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Abstract— This paper is concerned with robust control of
discrete-time linear stochastic systems with coefficient matrices
given by polytopic martingales. To the best of our knowledge,
this class of stochastic systems have not been dealt with as a
target of control due to the absence of required theory. For
such systems, we discuss the following two types of approaches
for robust stabilization: One is the proposed stochastic control
approach using the martingale property of the coefficient
matrices, and the other is a deterministic control approach
without using the information. Through theoretical and nu-
merical comparisons of the two approaches, we demonstrate
the effectiveness of the proposed stochastic control approach in
the sense of conservativeness.

I. INTRODUCTION

As a class of systems modeling real objects, linear
parameter-varying (LPV) systems [1], [2] are popular. They
can describe time variations of system properties by using
time-varying parameters in the system representation. If the
variation of the system properties is deterministic, then one of
the most traditional approaches for controlling such systems
is to use parameter-dependent Lyapunov inequalities [1],
[3] (with the deterministic time-varying parameters). On the
other hand, if the variation is essentially stochastic and if its
probabilistic information can be obtained in advance, then
the additional use of the information could contribute to
improving the associated control performance. For example,
in the cases of discrete-time linear systems, the independent
and identically distributed (i.i.d.) property of time-varying
parameters has been used in [4], [5], and the Markov property
has been used in the context of Markov jump linear systems
in [6], [7]. In both of these two examples, the use of the
probabilistic information is known to lead to achieving less
conservative results in analysis and synthesis, as long as the
used information is correct.

To facilitate utilization of such probabilistic information
in control problems, an earlier study [8] of the authors
developed a framework for stability analysis of discrete-time
linear systems with general stochastic dynamics; just for
reference, we also discussed a nonlinear extension of this
result in [9], although nonlinear systems are not in the scope
of the present paper. As long as we deal with second-moment
stability (i.e., mean square stability), stability analysis of the
systems with any class of stochastic dynamics can be dealt
with as a special case in this framework theoretically.
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By exploiting the results in [8], the present paper lays the
first foundation of practical control theory for discrete-time
linear stochastic systems with coefficient matrices given by
polytopic martingales. In particular, we theoretically and nu-
merically demonstrate that the use of the martingale property
of the systems is effective in reducing the conservativeness
of the associated analysis and synthesis. A discrete-time
martingale is, roughly speaking, such a stochastic process
that the conditional expected value of the next realization,
given all the past realizations, is equal to the most recent
realized value. In filtering theory, the next estimated value
is often considered to be distributed with mean equal to
the most recent estimated or filtered value. For example, in
the ensemble Kalman filter (EnKF) [10], a finite number of
ensemble members are distributed at each time step with a
Gaussian distribution with mean equal to the most recent
filtered value. This kind of technologies are expected to be
compatible with the control theory with martingales.

Note that the earlier study [8] focused on stability of
discrete-time linear systems having general stochastic dy-
namics with a purely mathematical motivation. That is, the
purpose of the earlier study was to find universal essences in
stability of the stochastic systems (involving the conventional
discrete-time Markov jump systems), and not to provide
a practical framework that can be applied to real control
problems directly; see, e.g., the Lyapunov inequality (37) in
[8], which is incompatible with numerical computations as it
is. This standpoint is totally different from the present paper.
We focus on the systems with dynamics determined by mar-
tingales and discuss numerically tractable LMI conditions for
their control. We hope that such a work constitutes a point
of departure for exploring a new field in control theory.

We use the following notation in this paper. The set of real
numbers, that of positive real numbers, that of integers, and
that of nonnegative integers are denoted by R, R+, Z, and
N0, respectively. For t ∈ Z, we define Z+(t) := [t,∞) ∩ Z
and Z−(t) := (−∞, t] ∩ Z. The set of n-dimensional real
column vectors and that of m× n real matrices are denoted
by Rn and Rm×n, respectively. The set of n×n symmetric
matrices and that of n × n positive definite matrices are
denoted by Sn×n and Sn×n

+ , respectively. The Borel σ-
algebra on the set (·) is denoted by B(·). The Euclidean
norm is denoted by ∥ · ∥. For random variables s1 and s2,
the expectation of s1 and the conditional expectation of s1
given s2 are denoted by E[s1] and E[s1|s2], respectively;
this notation is used also for random matrices. For the real
square matrix M , He(M) := M +MT , where MT denotes
the transpose of M .
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II. DISCRETE-TIME LINEAR SYSTEMS WITH
COEFFICIENT MATRICES GIVEN BY POLYTOPIC

MARTINGALES

Let (Ω,F ,P) be a complete probability space, where Ω, F
and P are a sample space, a σ-algebra and a probability mea-
sure, respectively. For a set X , an X-valued random variable
X0 is defined as a mapping X0 : (Ω,F) → (X,B(X)),
which is also denoted by X0 : Ω → X for short. Similarly,
an X-valued stochastic process X = (Xk)k∈T on the set
T of time instants is defined as a mapping X : Ω → XT ,
where XT is the set of all the X-valued functions of k ∈ T
that map T to X; e.g., a Z-dimensional stochastic process
on Z is defined as a mapping from Ω to (RZ)Z.

A. Discrete-Time Linear Systems with Stochastic Dynamics

Let us consider a discrete-time Z-dimensional stochastic
process ξ = (ξk)k∈Z : Ω → (RZ)Z and an associated
discrete-time linear stochastic system

xk+1 = A(ξk)xk (1)

with a Borel-measurable matrix-valued function A : RZ →
Rn×n. The class of ξ as well as that of A in (1) will be
confined later so that the coefficient matrix A(ξk) becomes
what we call a polytopic martingale.

In this paper, we denote the initial time instant by k0 ∈ Z,
which is given arbitrarily, and are interested in the behavior
of the state xk ∈ Rn with k ∈ Z+(k0) for each fixed k0. We
suppose that the initial state xk0

∈ Rn of the system is given
as a deterministic vector. In addition, we also suppose that the
value ξ̂(k0−1)− ∈ Ξ̂k0 of the stochastic process ξ(k0−1)− :=
(ξk)k∈Z−(k0−1), which is a subsequence of ξ, is given at k0,
where Ξ̂k0

denotes the support of ξ(k0−1)− (i.e., the set of
values that ξ(k0−1)− can take) . That is, ξ̂(k0−1)− corresponds
to the realization of ξ(k0−1)−, which should be determined at
time k = k0. In our framework, this ξ̂(k0−1)− gives the initial
condition for all the probability distributions associated with
ξk0+ := (ξk)k∈Z+(k0) (i.e., those from the initial time k0).
If ξ is assumed to be a Markov process, only the value of
ξk0−1 is required for determining the distribution of ξk0+.
Since we do not use the Markov assumption, dealing only
with ξk0−1 is insufficient, and the whole value of ξ(k0−1)−

is required. Fortunately, however, this will not be an obstacle
in the arguments in this paper, which focuses on the systems
with coefficients given by polytopic martingales. The details
will be clearer later.

For notational simplicity, let Ek0
[·] := E[·|ξ(k0−1)− =

ξ̂(k0−1)−] and Ek0
[·|Fk] := E[·|ξ(k0−1)− =

ξ̂(k0−1)−, ξk0 , ξk0+1, . . . , ξk], where Fk is the σ-algebra
generated by ξk0 , ξk0+1, . . . , ξk. By definition, the latter
conditional expectation can be seen as a random variable
depending only on ξk0

, ξk0+1, . . . , ξk with the initial
condition ξ(k0−1)− = ξ̂(k0−1)−. With this notation, we
define second-moment exponential stability [11] of system
(1) as follows.

Definition 1: The system (1) is said to be exponentially
stable in the second moment if there exist a ∈ R+ and

λ ∈ (0, 1) such that

Ek0
[∥xk∥2] ≤ a∥xk0

∥2λ2(k−k0) (∀k ∈ Z+(k0);

∀xk0
∈ Rn; ∀ξ̂(k0−1)− ∈ Ξ̂k0

; ∀k0 ∈ Z). (2)
This definition applies to the system (1) with any classes

of ξ and A. For more details, see [8]. Although we will in-
troduce assumptions on ξ and A in the following subsection,
they do not lead to simplification of this definition, in con-
trast to the well-known cases with Markovian assumptions.
Hence, we use this definition as it is. If one consider some
further specific situations, then k0 in (2) may be fixed at 0,
and ξ̂(k0−1)− may not be required through introducing a sort
of initial distribution instead, although details are omitted.

B. Coefficient Matrices Given by Polytopic Martingales

Let us introduce the following assumptions on the stochas-
tic process ξ and the function A for system (1).

Assumption 1: For each k0 ∈ Z and every ξ̂(k0−1)− ∈
Ξ̂k0 , the stochastic process ξ satisfies the following condi-
tions.
1a) For each k ∈ Z+(k0), ξk is Fk-measurable (this is

automatically satisfied by the present definition of Fk).
1b) For each k ∈ Z+(k0), Ek0 [∥ξk∥] < ∞ (this is

automatically satisfied by the following condition 2).
1c) For each k ∈ Z+(k0),

Ek0
[ξk+1|Fk] = ξk a.s., (3)

where a.s. means ”almost surely”.
2) The support of ξk0

is a subset of or given by

EZ :=

{
θ ∈ RZ

∣∣∣∣∣θ(i) ≥ 0 (i = 1, . . . , Z),

Z∑
i=1

θ(i) = 1

}
,

(4)
where θ = [θ(1), . . . , θ(Z)]T .

Assumption 2: The function A : RZ → Rn×n is given
by

A(θ) =

Z∑
i=1

θ(i)A(i) (θ ∈ EZ) (5)

with deterministic matrices A(i) ∈ Rn×n (i = 1, . . . , Z).
These assumptions are also referred to in [8] as a specific

example of prospective assumptions. The condition 1 in
Assumption 1 is nothing but the definition of martingales
[12]. Under these assumptions, not only ξ but also the
time sequence of A(ξk) becomes a martingale; this can be
confirmed as follows, where ξ

(i)
k denotes the i-th entry of ξk.

Ek0
[A(ξk+1)|Fk] = Ek0

[
Z∑

i=1

ξ
(i)
k+1A

(i)
∣∣∣Fk

]

=

Z∑
i=1

Ek0

[
ξ
(i)
k+1|Fk

]
A(i)

=

Z∑
i=1

ξ
(i)
k A(i) a.s.

= A(ξk) a.s. (6)
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In particular, A(ξk) takes a value only in the polytope
{A(θ) : θ ∈ EZ}. Hence, we call the time sequence of
this A(ξk) a polytopic martingale.

In this paper, we discuss stability analysis and synthesis
for the systems with coefficient matrices given by polytopic
martingales. The following section first discusses LMI-based
stability analysis.

III. ROBUST STABILITY ANALYSIS

By using the stochastic control approach in [8], the present
stability problem can be tackled. Since an LMI condition
for such stability analysis has been already obtained in [8],
this section first revisits this earlier result briefly. Then, to
facilitate understanding of the meaning of such a stochastic
control based result, this section also discusses another LMI
condition that can be derived with the conventional deter-
ministic control approach. These arguments lead to showing
that the information that ξ is a martingale is indeed useful
for reducing conservativeness in the associated analysis.

A. LMI Condition Derived with Stochastic Control Approach

In [8], Lyapunov inequality conditions are shown for the
system (1) with general A(ξk). Those results, together with
the S-variable approach in [13], lead us to the following
theorem (for more details, see Subsection VI.C in [8]).

Theorem 1: Suppose that Assumptions 1 and 2 are sat-
isfied. The system (1) is exponentially stable in the second
moment if there exist λ ∈ (0, 1), P (i) ∈ Sn×n

+ (i = 1, . . . , Z)
and F1, F2 ∈ Rn×n such that[

λ2P (i) 0
0 −P (i)

]
+He

([
F1

F2

] [
A(i) I

])
> 0

(i = 1, . . . , Z). (7)
The inequality (7) is a standard finite-dimensional LMI

for a fixed λ, and thus is numerically tractable. As we
can see, the initial condition ξ(k0−1)− = ξ̂(k0−1)− is also
needless to be dealt with in this LMI. Let Ξ̃ denote the
set of the stochastic processes ξ (i.e., the set of mappings
ξ : Ω → (RZ)Z) satisfying Assumption 1. Since the
inequality (7) involves no ξk, the corresponding sufficient
stability condition in Theorem 1 ensures stability under any
of the processes ξ in Ξ̃. This means that Theorem 1 gives
not a mere stability condition but a robust stability condition
for system (1) satisfying Assumptions 1 and 2.

Let us temporarily consider the case that ξk = θ (∀k ∈ Z)
for a deterministic constant vector θ ∈ EZ . Then, the
corresponding deterministic process ξ satisfies Assumption
1, regardless of the value of θ ∈ EZ . This observation
implies that the LMI in Theorem 1 also gives a robust
stability condition for deterministic time-invariant systems
with polytopic uncertainties described by θ ∈ EZ . This
is actually not surprising because the LMI (7) (with some
minor modifications) itself is originally known as such a
deterministic robust stability condition [13]; a special case
of this LMI condition is shown in [14]. In particular, the
LMI for the time-invariant setting is recognized to be the
least conservative among the existing LMIs in the field of

deterministic robust control at this moment. This in turn im-
plies that our Theorem 1 can be interpreted as extending this
known best record by considering stochastic situations. By
using the information that ξ is a martingale, the conventional
constraint on ξ to be deterministic and time-invariant for
using the LMI (7) is alleviated in our approach (a similar
comment also applies to the synthesis discussed later).

B. LMI Condition Derived with Deterministic Control Ap-
proach

We next derive another inequality condition by using the
conventional deterministic control approach. The core idea
in this subsection is quite simple; we view the martingale
ξ as a deterministic time-varying process (i.e., disregard
the information about the stochastic property of ξ), and
consider ensuring robust stability deterministically. Through
comparison with the condition obtained with such an idea,
we clarify the role of the information that ξ is a martingale
in robust control.

Let us consider the Z-dimensional deterministic process
θ = (θk)k∈Z belonging to

EZ := {(θk)k∈Z : θk ∈ EZ (∀k ∈ Z)}, (8)

and the associated system

vk+1 = A(θk)vk. (9)

This system is nothing but system (1) without the information
that ξ is a martingale. If we view θ as a sample path of ξ,
then the system (9) generates the corresponding sample path
of xk in (1). For such a deterministic system, we define
exponential stability as follows.

Definition 2: Suppose that θ ∈ EZ is given. The system
(9) is said to be exponentially stable if there exist a ∈ R+

and λ ∈ (0, 1) such that

∥vk∥2 ≤ a∥vk0
∥2λ2(k−k0)

(∀k ∈ Z+(k0); ∀vk0
∈ Rn; ∀k0 ∈ Z). (10)

This definition is completely consistent with Definition 1;
if ξ = θ then the expectation need not be considered and
Definition 1 immediately reduces to Definition 2 for xk =
vk. For these two stability notions of different systems, the
following theorem holds.

Theorem 2: Suppose that A(i) ∈ Rn×n (i = 1, . . . , Z)
are given, and Assumptions 1 and 2 are satisfied. For given
a ∈ R+ and λ ∈ (0, 1), the following condition 2 is a
sufficient condition for condition 1.

1) The stochastic system (1) satisfies (2) for all ξ ∈
Ξ̃ (i.e., robustly exponentially stable in the second
moment).

2) The deterministic system (9) satisfies (10) for all θ ∈
EZ (i.e., robustly exponentially stable).

Proof: Take an arbitrary ξ ∈ Ξ̃. By Assumption 1, any
sample path ξ(ω0) (ω0 ∈ Ω) of this ξ belongs to EZ . This,
together with condition 2, leads to

∥xk∥2 ≤ a∥xk0
∥2λ2(k−k0) a.s.

(∀k ∈ Z+(k0); ∀xk0
∈ Rn; ∀k0 ∈ Z) (11)
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for the stochastic system (1). Taking conditional expectations
for both sides of this inequality leads to (2). These arguments
apply to each ξ ∈ Ξ̃, and hence, the proof is completed.

This theorem implies that robust stability of the stochastic
system (1) may be evaluated through analyzing that of
the deterministic system (9). Since an LMI condition with
the same level of conservativeness as (7) (i.e., the least
conservative LMI condition for the present robust stability
problem at this moment) has not been explicitly shown in
the literature in the time-varying setting, we provide a brief
proof for it. For a basic concept of deterministic control in
this direction, see, e.g., [3], [13].

First, the following theorem would be almost standard in
the field of deterministic control [15].

Theorem 3: Suppose that θ ∈ EZ is given, and As-
sumption 2 is satisfied. The following two conditions are
equivalent.

1) The deterministic system (9) is exponentially stable.
2) There exist ϵ, ϵ ∈ R+, λ ∈ (0, 1) and P : RZ → Sn×n

such that

P (θk) ≥ ϵI, (12)
P (θk) ≤ ϵI, (13)

λ2P (θk)−A(θk)
T
P (θk+1)A(θk) > 0

(∀k ∈ Z+(k0); ∀k0 ∈ Z). (14)
Since the direct use of the inequality condition in this

theorem is numerically difficult, we confine the mapping P
to the form

P (θ) =

Z∑
i=1

θ(i)P (i) (θ ∈ EZ) (15)

with vertices P (i) ∈ Sn×n (i = 1, . . . , Z). Then, by
using the S-variable technique [13], we obtain the following
theorem.

Theorem 4: Suppose that Assumption 2 is satisfied. For
given λ ∈ (0, 1), the following condition 2 is a sufficient
condition for condition 1.

1) There exist ϵ, ϵ ∈ R+ and P : RZ → Sn×n satisfying
(12)–(14) for all θ ∈ EZ .

2) There exist P (i) ∈ Sn×n
+ (i = 1, . . . , Z) and F1, F2 ∈

Rn×n such that[
λ2P (i) 0

0 −P (j)

]
+He

([
F1

F2

] [
A(i) I

])
> 0

(i, j = 1, . . . , Z). (16)
Proof: Take an arbitrary θ ∈ EZ . Multiplying both

sides of (16) by θ
(i)
k θ

(j)
k+1 and summing up the results with

respect to i, j = 1, . . . , Z lead us to[
λ2P (θk) 0

0 −P (θk+1)

]
+He

([
F1

F2

] [
A(θk) I

])
> 0

(∀k ∈ Z+(k0); ∀k0 ∈ Z) (17)

with P given by (15). Pre- and post-multiplying[
I −A(θk)

T
]

and its transpose on (17) further leads
to (14). These arguments apply to each θ ∈ EZ , while
(15) and P (i) ∈ Sn×n

+ (i = 1, . . . , Z) naturally ensure the

existence of θ-independent ϵ, ϵ ∈ R+ satisfying (12) and
(13). This completes the proof.

Theorems 2–4 imply that robust stability of the stochastic
system (1) can be analyzed by searching for the solution of
(16). In particular, the λ in (16) gives an upper bound of
the minimal λ satisfying (2), as is the case with that in (7).
The inequality (16) is nothing but the LMI condition derived
with the deterministic control approach.

Compared to (7), the simultaneous LMI (16) consists of a
Z times as large number of LMIs. In particular, the Z LMIs
constituting (7) are nothing but those in (16) for i = j.
This implies that at least the analysis based on Theorem 1 is
no more conservative than that based on Theorems 2–4. In
practice, this difference may actually cause a non-zero gap in
the sense of conservativeness. This suggests the usefulness
of the information that ξ is a martingale in the present robust
stochastic control.

IV. ROBUST STATE-FEEDBACK STABILIZATION

This section extends the two conditions for analysis shown
in the preceding section toward state-feedback controller
synthesis. As is the case with analysis, the stochastic control
approach leads us to a less conservative result than the
deterministic control approach also in this synthesis. To
confirm the gap between the two approaches, however, not
only the former but the latter approaches are discussed in
parallel.

A. Synthesis Problem

Let us consider the open-loop plant

xk+1 = Aop(ξk)xk +Bop(ξk)uk (18)

with Borel-measurable matrix-valued functions Aop : RZ →
Rn×n and Bop : RZ → Rn×m. We assume that ξ satisfies
Assumption 1 and Aop and Bop satisfy an assumption similar
to Assumption 2, which is denoted by Assumption 2’ (the
vertices are denoted by A

(i)
op ∈ Rn×n, B

(i)
op ∈ Rn×m (i =

1, . . . , Z)). For such a stochastic plant, we consider the state-
feedback controller

uk = Kxk (19)

with a time-invariant static gain K ∈ Rm×n. Then, the
closed-loop system is given by (1) with (5) and

A(i) = A(i)
op +B(i)

opK (i = 1, . . . , Z). (20)

This section tackles the problem of designing a gain K ∈
Rm×n that robustly stabilizes this closed-loop system in the
sense of second-moment exponential stability.

B. Synthesis-Oriented LMI Condition Derived with Stochas-
tic Control Approach

As a natural extension of Theorem 1, we have the follow-
ing Theorem.

Theorem 5: Suppose that Assumptions 1 and 2’ are sat-
isfied. There exists K ∈ Rm×n such that the closed-loop
system consisting of the plant (18) and the controller (19)
is exponentially stable in the second moment robustly with
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respect to Ξ̃ if for given G0 ∈ Rn×n, there exist λ ∈ (0, 1),
X(i) ∈ Sn×n

+ (i = 1, . . . , Z), Y ∈ Rm×n and S ∈ Rn×n

such that[
λ2X(i) 0

0 −X(i)

]
+He

([
GT

0

I

] [
A

(i)
opST +B

(i)
opY ST

])
> 0

(i = 1, . . . , Z). (21)

In particular, S is nonsingular, and K = Y S−T is one such
stabilizing gain.

Proof: Since S is nonsingular by the lower right block
of (21) and X(i) > 0, the congruence transformation using[
S−1 0
0 S−1

]
and the change of variables F2 = S−1, P (i) =

S−1X(i)S−T and K = Y S−T applied to (21) lead us to[
λ2P (i) 0

0 −P (i)

]
+He

([
S−1GT

0

F2

] [
A(i) I

])
> 0

(i = 1, . . . , Z) (22)

with (20). Hence, for F1 = S−1GT
0 with given G0, (7) holds.

This, together with Theorem 1, completes the proof.
In the above theorem, G0 is viewed as a constant matrix

to be given, so that (22) becomes an LMI. It is known in the
literature of deterministic control that this G0 has to be Schur
stable, and the same comment also applies to the present
stochastic control approach; this can be confirmed through
pre- and post-multiplying

[
I −GT

0

]
and its transpose on

(21), which leads to a Lyapunov inequality with the A matrix
given by G0. The most simple and reasonable selection of
a Schur stable G0 is G0 = 0. Then, we immediately obtain
the following corollary from Theorem 5.

Corollary 1: Suppose that Assumptions 1 and 2’ are sat-
isfied. There exists K ∈ Rm×n such that the closed-loop
system consisting of the plant (18) and the controller (19)
is exponentially stable in the second moment robustly with
respect to Ξ̃ if there exist λ ∈ (0, 1), X(i) ∈ Sn×n

+ (i =
1, . . . , Z), Y ∈ Rm×n and S ∈ Rn×n such that[

λ2X(i) ∗
A

(i)
opST +B

(i)
opY S + ST −X(i)

]
> 0 (i = 1, . . . , Z),

(23)

where ∗ denotes the transpose of the lower left block in the
matrix. In particular, S is nonsingular, and K = Y S−T is
one such stabilizing gain.

In both Theorem 5 and Corollary 1, the synthesis of a
stabilizing gain can be performed1 by solving an LMI for a
fixed λ ∈ (0, 1).

C. Synthesis-Oriented LMI Condition Derived with Deter-
ministic Control Approach

As is the case with the stochastic control approach in the
preceding subsection, the LMI (16) can be extended toward

1Since the conditions in Theorem 5 and Corollary 1 involve the meaning
of the test of stabilizability, it is not required to be additionally performed
before the synthesis. Further characterization of stabilizability and control-
lability for the present system would be an interesting direction of studies.

Fig. 1. 100 sample paths of ξ used for simulations.

Fig. 2. Estimate of Ek0
[∥xk∥2] calculated with 100 sample paths of ξ.

the present synthesis by using the S-variable technique.
Although we explicitly show only a deterministic control
counterpart of Corollary 1 in the following, a similar result
can be immediately obtained also for Theorem 5.

Theorem 6: Suppose that Assumptions 1 and 2’ are sat-
isfied. There exists K ∈ Rm×n such that the closed-loop
system consisting of the plant (18) and the controller (19)
is exponentially stable in the second moment robustly with
respect to Ξ̃ if there exist λ ∈ (0, 1), X(i) ∈ Sn×n

+ (i =
1, . . . , Z), Y ∈ Rm×n and S ∈ Rn×n such that[

λ2X(i) ∗
A

(i)
opST +B

(i)
opY S + ST −X(j)

]
> 0

(i, j = 1, . . . , Z). (24)

In particular, S is nonsingular, and K = Y S−T is one such
stabilizing gain.

Proof: The techniques used for Theorem 5 and Corol-
lary 1, together with Theorems 2–4, complete the proof.

As is the case with analysis in Section III, (24) is a
sufficient condition for (23), since the LMIs in (23) constitute
only a part of those in (24) for i = j. Hence, the synthesis
based on Corollary 1 is expected to be less conservative
than that based on Theorem 6 for the present stochastic
control problem. The existence of a gap between these two
approaches is numerically confirmed in the following section.

V. NUMERICAL EXAMPLE

This section compares the discussed two approaches of
control with a numerical example. Specifically, we numeri-
cally demonstrate the fact that the synthesis based on Corol-
lary 1 is less conservative than that based on Theorem 6.
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A. Synthesis with Two Approaches

Let us consider the open-loop plant (18) satisfying As-
sumptions 1 and 2’ with the coefficient matrices whose
vertices are given by

A(1)
op =

 0.73 0.98 0.73
−0.49 0.37 0.61
0.25 −0.49 1.2

 , B(1)
op =

10
0

,
A(2)

op =

 0.73 0.61 0.73
−0.49 −0.49 0.98

0 −0.73 0.25

 , B(2)
op =

01
0

. (25)

This plant is obviously not robustly stable since A
(1)
op is

not Schur stable. For such a plant, we first tried to design
a stabilizing state-feedback gain K based on Theorem 6.
MATLAB, YALMIP [16] and SDPT3 [17] were used for
this numerical computation, and λ was minimized through a
bisection method with respect to λ2. However, the minimal
λ did not become less than 1, and we failed to stabilize the
closed-loop system by this approach.

We next considered using Corollary 1. The same compu-
tation environment was used. Then, we obtained the solution

X(1) = 104

 2.9177 −1.7000 −2.3522
−1.7000 4.4589 1.7622
−2.3522 1.7622 2.2453

 ,

X(2) = 104

 1.5894 1.0302 −0.9057
1.0302 5.4722 0.3396
−0.9057 0.3396 0.9657

 (26)

achieving the minimal value λ = 0.8718. The corresponding
gain was K =

[
−0.4218 −0.4477 −1.1197

]
. Since this

λ is less than 1, the closed-loop system with the above
gain is ensured to be stable by our result. For reference,
we minimized λ with respect to (24) again under the use of
X(1) and X(2) in (26). Then, we obtained λ = 1.0776 as
the minimal value. Since the synthesis based on Corollary 1
uses the information that ξ is a martingale, these results
numerically demonstrate the effect of using such information
in control problems.

B. Simulation

This subsection briefly introduces the behavior of the de-
signed closed-loop system. For simulation, we set k0 = 0 and
x0 = [1, 0, 0]T . In addition, as a ξ satisfying Assumption 1,
we consider the process whose distribution is described with
two-sided truncated normal distributions, whose details are
omitted due to limited space. The sample paths of this
martingale ξ are shown in Fig. 1.

With these sample paths, we calculated the time evolution
of Ek0 [∥xk∥2] for the closed-loop system with the expec-
tation replaced by the sample mean. Then, we obtained the
result in Fig. 2. As we can see in this figure, the stabilization
was achieved successfully. The decay rate of Ek0

[∥xk∥2]
calculated with the data at k = 10 and 30 was λest = 0.8223,
which is smaller than the minimal value λ = 0.8718 obtained
at the synthesis stage. This also validates the fact that the
minimal λ satisfying our LMIs gives an upper bound of

the decay rate of the second moment; since our synthesis
ensures the worst case performance with respect to Ξ̃, the
gap between the above two values is affected by the choice
of the martingale used in the simulations.

VI. CONCLUSIONS

In this paper, we discussed robust stability analysis and
synthesis for discrete-time linear systems with coefficients
given by polytopic martingales. Through comparing the
proposed stochastic control approach with a deterministic
control approach, we theoretically and numerically demon-
strated that the use of the martingale property in control is
effective for reducing the associated conservativeness.

Further developments of associated control theory toward
observer synthesis (including the investigation of whether
the separation principal holds), gain-scheduled control and
robust H2 control would be possible future works. In addi-
tion, since the used system representation itself is considered
to be new, not only such theoretical developments but also
practical demonstration of their usefulness is considered to
be also important.
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