to the arbitrary set of
cooperating CAVs in (16).

Case 1: CAV C merges between CAV 1 and vehicle F ,

xF (t∗f )− xC(t∗f ) ≥ ϕvC(t∗f ) + ε, (10a)

xC(t∗f )− x1(t∗f ) ≥ ϕv1(t∗f ) + ε. (10b)

Case 2: CAV C merges between CAV 2 and CAV 1,

x1(t∗f )− xC(t∗f ) ≥ ϕvC(t∗f ) + ε, (11a)

xC(t∗f )− x2(t∗f ) ≥ ϕv2(t∗f ) + ε. (11b)

Case 3: CAV C merges between CAV 3 and CAV 2,

x2(t∗f )− xC(t∗f ) ≥ ϕvC(t∗f ) + ε, (12a)

xC(t∗f )− x3(t∗f ) ≥ ϕv3(t∗f ) + ε. (12b)

Case 4: CAV C merges between vehicle B and CAV 3,

x3(t∗f )− xC(t∗f ) ≥ ϕvC(t∗f ) + ε, (13a)

xc(t
∗
f )− xB(t∗f ) ≥ ϕvB(t∗f ) + ε. (13b)

We need to always satisfy (10a) and (13b); however, only
one of the constraints in each of the pairs (10b) and (11a),
pair (11b) and (12a), and pair (12b) and (13a) needs to be
satisfied, which can be written as

(10b) OR (11a), (14a)
(11b) OR (12a), (14b)
(12b) OR (13a). (14c)

Constraints (14a), (14b), and (14c) are disjunctive constraints
due to the OR statement. Moreover, these constraints deter-
mine if CAV C merges in front or behind a cooperative
CAV in the fast lane. For example, if CAV C merges in
front of CAV 1, equation (10b) would be applicable and
not equation (11a). We convert each disjunctive constraint
into two separate constraints by introducing a binary variable
Bi ∈ {0, 1} for all i ∈ S(t∗f ) and a sufficiently large number
M ∈ R≥0 [21]. Disjunctive constraint (14a) becomes

xc(t
∗
f )− x1(t∗f ) + (1−B1)M ≥ ϕv1(t∗f ) + ε, (15a)

x1(t∗f )− xc(t∗f ) +B1M ≥ ϕvc(t∗f ) + ε. (15b)

Similarly, the other disjunctive constraints (14b) and (14c)
can be converted. The extension to the arbitrary set of
cooperating CAVs ∀j ∈ S(t) is as follows:

xC(t∗f )− xi(t∗f ) + (1−Bi)M ≥ ϕvi(t∗f ) + ε, (16a)

xi(t
∗
f )− xC(t∗f ) +BiM ≥ ϕvc(t∗f ) + ε, (16b)

To further clarify the notation, Bi = 1 implies that CAV
C is in front of CAV i ∈ S(t∗f ). If Bi = 1, we need to have
Bj = 1 for j ∈ {i + 1, . . . ,m}, conveying that if CAV C
is in front of CAV i, it must be also in front of other CAVs
located behind CAV i.

4) Optimization problem: Next, we formally define the
optimization problem for an arbitrary set of cooperating
CAVs denoted by S(t∗f ) = {1, . . . ,m} aimed at minimizing
the global disruption of the maneuver on the fast lane.

Problem 1. The following optimization problem is aimed at
deriving the final states of cooperative CAVs on the fast lane,
given the final time, t∗f and final states of CAV C

min
xi(t∗f ), Bi ∀i∈S(t∗f )

∑
i∈S(t∗f )

Di(t
∗
f )

xF (t∗f )− x1(t∗f ) ≥ ϕv1(t∗f ) + ε, (17a)

xm(t∗f )− xB(t∗f ) ≥ ϕvB(t∗f ) + ε, (17b)

xF (t∗f )− xC(t∗f ) ≥ ϕvc(t∗f ) + ε, (17c)

xC(t∗f )− xB(t∗f ) ≥ ϕvB(t∗f ) + ε, (17d)

∀j ∈ S(t) \ {m} : (7b), (17e)
∀i ∈ S(t) : (3), (9), (16). (17f)

This is a mixed integer optimization problem (MINLP)
due to the introduction of binary variables Bi. It can be
solved using BONMIN [22].

C. Unified Coordination Framework
In this section, we eliminate the decoupling of time and

space in the optimization setup. Instead of deriving t∗f first
and then solving for the final states of CAVs in the fast lane,
this method seeks to solve for both simultaneously and to
combine Step 1 and Step 2 (bottom green block in Fig. 2).

Problem 2. The following optimization problem derives the
final states of an arbitrary set of cooperative CAVs on the
fast lane, final states of the ego CAV, and the final time, t∗f .

min
tf ,xc(tf ),xi(tf ),Bi ∀i∈S(tf )

γttf +Dc(tf ) +
∑

i∈S(tf )

Di(tf )

3424



xF (tf )− x1(tf ) ≥ ϕv1(tf ) + ε, (18a)
xm(tf )− xB(tf ) ≥ ϕvB(tf ) + ε, (18b)
xF (tf )− xc(tf ) ≥ ϕvc(tf ) + ε, (18c)
xc(tf )− xB(tf ) ≥ ϕvB(tf ) + ε, (18d)
xU (tf )− xC(tf ) ≥ ϕvc(tf ) + ε, (18e)
∀j ∈ S(t) \ {m} : (7b); ∀i ∈ S(t) : (16), (18f)
∀i ∈ S(t) ∪ {C} : (3), (9). (18g)

where γt is a weight to non-dimensionalize the final time tf .

Problems 1 and 2 are solved by CAV C. Next, the
maneuver time and terminal states are broadcast to the
CAVs on the fast lane to generate their optimal trajectories.
Like problem 1, this is a MINLP that can be solved using
BONMIN as well.

D. Trajectory Planner

The optimization problems in (17) and (18) render the
terminal states of all CAVs cooperating in the lane-change
maneuver. However, to execute the maneuver, we also need
to determine the trajectory plan over the specified time
interval [t0, t

∗
f ), given the initial states xi(t0) and terminal

states xi(t
∗
f ) of vehicle i. For clarity of notation in the

formulation below, let the optimized terminal position and
speed of vehicle i be referred to as xfi and vfi respectively.

min
ui(t)

∫ t∗f

t0

1

2
u2i (t)dt (19a)

s.t. (1), (2), (3),
xi−1(t)− xi(t) ≥ϕvi(t) + ε, ∀t ∈ [t0, t

∗
f ], (19b)

(xi(t
∗
f )− xfi )2 ≤ δx, (vi(t

∗
f )− vfi )2 ≤ δv, (19c)

where δx and δv are tolerances for numerical feasibility.
Problem (19) can be easily extended to consider comfort
through imposing a suitable constraint on jerk.

The trajectories of all the vehicles can be determined
sequentially in order in a distributed manner, i.e., i =
1, 2, . . . and so on until the last vehicle in the cooperative
set. This allows passing the information of the preceding
vehicle’s trajectory to the current vehicle so as to ensure the
satisfaction of safety constraints. Equation 19 is a quadratic
program that can be solved using IPOPT [23].

IV. SIMULATION RESULTS

This section provides a summary of the simulation setup
and the corresponding results demonstrating the various ways
in which the proposed formulations outperform the baselines.
The simulations were developed entirely in MATLAB with
the help of CasADi [24] for numerical optimization on an
Intel Core i7-1185G7 3.0 GHz.

The simulation setting consists of a straight two-lane
highway, allowable speed range of v = [5, 35] m/s, headway
parameter ϕ = 0.2, and safe distance parameter ε = 10m .
We consider the case that all vehicles on the fast lane are
CAVs (i.e., vehicle B and F are not present) and investigate
the mixed-traffic conditions at different market penetration

TABLE I: Comparison of Averaged Results for Different
Methods and Different Number of Cooperative CAVs

|S| Methods t∗f (s) ∆i,i+1 DS niter tavgiter(s)

6

[17] 2.81 0.1171 0.4426 4.3 0.8
[18] 1.72 0.0607 0.3298 6.5 4.49
III-B 1.69 0.0579 0.0696 6.3 0.33
III-C 2.42 0.0007 0.01 1 0.85

5

[17] 2.67 0.1219 0.3949 3 0.77
[18] 2.02 0.1015 0.3394 8.2 3.81
III-B 2.02 0.1021 0.1237 8.2 0.27
III-C 2.56 0.0004 0.01 1 0.76

4

[17] 2.55 0.0823 0.1730 3.2 1
[18] 1.91 0.0708 0.1730 7.3 3.17
III-B 1.7 0.0329 0.0389 6.3 0.24
III-C 2.25 0.0004 0.0076 1 0.61

3

[17] 2.57 0.0692 0.1145 2.5 0.94
[18] 1.92 0.0568 0.0894 7.5 2.22
III-B 1.84 0.0237 0.0283 7.2 0.18
III-C 2.31 0.0006 0.0082 1 0.5

rates in future studies. Congestion is generated due to the
presence of an uncontrolled slow vehicle U in the right lane
traveling at a constant speed of vU = 20 m/s. CAV C is
initially present right behind U and has a speed of 23m/s
as it seeks to change its lane. The control limits specified for
every CAV are umin = −7m/s2 and umax = 3.3m/s2. We
used IPOPT [23] for obtaining the solutions for the optimal
control problem in (19). The MINLP in (17) and (18) were
solved using BONMIN [22].

The desired flow speed was drawn from a uniform distribu-
tion to allow a range vd = [25, 35]m/s. The maximum time
allowed for the maneuver was capped at Tmax = 20 s, and
desired average time tavg was set to tmax

2 = 10 s. Position
and flow disruption were weighted equally, i.e., γ = 0.5,
and γt is chosen to be 1

Tmax
. For the trajectory planners,

δx = 0.1m2 and δv = 0.1m2/s2. Once the optimal pair of
cooperative vehicles were found for methods [17] and [18],
the vehicles in front followed a constant speed trajectory and
the ones behind followed an IDM model [25].

We compare our performance against the methods pre-
sented in [17] and [18] (See Table I). We performed 24
different simulations with varying initial conditions to cap-
ture the impact of our proposed methods on the disruption
metrics under different number of cooperative CAVs varying
from 3 to 6. Here, t∗f is the terminal time found at the
end of any time relaxation iterations carried out to ensure
feasibility. ∆i,i+1(t∗f ) refers to the local disruption incurred
by the optimal pair of cooperating vehicles that CAV C
merges between, and DS(t∗f ) denotes the global disruption
that the full set of cooperating CAVs S(t∗f ) faces. niter
refers to the average number of iterations that were required
to ensure a feasible maneuver. As can be clearly seen, the
proposed approaches fare better than methods [17], [18] in
terms of both the local and global disruptions incurred due
to the lane change maneuver. The formulation described in
section III-B performs marginally better than the baselines
and demonstrates the benefit of accounting for the entire
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set of cooperating vehicles in the fast lane. Moreover, the
improvement in disruption by using the unified approach
(III-C) is orders of magnitude higher than any of the other
methods. It also illustrates the redundancy of an iterative
approach, ensuring feasibility in the very first optimization
problem solved. To investigate the computational complexity
of Problem 1 and 2, we present the mean computation time
per iteration (yellow blocks and green blocks in Fig. 2)
for each simulation of every approach, and averaged theses
across all the seeds - listed in Table I as tavgiter. It shows
that our approach is computationally feasible, however, the
maximum number of CAVs to collaborate with should be
upper-bounded based on the computational capabilities. The
computation time can be further reduced through techniques
such as warm-starting the optimization problem by using the
solution of problem with relaxed integer variables, employing
distributed optimization methods like ADMM, offline para-
metric solutions, or using more sophisticated solvers.

V. CONCLUDING REMARKS AND DISCUSSION

In this letter, we presented two formulations to perform
a lane change maneuver for CAVs on a congested highway
while minimizing a measure of disruption on the cooperating
vehicles. The first approach seeks to account for the global
impact on all the CAVs in the neighborhood instead of just
the optimal pair. The second approach extends the first one
by combining the multi-step optimization formulations to
eliminate the decoupling between finding CAV C’s optimal
trajectory and checking its feasibility for the cars on the fast
lane, thereby removing the need for an iterative procedure.
Both methods perform better in terms of the disruption
incurred by the cooperating CAVs for participating in the
maneuver, and are a step towards designing more socially
compliant formulations to relieve traffic congestion. Future
studies will involve interactions with HDVs in a mixed
autonomy framework. When the optimization problem is
not feasible, exploring the trade-off between relaxing the
disruption threshold and CAV C waiting in the slow lane
until a feasible solution is found, is another future direction.
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